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A. Additional Results

In this section we provide additional results, as well as
ablation studies that demonstrate the impact of our design
choices.

Qualitative Registration Results. Figure S.2 shows qual-
itative results for out-of-distribution testing data, and Fig-
ure S.1 shows results for the in-distribution case. IP-Net,
PTF, and LoopReg all fail under difficult poses, resulting
in unnatural rotations for some body parts. Poses that are
particularly far from the distribution, such as standing on
the arms, result in very unnatural shapes. In contrast, our
method can handle such poses well despite never having
seen similar ones during training. It is worth noting that
LoopReg uses the same self-supervised objective during
training and during optimization, and refines the learned
correspondences at test time by overfitting to the input.
Hence, we see here that even such a test-time optimization
strategy is not sufficient when the initial poses are far from
the correct result.

Qualitative Segmentation Results. In Figure S.3 we
show additional results for part segmentation on out-of-
distribution data, along with comparisons to the segmen-
tations obtained by IP-Net, PTF, and LoopReg. Note that
IP-Net and LoopReg predict part segmentation for 14 body
parts, where, for example, the two shoulder blades, the three
spine regions and the hip are all merged into one torso
part (here, in red), or the neck is merged into the head
region (here, in olive), making it an easier problem. Our
method produces accurate segmentations even for these dif-
ficult OOD cases, while PTF, IP-Net, and LoopReg struggle
to predict the segmentation, particularly in the regions with
out-of-distribution pose. For example, in the second row,
IP-Net’s part segmentation confuses left and right, resulting
in a flipped torso with the belly facing up.

Raw Scan Data. We evaluated our method on the raw scans
from the DFaust testing set (in-distribution), without any
fine-tuning or re-training. Our model obtains 88.3% accu-
racy for part segmentation, 3.62cm vertex-to-vertex error,
and 4.37cm MPJPE error, which is still better than most
other methods on clean data. A qualitative example of these
results is shown in Figure S.4. Here we see that our estima-
tions are still accurate for out-of-distribution poses, despite
the out-of-distribution noise.

Impact of the Number of Input Points. We show in Ta-
ble S.1 the results of our model when the input is 500, 1000,
2500, and 5000 points. We see here that our method can al-
ready perform reasonably well for in-distribution data for
1000 input points, with a segmentation accuracy that is on
par with competitors that use 5000 points as input (91.2%
for IP-Net, Table 1 in main paper). The segmentation accu-
racy does not differ much when moving to the OOD case.
The model has lower performance in terms of V2V and
MPJPE for a lower number of points on OOD data, how-
ever it still outperforms all the competitors (Table 2 in main
paper). This shows that our model does not require a sig-
nificant number of points in order to obtain accurate results,
both for in- and out-of-distribution data.

Baselines Without a Pose Prior. PTF and IP-Net use
a pose prior to regularize the pose space when fitting to
SMPL. In the main paper we tested these methods with de-
fault parameters, which include the use of the pose prior. To
make sure that this does not negatively affect the final out-
come, we evaluate PTF and IP-Net without the pose prior.
The results are shown in Table S.2, where we observe that
the pose prior does not have a substantial effect on the out-
put.



Figure S.1: Qualitative results for in-distribution poses. From left to right: (a) input point cloud, (b) ground-truth SMPL
mesh, (c) our results, (d) IP-Net [1], (e) PTF [5] and (f) LoopReg [2].

# points OOD ID
Seg. ↑ V2V ↓ MPJPE ↓ Seg. V2V ↓ MPJPE ↓

500 80.5 7.33 8.63 82.9 4.55 5.27
1000 89.7 4.85 5.83 92.1 2.27 2.80
2500 93.0 4.09 4.59 95.4 1.01 1.22
5000 94.1 3.62 4.23 96.2 0.98 1.26

Table S.1: Our results for different numbers of input points, in terms of segmentation accuracy (“Seg.”), vertex-to-vertex
error (“V2V”), and mean joint position error (“MPJPE”).

B. Permutation Equivariance of the Self-
Attention Mechanism

As we have mentioned in the main paper, a function (net-
work) f : V → W is said to be equivariant with respect to
a group G if, for any transformation T ∈ G, f(T X) =
T f(X), X ∈ V . Here we elaborate on how the self-
attention function fSA is equivariant to the permutation
group T (X) = XPπ , where Pπ denotes the permutation
matrix of π, and π denotes the permutation of the input ten-
sor’s elements (in our case, the permutation over the group
element dimension). The self-attention function fSA is de-
fined as fSA(X) = W vX ·softmax

(
(W kX)

T ·W qX
)

,

then

fSA (T (X))

= W vT (X) · softmax
(
(W kT (X))

T ·W qT (X)
)
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T ·W qXPπ

)
= W vXPπ · softmax
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PT
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= W vX

(
PπP

T
π

)
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Pπ

= W vX · softmax
(
(W kX)

T ·W qX
)
Pπ

= T (fSA(X)) ,
(S.1)

where we used the property softmax(P · A · PT ) = P ·
softmax(A) · PT , for a permutation matrix P and an arbi-
trary matrix A, to go from the third to the fourth line (refer
to the proof in [6]). Hence, we have proved that the self-



Figure S.2: Qualitative results for out-of-distribution poses. From left to right: (a) input point cloud, (b) ground-truth SMPL
mesh, (c) our results, (d) IP-Net [1], (e) PTF [5] and (f) LoopReg [2].

attention function is equivariant to the permutation opera-
tion over the discretized SO(3) group elements.



Figure S.3: Qualitative results for part segmentation. From left to right: (a) ground-truth segmentation, (b) our results, (c)
IP-Net [1], (d) PTF [5], and (e) LoopReg [2].

Method Pose Prior OOD ID
V2V ↓ MPJPE ↓ V2V ↓ MPJPE ↓

IP-Net ✓ 7.57 9.41 5.98 6.42
IP-Net 7.67 9.55 6.04 6.50
PTF ✓ 6.42 7.56 3.05 3.53
PTF 6.46 7.62 3.13 3.66
Ours 3.62 4.23 0.98 1.26

Table S.2: Comparison with IP-Net and PTF with and without using their pose prior.



Figure S.4: Qualitative results on the raw scans from DFAUST testing set. From left to right: (a) input point cloud, (b)
ground-truth SMPL mesh, (c) our results.

C. Method Details

Architecture. The local SO(3) feature extractor has two
SPConv layers and a nearest neighbor feature propagation
layer [4]. Each SPConv layer has a kernel size of 0.4 and a
stride downsampling factor of 2, therefore, the input point
cloud with shape [B, N, 3] will be processed as [B, N/4,
64, 60] where the last dimension is the group element ob-
tained by SO(3) discretization, and C = 64 is the feature
dimension. For each input point, the feature propagation
layer finds the top 3 spatial nearest neighbors of the down-

sampled point-wise features, and interpolates these features
weighed by their pairwise distance, resulting in an output of
size [B, N, 64, 60].

To obtain the chordal mean weights we attach to the self-
attention layers an element-wise MLP (3 layers with ReLU,
sizes [64,64,1]), since self-attention does not contain non-
linear activations. Similarly, we attach a 2-layer MLP on the
flattened part features [B, 20*6] to obtain the final SMPL
shape code.

Part Segmentation. We consider here 20 body parts, merg-
ing the fingers into hands, and toes into feet. This is because



the AMASS DFAUST dataset does not contain finger or toe
motion.

Averaging Rotations by Calculating the Chordal L2
Mean. Given two rotations R and S, the chordal L2 dis-
tance is defined as dchord(R,S) = ∥R−S∥F where ∥·∥F is
the Frobenius norm of the matrix, which is related to the an-
gular distance between R and S [3]. The chordal L2 mean
of a set of rotations is then defined as the matrix that min-
imizes the chordal distance to all rotations in the set. In
our case, if wk,j is the weight for part k and group j, then
the weighted average for part k over the |G| = 60 rotation
symmetries is

argmin
R̂k∈SO(3)

|G|∑
j=1

dchord(wk,j · R(gj), R̂k) (S.2)

where R(gj) is the rotation matrix of gj , and gj is a group
element. In practice, R̂k can be obtained in closed-form by
using singular value decomposition. We refer the readers to
[3] for more details.

Loss Function. We train both stages of the network with
the following loss function:

λ1Lpose + λ2Lshape + λ3Lverts + λ4Ljoint + λ5Lpart,
(S.3)

where

• Lpose = ||θ̃ − θ||2 is the MSE loss between predicted
pose coefficients θ̃ and ground-truth pose coefficients
θ.

• Lshape = ||β̃ − β||2 is the MSE loss between pre-
dicted shape coefficients β̃ and ground-truth shape co-
efficients β.

• Lverts = ||W
(
M(β̃, θ̃)−M(β,θ)

)
||2 is the

weighted MSE loss between the reconstructed SMPL
mesh vertices and the ground-truth registration, using
the per-vertex weights W , where the vertices corre-
sponding to body markers are assigned a weight of 2.0,
and the other vertices a weight of 1.0.

• Ljoint = ||T (J (β̃), θ̃) − T (J (β),θ)||2 is the MSE
loss between the predicted joint positions of the SMPL
mesh (posed) and the ground-truth joint positions.

• Lpart = cross-entropy(α(xi,pk), αgt(xi,pk)) is the
cross-entropy loss between the predicted part segmen-
tation and the ground-truth part segmentation of the
point cloud.

We use λ1 = 5, λ2 = 50, λ3 = 100, λ4 = 100, λ5 = 5.
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