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(a) Spatial Transformer (c) VGG (d) U-Net(b) Spatial MLPMixer
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Figure 1: Robustness behavior of various spatial discriminators. The Transformer/MLPMixer works better at identifying
absence in the middle-frequency range, and the CNN is aware of the higher-range spectrum. Also, CNN works poorly at
identifying frequency noise compared to Transformer/MLPMixer. The U-Net has lower spectra perception compared to VGG
due to its residual structure [10].

1. Architecture-Related Robustness
In main body of the text, we argue that the spatial dis-

criminator excels at identifying low-frequency masking,
while the spectral discriminator is good at identifying high-
frequency noise. This section substantiates that the afore-
mentioned phenomenon is independent of the specific net-
work architecture.

1.1. Spatial Discriminators

Fig. 1 illustrates the robustness of various spatial dis-
criminators under frequency perturbations. All four repre-
sentative network architectures demonstrate a similar ten-
dency to capture low-frequency masking. Nevertheless,
subtle yet critical distinctions exist between these archi-
tectures. While Transformer performs like a low-pass fil-
ter [5], relying more on low-frequency information, it can
identify a narrower range of frequency masking than typi-
cal CNNs such as VGG [8]. Similarly, MLPMixer behaves
like Transformer due to their similar high-level architecture
design. In contrast, VGG, which is a CNN network, has a
broader spectrum perception range. The U-Net [6], which
is a residual structured network, has a weaker tendency

to capture high-frequency components [10], and there-
fore behaves more like the Transformer [3]/MLPMixer [9].
These phenomena align with those observed in other stud-
ies [10, 4, 7, 1].

1.2. Spectral Discriminators

As evidenced by Fig. 2, comparable to the scenario
of spatial discriminators, spectral discriminators also ex-
hibit similar behaviors, i.e., they are unable to differenti-
ate the absence of low frequencies. Specifically, just as
they do in the spatial domain, both Transformer and MLP-
Mixer exhibit consistent behavior in the frequency domain,
as they both effectively learn to discriminate against high-
frequency noise. While Spectral MLP performs similarly
to Transformer/MLPMixer in terms of frequency masking,
it fails to learn to recognize high-frequency noise, further
validating the effectiveness of our Spectral Transformer.

In conclusion, there exists a fundamental disparity be-
tween the spatial and spectral discriminator. Specifically,
the spatial discriminator is an expert at discriminating low-
frequency masking, while the spectral discriminator per-
forms better in distinguishing high-frequency noise, and the
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(a) Spectral Transformer
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(b) Spectral MLPMixer
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(c) Spectral MLP

Figure 2: Robustness behavior of various spectral discriminators. Overall, these architectures exhibit similar three-stage
behaviors. Specifically, Transformer and MLPMixer perform almost identically, while MLP fails to learn to discriminate
high-frequency noise effectively.
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Figure 3: The shifting behavior of the three frequency ranges varying scaling factors. The three frequency ranges are
[0, r1), [r1, r2), and [r2, 1]. SpatFormer/SpecFormer denotes Transformer applied to the spatial/frequency domain. As the
scaling factor grows, the optimization goal of generator migrates from distortion to perception (similar to increasing the
weight of the perception term). Consequently, the boundaries of the three frequency ranges shift to the left (r1 and r2
decrease). The tiny vibrations may be related to the stochasticity of the training.

architecture contributes to specific behavior. Therefore, it is
crucial to consider the specific requirements of the task and
the characteristics of the input data when choosing a dis-
criminator architecture. Moreover, our findings can guide
future research in developing discriminators that are better
suited for specific tasks and data types.

2. The Generalizability of the Three Frequency
Ranges Phenomenon

We have demonstrated that both the generator and dis-
criminator exhibit three-range behavior in the frequency do-
main, and we have explained this phenomenon from the fre-
quency perspective of the PD tradeoff. Nevertheless, in the
main body of the text, we conducted our study using a ×4
SR as an example. In order to demonstrate the generaliz-
ability of the three-range behavior in the frequency domain,
we investigated how the scaling factor of SR influences var-
ious discriminators. Specifically, we defined the boundary
of the three frequency ranges as r1 and r2, where r1 ≥ 0,
r1 ≤ r2, and r2 ≤ 1. These three frequency ranges are in
the radius intervals [0, r1), [r1, r2), and [r2, 1], respectively.
Please refer to Fig. 2b for an illustration of the properties of

each range.

Let’s start by taking a global view. Fig. 3 shows the
boundary of the three frequency ranges (r1 and r2), which
will shift to the left as the scaling factor s increases. This
can be explained from the frequency perspective of PD
tradeoff. Initially, as the scaling factor s increases, the in-
formation accessible in the input image diminishes. Subse-
quently, the low-frequency part that the generator can per-
fectly recover also decreases, and the perception term grad-
ually dominates optimization. As a result, r1 decreases.
Moreover, the limited capacity of the generator can cause
a decrease in r2, considering the decrease of r1, though the
decreasing trend of r2 is relatively mild compared to r1.
Furthermore, when s approaches infinity (×∞ SR), the in-
put contains scarcely any information, thereby equivalent
to an unconditional image generation task. In this scenario,
the discriminator can identify a significant amount of fre-
quency noise but can only discriminate a small fraction of
the frequency masking. Chen et al. [2] also observed this
limiting case in image generation.



(a) GT (b) After masking (c) After noise

Figure 4: Intuitive visualization of frequency masking
(b) and noise (c).
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Figure 5: Spectral Profile of SR Models under Bicubic
Degradation. The spatial discriminator could match the
real spectra well under simple degradation (Bicubic down-
sampling).

3. The Visual Effects of Frequency Perturba-
tions

We investigated the behavior of discriminator by exam-
ining its performance under two representative frequency
perturbations, and found differences in the capabilities of
spatial and spectral discriminators. Here, we provide more
comprehensible visualizations, as exemplified in Fig. 4,
where frequency masking is the removal of a circular ring
with a certain radius from the spectrogram, and frequency
noise is the addition of noise within a circular ring with
a certain radius in the spectrogram. In addition, we also
demonstrate the effect of frequency perturbation on two rep-
resentative images in Fig. 6. Among them, high-frequency
perturbations are relatively difficult for the human eye to
perceive, while other perturbations have a significant im-
pact on human perception.

4. Spectral Profile of SR Models under Bicubic
Degradation

We have observed that SR networks exhibit poor spec-
tral alignment with real spectra in real-world SR scenar-
ios, which prompted us to introduce a spectral discriminator
to improve the spectral alignment of SR networks. Nev-
ertheless, we acknowledge that this issue is not as severe
in the case of simple degradation, such as Bicubic degra-

Discriminator Params[M] FLOPs[G] Activations[G]

VGG [12] 21.1 8728.63 9.57
U-Net [11] 4.4 24776.00 22.56

SpecFormer/8 2.0 2709.60 33.32
SpecFormer/32 2.2 93.41 0.63

Table 1: Efficiency performance of various discrimina-
tors. Metrics are evaluated on images of size 256× 256.

Ground Truth Low-Quality Super-Resolution

Real-ESRGAN [11] 0.77 0.92 0.16
Real-ESRGAN + SpecFormer 0.52 0.43 0.44

Table 2: The average scores of discriminators w.r.t. three
types of images. The spectral discriminator, i.e., PSM-T,
mitigates the high-frequency flaw of Real-ESRGAN’s spa-
tial discriminator.

dation. As depicted in Fig. 5, the SR images produced
by ESRGAN [12] already match real images in the low
and middle-frequency ranges. While our Spectral Trans-
former mitigates the problem of excessive preference for
high-frequency content by the spatial discriminator to some
extent, its impact on quantitative metrics and human per-
ception may not be significant.

5. Efficiency Analysis of Discriminators
To compare the efficiency differences between the Spec-

tral Transformer and other commonly used discriminators
in SR, we consider three metrics: the total number of pa-
rameters, the number of floating point operations (FLOPs),
and the number of elements of all outputs of convolutional
layers (activations). As is evidenced in Tab. 1, our discrim-
inator is, in fact, highly efficient due to our utilization of
a small number of dimensions and a relatively large patch
size. For our SR experiments, we employed a patch size of
32 × 32 for both the Spatial Transformer and the Spectral
Transformer. Therefore, the number of parameters in our
discriminator is 4.4M, the number of FLOPs is 186.82G,
and the number of activations is 1.26G. Among these, the
number of parameters in our discriminator is equivalent to
that of U-Net, while the FLOPs and Activations are signifi-
cantly lower than those of VGG and U-Net.

6. The Spectral Discriminator solve the high-
frequency noise problem

It is the extreme preference of Real-ESRGAN’s spa-
tial discriminator for high-frequency information that mo-
tivated us to introduce the spectral discriminator. To con-
firm that the spectral discriminator can address this prob-
lem in practical applications, we introduce spectral Trans-
former to train Real-ESRGAN. As demonstrated in Tab. 2,
our approach yields the highest scores for ground truth im-



(a) GT (b) masking
[
0, 1

5

]
(c) masking

[
1
5
, 2
5

]
(d) masking

[
2
5
, 3
5

]
(e) masking

[
3
5
, 4
5

]
(f) masking

[
4
5
, 1
]

(g) GT (h) noise
[
0, 1

5

]
(i) noise

[
1
5
, 2
5

]
(j) noise

[
2
5
, 3
5

]
(k) noise

[
3
5
, 4
5

]
(l) noise

[
4
5
, 1
]

(m) GT (n) masking
[
0, 1

5

]
(o) masking

[
1
5
, 2
5

]
(p) masking

[
2
5
, 3
5

]
(q) masking

[
3
5
, 4
5

]
(r) masking

[
4
5
, 1
]

(s) GT (t) noise
[
0, 1

5

]
(u) noise

[
1
5
, 2
5

]
(v) noise

[
2
5
, 3
5

]
(w) noise

[
3
5
, 4
5

]
(x) noise

[
4
5
, 1
]

Figure 6: The effects of frequency masking and noise on two representative images.

ages, followed by super-resolution, and the lowest scores
for low-quality images, as we had anticipated. Therefore,
we can conclude that the spectral discriminator is capable
of mitigating the flaw of the spatial discriminator on high
frequencies.
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