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Abstract

Classifiers trained on given databases perform poorly

when tested on data acquired in different settings. This is

explained in domain adaptation through a shift among dis-

tributions of the source and target domains. Attempts to

align them have traditionally resulted in works reducing the

domain shift by introducing appropriate loss terms, mea-

suring the discrepancies between source and target distri-

butions, in the objective function. Here we take a different

route, proposing to align the learned representations by em-

bedding in any given network specific Domain Alignment

Layers, designed to match the source and target feature dis-

tributions to a reference one. Opposite to previous works

which define a priori in which layers adaptation should be

performed, our method is able to automatically learn the

degree of feature alignment required at different levels of

the deep network. Thorough experiments on different public

benchmarks, in the unsupervised setting, confirm the power

of our approach.

1. Introduction

In spite of the progress brought by deep learning in visual

recognition, the ability to generalize across different visual

domains is still out of reach. The assumption that training

(source) and test (target) data are independently and iden-

tically drawn from the same distribution does not hold in

many real world applications. Indeed, it has been shown

that, even with powerful deep learning models, the domain

shift problem can be alleviated but not removed [7].

In the last few years the research community has devoted

significant efforts in addressing domain shift. In this con-

text, the specific problem of unsupervised domain adapta-

tion, i.e. no labeled data are available in the target domain,

deserves special attention. In fact, in many applications an-

notating data is a tedious operation or may not be possible at

all. Several approaches have been proposed, both consider-

ing hand-crafted features [15, 11, 12, 20, 8] and deep mod-

els [21, 31, 9, 23, 10, 19]. In particular, recent works based

on deep learning have achieved remarkable performance.

Most of these methods attempt to reduce the discrepancy

among source and target distributions by learning features

that are invariant to the domain shift. Two main strategies

are traditionally employed. One is based on the minimiza-

tion of Maximum Mean Discrepancy (MMD) [21, 23]: the

distributions of the learned source and target representations

are optimized to be as similar as possible by minimizing the

distance between their mean embeddings. The other strat-

egy [31, 9] relies on the domain-confusion loss, introduced

to learn an auxiliary classifier predicting if a sample comes

from the source or from the target domain. Intuitively, by

maximizing this term, i.e. by imposing the auxiliary classi-

fier to exhibit poor performance, domain-invariant features

can be obtained.

More recently, researchers have also started to investi-

gate alternative directions [10, 3, 19, 4], such as the use of

encoder-decoder networks to jointly learn source labels and

reconstruct unsupervised target images, or the possibility

of reducing the domain shift by designing specific distribu-

tion normalization layers. In particular, the latter idea is ex-

ploited in [19], where a simple parameter-free approach for

deep domain adaptation, called Adaptive Batch Normaliza-

tion (AdaBN), is proposed. Inspired by the popular Batch

Normalization (BN) technique [16], AdaBN modifies the

Inception-BN network and aligns the learned source and tar-

get representations by using different mean/variance terms

for the source and target domain when performing BN at

test time. This leads to learning domain-invariant features

without requiring additional loss terms (e.g. MMD, domain-

confusion) in the optimization function and the associated

extra-parameters.

Inspired by [19], this paper introduces novel Domain

Alignment layers (DA-layers) (Fig.1) which are embed-

ded at different levels of the deep architecture to align the
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Figure 1. AutoDIAL as applied on AlexNet [18]. Source and target images are fed to the network. After passing through the first layers,

they enter our DA-layer where source and target distributions are aligned. The DA-layer learns the statistics of newly defined source and

target cross domain distributions and normalize the source and target mini-batches according to the computed mean and variance, different

for the two domains (see Section 3.1). The amount by which each distribution is influenced by the other and therefore the degree of domain

alignment, depends on a parameter, α ∈ [0.5, 1.0], which is also automatically learned. After flowing through the whole network, source

samples contribute to a Softmax loss, while target samples contribute to an Entropy loss, which promotes classification models which

maximally separate unlabeled data. Note that we use multiple DA-layers to align learned feature representations at different levels.

learned source and target feature distributions to a canon-

ical one. Different from [19] and all previous deep do-

main adaptation methods which decide a priori which lay-

ers should be adapted, we endow our DA-layers with the

ability to automatically learn the degree of alignment that

should be pursued at different levels of the network. This

is to our knowledge the first work that tries to pursue this

objective. Furthermore, we argue that in [19] unlabeled tar-

get data are not fully exploited (see Sec. 3.1). Instead, we

leverage information from the target domain to construct

a prior distribution on the network parameters, biasing the

learned solution towards models that are able to separate

well the classes in the target domain (see Sec. 3.2 and [13]).

Our DA-layers and the considered prior distribution work

in synergy during learning: the first aligning the source

and target feature distributions, the second encouraging the

network to learn features that lead to maximally separated

target classes. We call our algorithm AutoDIAL – Do-

maIn Alignment Layers with Automatic alignment param-

eters. An extensive experimental evaluation demonstrates

that AutoDIAL greatly alleviates the domain discrepancy

and outperforms state of the art techniques on three popu-

lar benchmarks: Office-31 [26], Office-Caltech [12] and the

Caltech-ImageNet setting of the Cross-Dataset Testbed[30].

Contributions. The contribution of this work is three-

fold. First, we present an approach for unsupervised do-

main adaptation, based on the introduction of DA-layers to

explicitly address the domain shift problem, which act in

synergy with an entropy loss which exploits unsupervised

target data during learning. Our solution simultaneously

aligns feature representations and learns where and to which

extent adaptation should take place. Second, in contrast to

previous works optimizing domain discrepancy regulariza-

tion terms [23, 31, 9, 21], our DA-layers do not require any

additional meta-parameters. Third, we perform an exten-

sive experimental analysis on three different benchmarks.

We find that our unsupervised domain adaptation approach

outperforms state-of-the-art methods and can be applied to

different CNN architectures, consistently improving their

performance in domain adaptation problems.

2. Related Work

Unsupervised domain adaptation focuses on the scenario

where labeled data are only available in the source domain.

Traditional methods addressed the problem of reducing the

discrepancy between the source and the target distributions

by considering two main strategies. The first is based on

instance re-weighting [15, 5, 33, 11, 34]. Initially, source

samples are assigned different importance according to their

similarity with the target data. Then, the re-weighted in-

stances are used to learn a classification/regression model

for the target domain. Following this scheme, Huang et

al. [15] introduced Kernel Mean Matching, a nonparamet-

ric method to set source sample weights without explicitly

estimating the data distributions. Gong et al. [11] proposed

to automatically discover landmark datapoints, i.e. the sub-

set of source instances being more similar to target data,

and used them to create domain-invariant features. Chu et

al. [5] formalized the two tasks of sample selection and clas-

sifier learning within a single optimization problem. While

these works considered hand-crafted features, recently sim-

ilar ideas have been applied to deep models. For instance,

Zeng et al. [34] described an unsupervised domain adapta-

tion approach for pedestrian detection using deep autoen-

coders to weight the importance of source training samples.

A second strategy for unsupervised domain adaptation is

based on feature alignment, i.e. source and target data are

projected in a common subspace as to reduce the distance

among the associated distributions. This approach attracted

considerable interest in the past years and several differ-

ent methods have been proposed, both considering shallow

models [12, 20, 8] and deep architectures [21, 31, 9, 10, 3].

Focusing on recent deep domain adaptation methods, two

different schemes are typically considered for aligning fea-
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ture representations: (i) multiple adaptation schemes are in-

troduced in order to reduce Maximum Mean Discrepancy

[21, 23, 28] or (ii) deep features are learned in a domain-

adversarial setting, i.e. maximizing a domain confusion loss

[31, 9]. Our approach belongs to the category of meth-

ods employing deep learning for domain adaptation. How-

ever, we significantly depart from previous works, reduc-

ing the discrepancy between source and target distributions

by introducing a domain alignment approach based on DA-

layers. The closest work to ours is [19], where Li et al. pro-

pose to use BN in the context of domain adaptation. Our

approach can be seen as a generalization of [19], as our DA

layers allows to automatically tune the required degree of

adaptation at each level of the deep network. Furthermore,

we also introduce a prior over the network parameters in

order to fully benefit from the target samples during train-

ing. Experiments presented in Section 4 show the signifi-

cant added value of our idea.

3. Automatic DomaIn Alignment Layers

Let X be the input space (e.g. images) and Y the out-

put space (e.g. image categories) of our learning task. In

unsupervised domain adaptation, we have a source do-

main and a target domain that are identified via proba-

bility distributions ps
xy

and pt
xy

, respectively, defined over

X × Y . The two distributions are in general different

and unknown, but we are provided with a source dataset

S = {(xs
1, y

s
1), . . . , (x

s
n, y

s
n)} of i.i.d. observations from

ps
xy

and an unlabeled target dataset T = {xt
1, . . . , x

t
m} of

i.i.d. observations from the marginal pt
x
. The goal is to esti-

mate a predictor from S and T that can be used to classify

sample points from the target domain. This task is partic-

ularly challenging because on one hand we lack direct ob-

servations of labels from the target domain and on the other

hand the discrepancy between the source and target domain

distributions prevents a predictor trained on S to be readily

applied to the target domain.

A number of state of the art methods try to reduce the

domain discrepancy by performing some form of alignment

at the feature or classifier level. In particular, the recent,

most successful methods try to couple the training process

and the domain adaptation step within deep neural archi-

tectures [9, 23, 21], as this solution enables alignments at

different levels of abstraction. The approach we propose

embraces the same philosophy, while departing from the

assumption that domain alignment can by pursued by ap-

plying the same predictor to the source and target domains.

This is motivated by an impossibility theorem [2], which in-

tuitively states that no learner relying on the covariate shift

hypothesis, i.e. ps
y|x = pt

y|x, and achieving a low discrep-

ancy between the source and target unlabeled distributions

ps
x

and pt
x
, is guaranteed to succeed in domain adaptation

without further relatedness assumptions between training

and target distributions. For this reason, we assume that the

source and target predictors are in general different func-

tions. Nonetheless, both predictors depend on a common

parameter θ belonging to a set Θ, which couples explicitly

the two predictors, while not being directly involved in the

alignment of the source and target domains. This contrasts

with the majority of state of the art methods that augment

the loss function used to train their predictors with a reg-

ularization term penalizing discrepancies between source

and target representations (see, e.g. [9, 23, 21]). The per-

spective we take is different and is close in spirit to Ad-

aBN [19]. It consists in hard-coding the desired domain-

invariance properties into the source and target predictors

through the introduction of so-called Domain-Alignment

layers (DA-layers). Moreover, we sidestep the problem of

deciding which layers should be aligned, and to what extent,

by endowing the architecture with the ability to automati-

cally tune the degree of alignment that should be considered

in each domain-alignment layer. The rest of this section is

devoted to providing the details of our method.

3.1. Source and Target Predictors

The source and target predictors are implemented as two

deep neural networks being almost identical, as they share

the same structure and the same weights (given by the pa-

rameter θ). However, the two networks contain also a num-

ber of special layers, the DA-layers, which implement a

domain-specific operation. Indeed, the role of such layers is

to apply a data transformation that aligns the observed input

distribution with a reference distribution. Since in general

the input distributions of the source and target predictors

differ, while the reference distribution stays the same, we

have that the two predictors undergo different transforma-

tions in the corresponding DA-layers. Consequently, the

source and target predictors de facto implement different

functions, which is important for the reasons given in Sec. 3.

The actual implementation of our DA-layers is inspired

by AdaBN [19], where Batch Normalization layers are used

to independently align source and target distributions to

a standard normal distribution, by matching the first- and

second-order moments. The approach they propose con-

sists in training on the source a network having BN-layers,

thus obtaining the source predictor, and deriving the target

predictor as a post-processing step, which re-estimates the

BN statistics using target samples only. Accordingly, the

source and target predictors share the same network param-

eters but have different BN statistics, thus rendering the two

predictors different functions.

The approach we propose sticks to the same idea of us-

ing BN-layers to align domains, but we introduce funda-

mental changes. One limitation of AdaBN is that the target

samples have no influence on the network parameters, as

they are not observed during training. Our approach over-

comes this limitation by coupling the network parameters
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to both target and source samples at training time. This is

achieved in two ways: first we introduce a prior distribu-

tion for the network parameters based on the target samples;

second, we endow the architecture with the ability of learn-

ing the degree of adaptation by introducing a parametrized,

cross-domain bias to the input distribution of each domain-

specific DA-layer. The rest of this subsection is devoted to

describe the new layer, while we defer to the next subsec-

tion the description of the prior distribution.

DA-layer. As mentioned before, our DA-layer is derived

from Batch Normalization, but as opposed to BN, which

computes first and second-order moments from the input

distribution derived from the mini-batch, we let the lat-

ter statistics to be contaminated by samples from the other

domain, thus introducing a cross-domain bias. Since the

source and target predictors share the same network topol-

ogy, each DA-layer in one predictor has a matching DA-

layer in the other predictor. Let xs and xt denote inputs to

matching DA-layers in the source and target predictor, re-

spectively, for a given feature channel and spatial location.

Assume qs and qt to be the distribution of xs and xt, respec-

tively, and let qstα = αqs + (1 − α)qt and, symmetrically,

qtsα = αqt+(1−α)qs be cross-domain distributions mixed

by a factor α ∈ [0.5, 1]. Then, the output of the DA-layers

in the source and target networks are given respectively by

DA(xs;α) =
xs − µst,α
√

ǫ+ σ2
st,α

, DA(xt;α) =
xt − µts,α
√

ǫ+ σ2
ts,α

, (1)

where ǫ > 0 is a small number to avoid numerical is-

sues in case of zero variance, µst,α = Ex∼qst
α
[x], σ2

st,α =

Varx∼qst
α
[x], and similarly µts,α and σ2

st,α are mean and

variance of x ∼ qtsα . Akin to BN, we estimate the statistics

based on the mini-batch and derive similarly the gradients

through the statistics (see Supplementary Material).

The rationale behind the introduction of the mixing fac-

tor α is that we can move from having an independent align-

ment of the two domains akin to AdaBN, when α = 1, to

having a coupled normalization when α = 0.5. In the for-

mer case the DA-layer computes two different functions in

the source and target predictors and is equivalent to consid-

ering a full degree of domain alignment. The latter case,

instead, yields the same function since qst0.5 = qts0.5 thus

transforming the two domains equally, which yields no do-

main alignment. Since the mixing parameter α is not fixed

a priori but learned during the training phase, we obtain as

a result that the network can decide how strong the domain

alignment should be at each level of the architecture where

DA-layer is applied. More details about the actual CNN

architectures used to implement the two domain predictors

are given in Section 4.1.

3.2. Training

During the training phase we estimate the parameter

θ, which holds the neural network weights shared by the

source and target predictors including the mixing factors

pertaining to the DA-layers, using the observations pro-

vided by the source dataset S and the target dataset T .

As we stick to a discriminative model, the unlabeled target

dataset cannot be employed to express the data likelihood.

However, we can exploit T to construct a prior distribution

of the parameter θ. Accordingly, we shape a posterior dis-

tribution of θ given the observations S and T as

π(θ|S, T ) ∝ π(yS |xS , T , θ)π(θ|T , xS) , (2)

where yS = {ys1, . . . , y
s
n} and xS = {xs

1, . . . , x
s
n} collect

the labels and data points of the observations in S , respec-

tively. The posterior distribution is maximized over Θ to

obtain a maximum a posteriori estimate θ̂ of the parameter

used in the source and target predictors:

θ̂ ∈ arg max
θ∈Θ

π(θ|S, T ) . (3)

The term π(yS |xS , T , θ) in (2) represents the likelihood of

θ with respect to the source dataset, while π(θ|T , xS) is

the prior term depending on the target dataset, which acts

as a regularizer in the classical learning theory sense. Both

terms actually, depend on both domains due to the cross-

domain statistics that we have in our DA-layers for 1

2
≤

α < 1 and are estimated from samples from the source and

target domains.

The likelihood decomposes into the following product

over sample points, due to the data sample i.i.d. assumption:

π(yS |xS , T , θ) =
n
∏

i=1

fθ
s (y

s
i ;x

s
i ) , (4)

where fθ
s (y

s
i ;x

s
i ) is the probability that sample point xs

i

takes label ysi according to the source predictor (we omitted

the dependence on T and xS for notational convenience).

Before delving into the details of the prior term, we

would like to remark on the absence of an explicit compo-

nent in the probabilistic model that tries to align the source

and target distributions. This is because in our model the

domain-alignment step is taken over by each predictor, in-

dependently, via the domain-alignment layers as shown in

the previous subsection.

Prior distribution. The prior distribution of the param-

eter θ shared by the source and target predictors is con-

structed from the observed, target data distribution. This

choice is motivated by the theoretical possibility of squeez-

ing more bits of information from unlabeled data points in-

sofar as they exhibit low levels of class overlap [24]. Ac-

cordingly, it is reasonable to bias a priori a predictor based
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on the degree of label uncertainty that is observed when the

same predictor is applied to the target samples. Uncertainty

in this sense can be measured for an hypothesis θ in terms

of the empirical entropy of y|θ conditioned on x as follows

h(θ|T , xS) = −
1

m

m
∑

i=1

∑

y∈Y

fθ
t (y;x

t
i) log f

θ
t (y;x

t
i) , (5)

where ft(y;x
t
i) represents the probability that sample point

xt
i takes label y according to the target predictor (again we

omitted the dependence on T and xS ).

It is now possible to derive a prior distribution

π(θ|T , xS) in terms of the label uncertainty mea-

sure h(θ|T , xS) by requiring the prior distribu-

tion to maximize the entropy under the constraint
∫

h(θ|T , xS)π(θ|T , xS)dθ = ε, where the constant ε > 0
specifies how small the label uncertainty should be on

average. This yields a concave, variational optimization

problem with solution:

π(θ|T , xS) ∝ exp (−λh(θ|T , xS)) , (6)

where λ is the Lagrange multiplier corresponding to ε.

The resulting prior distribution satisfies the desired prop-

erty of preferring models that exhibit well separated classes

(i.e. having lower values of h(θ|T , xS)), thus enabling the

exploitation of the information content of unlabeled target

observations within a discriminative setting [13].

Prior distributions of this kind have been adopted also in

other works [23] in order to exploit more information from

the target distribution, but has never been used before in

conjunction to explicit domain alignment methods (i.e. not

based on additional regularization terms such as MMD and

domain-confusion) like the one we are proposing.

Inference. Once we have estimated the optimal network

parameters θ̂ by solving (3), we can remove the dependence

of the target predictor on T and xS . In fact, after fixing θ̂,

the input distribution to each DA-layer also becomes fixed,

and we can thus compute and store the required statistics

once at all, akin to standard BN.

3.3. Implementation Notes

DA-layer can be implemented as a mostly straightfor-

ward modification of standard Batch Normalization. We

refer the reader to the supplementary material for a com-

plete derivation. In our implementation in particular, we

treat each pair of DA-layers as a single network layer which

simultaneously computes the two normalization functions

in Equation (1) and learns the α parameter. During train-

ing each batch contains a fixed number of source samples,

followed by a fixed number of target samples, allowing our

DA-layers to simply differentiate between the two. Simi-

larly to standard BN, we keep separate moving averages of

the source and target statistics. Note that, as mentioned be-

fore, α ∈ [0.5, 1]. We enforce this by clipping its value in

the allowed range in each forward pass of the network.

By replacing the optimization problem in (3) with

the equivalent minimization of the negative logarithm of

π(θ|S, T ) and combining (2), (4), (5) and (6) we obtain

a loss function L(θ) = Ls(θ) + λLt(θ), where:

Ls(θ) = −
1

n

n
∑

i=1

log fθ
s (y

s
i ;x

s
i ) ,

Lt(θ) = −
1

m

m
∑

i=1

∑

y∈Y

fθ
t (y;x

t
i) log f

θ
t (y;x

t
i) .

The term Ls(θ) is the standard log-loss applied to the source

samples, while Lt(θ) is an entropy loss applied to the target

samples. The second term can be implemented by feeding

fθ
t (y;x

t
i) to both inputs of a cross-entropy loss layer, where

supported by the deep learning toolkit of choice. In our im-

plementation, based on Caffe [17], we obtain it by slightly

modifying the existing SoftmaxLoss layer.1

4. Experiments

In this section we extensively evaluate our approach and

compare it with state of the art unsupervised domain adap-

tation methods. We also provide a detailed analysis of the

proposed framework, demonstrating empirically the effect

of our contributions. Note that all the results in the follow-

ing are reported as averages over five training/testing runs.

4.1. Experimental Setup

Datasets. We evaluate the proposed approach on three

publicly-available datasets.

The Office 31[26] dataset is a standard benchmark for

testing domain-adaptation methods. It contains 4652 im-

ages organized in 31 classes from three different domains:

Amazon (A), DSRL (D) and Webcam (W). Amazon images

are collected from amazon.com, Webcam and DSLR im-

ages were manually gathered in an office environment. In

our experiments we consider all possible source/target com-

binations of these domains and adopt the full protocol set-

ting [11], i.e. we train on the entire labeled source and unla-

beled target data and test on annotated target samples.

The Office-Caltech [12] dataset is obtained by select-

ing the subset of 10 common categories in the Office31 and

the Caltech256[14] datasets. It contains 2533 images of

which about half belong to Caltech256. Each of Amazon

(A), DSLR (D), Webcam (W) and Caltech256 (C) are re-

garded as separate domains. In our experiments we only

consider the source/target combinations containing C as ei-

ther the source or target domain.

1The source code is available at https://github.com/

ducksoup/autodial
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To further perform an analysis on a large-scale dataset,

we also consider the recent Cross-Dataset Testbed intro-

duced in [30] and specifically the Caltech-ImageNet set-

ting. This dataset was obtained by collecting the images

corresponding to the 40 classes shared between the Cal-

tech256 (C) and the Imagenet (I) [6] datasets. To facili-

tate comparison with previous works [31, 29, 27] we per-

form experiments in two different settings. The first set-

ting, adopted in [29, 31], considers 5 splits obtained by se-

lecting 5534 images from ImageNet and 4366 images from

Caltech256 across all 40 categories. The second setting,

adopted in [27], uses 3847 images for Caltech256 and 4000

images for ImageNet.

Networks and Training. We apply the proposed method

to two state of the art CNNs, i.e. AlexNet [18] and

Inception-BN [16]. We train our networks using mini-

batch stochastic gradient descent with momentum, as im-

plemented in the Caffe library, using the following meta-

parameters: weight decay 5× 10−4, momentum 0.9, initial

learning rate 10−3. We augment the input data by scaling all

images to 256×256 pxls, randomly cropping 227×227 pxls

(for AlexNet) or 224×224 pxls (Inception-BN) patches and

performing random flips. In all experiments we choose the

parameter λ by cross-validation on the source set according

to the protocol in [23].

AlexNet [18] is a well-know architecture with five con-

volutional and three fully-connected layers, denoted as

fc6, fc7 and fc8. The outputs of fc6 and fc7 are

commonly used in the domain-adaptation literature as pre-

trained feature representations [7, 27] for traditional ma-

chine learning approaches. In our experiments we modify

AlexNet by appending a DA-layer to each fully-connected

layer. Differently from the original AlexNet, we do not per-

form dropout on the outputs of fc6 and fc7. We initial-

ize the network parameters from a publicly-available model

trained on the ILSVRC-2012 data, we freeze all the con-

volutional layers, and increase the learning rate of fc8 by

a factor of 10. During training, each mini-batch contains

a number of source and target samples proportional to the

size of the corresponding dataset, while the batch size re-

mains fixed at 256. We train for a total of 60 epochs (where

“epoch” refers to a complete pass over the source set), re-

ducing the learning rate by a factor 10 after 54 epochs.

Inception-BN [16] is a very deep architecture obtained

by concatenating “inception” blocks. Each block is com-

posed of several parallel convolutions with batch normal-

ization and pooling layers. To apply the proposed method

to Inception-BN, we replace each batch-normalization layer

with a DA-layer. Similarly to AlexNet, we initialize the net-

work’s parameters from a publicly-available model trained

on the ILSVRC-2012 data and freeze the first three incep-

tion blocks. The α parameter is also fixed to a value of 0.5 in

A→D A→W D→A D→W W→A W→D

40

60

80

100

Dataset

A
cc
u
ra
cy

Office31 – AlexNet

Source
Entropy

AutoDIAL-fixed
AutoDIAL

Figure 2. Accuracy on the Office31 dataset when considering dif-

ferent architectures based on AlexNet.

the DA-layers of the first three blocks, which is equivalent

to preserving the original batch normalization layers. Due

to GPU memory constraints, we use a much smaller batch

size than for AlexNet and fix the number of source and tar-

get samples in each batch to, respectively, 32 and 16. In the

Office-31 experiments we train for 1200 iterations, reducing

the learning rate by a factor 10 after 1000 iterations, while

in the Cross-Dataset Testbed experiments we train for 2000

iterations, reducing the learning rate after 1500.

4.2. Analysis of the proposed method

We conduct an in-depth analysis of the proposed ap-

proach, evaluating the impact of our three main contribu-

tions: i) aligning features by matching source and target

distributions to a reference one; ii) learning the adaptation

coefficients α; iii) applying an entropy-based regularization

term. As a first set of experiments, we perform an ablation

study on the Office31 dataset and report the results in Fig. 2.

Here, we compare the performance of four variations of the

AlexNet network: trained on source data only (Source);

with the addition of the entropy loss (Entropy); with DA-

layers and α fixed to 1 (AutoDIAL-fixed); with DA-layers

and learned α (AutoDIAL). Here the advantage of learning

α is evident, as AutoDIAL outperforms AutoDIAL-fixed in

all but one of the experimental settings. Interestingly, the

addition of the entropy term by itself seems to have mixed

effects on the final accuracy: in D→A and W→A in partic-

ular, the performance drastically decreases in Entropy com-

pared to Source. This is not surprising as these two settings

correspond to cases where the number of labeled source

samples is very limited and the domain shift is more severe.

However, using DA-layers in conjunction with the entropy

loss always leads to a sizable performance increase. These

results confirms the validity of our contribution: the entropy

regularization term is especially beneficial when source and

target data representations are aligned.

In Fig. 3 we plot the values of α learned by the DA-

layers in AutoDIAL – AlexNet and AutoDIAL – Inception-

BN on the Office31 dataset. In both networks we observe

that lower layers tend to learn values closer to 1, i.e. re-

quire an higher degree of adaptation compared to the layers
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Figure 3. α parameters learned on the Office31 dataset, plotted as a function of layer depth (left and center) and training iteration (right).

closer to the classifier. This behavior, however, seems to

be more pronounced in AutoDIAL – AlexNet compared to

AutoDIAL – Inception-BN. Our results agree with recent

findings in the literature [1], according to which lower lay-

ers in a network are subject to domain shift even more than

the very last layers. During training, the α are able to con-

verge to their final values in a few iterations (Fig. 3, right).

4.3. Comparison with State of the Art methods

In this section we compare our approach with state-of-

the art deep domain adaptation methods. We first con-

sider the Office-31 dataset. The results of our evalua-

tion, obtained embedding the proposed DA-layers in the

AlexNet and the Inception-BN networks as explained in

Section 4.1, are summarized in Tables 1 and 2, respec-

tively. As baselines, we consider: Deep Adaptation Net-

works (DAN) [21], Deep Domain Confusion (DDC) [32],

the ReverseGrad network [9], Residual Transfer Network

(RTN) [23], Joint Adaptation Network (JAN) [22], Deep

Reconstruction-Classification Network (DRCN) [10] and

AdaBN [19] with and without CORAL feature alignment

[27]. The results associated to the baseline methods are de-

rived from the original papers. As a reference, we further re-

port the results obtained considering standard AlexNet and

Inception-BN networks trained only on source data.

Among the deep methods based on the AlexNet archi-

tecture, AutoDIAL – AlexNet shows the best average per-

formance, clearly demonstrating the benefit of the proposed

adaptation strategy. Similar results are found in the experi-

ments with Inception-BN network, where our approach also

outperforms all baselines. It is interesting to compare Au-

toDIAL with the AdaBN method [19], as this approach also

develops from a similar intuition than ours. Our results

clearly demonstrate the added value of our contributions:

the introduction of the alignment parameters α, together

with the adoption of the entropy regularization term, pro-

duce a significant boost in performance.

In our second set of experiments we analyze the perfor-

mance of several approaches on the Office-Caltech dataset.

The results are reported in Table 3. We restrict our attention

to methods based on deep architectures and, for a fair com-

parison, we consider all AlexNet-based approaches. Here

we report results obtained with DDC [32], DAN [21], and

the recent Residual Transfer Network (RTN) in [23]. As it

is clear from the table, our method and RTN have roughly

the same performance (90.6% vs 90.4% on average), while

they significantly outperform the other baselines.

Finally, we perform some experiments on the Caltech-

ImageNet subset of the Cross-Dataset Testbed of [30]. As

explained above, to facilitate comparison with previous

works which have also considered this dataset we perform

experiments in two different settings. As baselines we con-

sider Geodesic Flow Kernel (GFK) [12], Subspace Align-

ment (SA) [8]), CORAL [27], Transfer Component Anal-

ysis (TCA) [25], Simultaneous Deep Transfer (SDT) [31],

and the recent method in [29]. Table 4 and Table 5 show our

results. The proposed approach significantly outperforms

previous methods and sets the new state of the art on this

dataset. The higher performance of our method is not only

due to the use of Inception-BN but also due to the effective-

ness of our contributions. Indeed, the proposed alignment

strategy, combined with the adoption of the entropy regular-

ization term, makes our approach more effective than previ-

ous adaptation techniques based on Inception-BN, i.e. Ad-

aBN [19].

5. Conclusions

We presented AutoDIAL, a novel framework for unsu-

pervised, deep domain adaptation. The core of our contri-

bution is the introduction of novel Domain Alignment lay-

ers, which reduce the domain shift by matching source and

target distributions to a reference one. Our DA-layers are

endowed with a set of alignment parameters, also learned

by the network, which allow the CNN not only to align the

source and target feature representations but also to auto-

matically decide at each layer the required degree of adap-

tation. Our framework exploits target data both by comput-

ing statistics in the DA-layers and by introducing an entropy

loss which promotes classification models with high confi-

dence on unlabeled samples. The results of our experiments

demonstrate that our approach outperforms state of the art

domain adaptation methods.

While this paper focuses on the challenging problem of

unsupervised domain-adaptation, our approach can be also

exploited in a semi-supervised setting. Future works will

be devoted to analyze the effectiveness of AutoDIAL in
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Method
Source Amazon Amazon DSLR DSLR Webcam Webcam

Average
Target DSLR Webcam Amazon Webcam Amazon DSLR

AlexNet – source [18] 63.8 61.6 51.1 95.4 49.8 99.0 70.1
DDC [32] 64.4 61.8 52.1 95.0 52.2 98.5 70.6
DAN [21] 67.0 68.5 54.0 96.0 53.1 99.0 72.9
ReverseGrad [9] 67.1 72.6 54.5 96.4 52.7 99.2 72.7
DRCN [10] 66.8 68.7 56.0 96.4 54.9 99.0 73.6
RTN [23] 71.0 73.3 50.5 96.8 51.0 99.6 73.7
JAN [22] 71.8 74.9 58.3 96.6 55.0 99.5 76.0

AutoDIAL – AlexNet 73.6 75.5 58.1 96.6 59.4 99.5 77.1

Table 1. AlexNet-based approaches on Office31 / full sampling protocol.

Method
Source Amazon Amazon DSLR DSLR Webcam Webcam

Average
Target DSLR Webcam Amazon Webcam Amazon DSLR

Inception-BN – source [16] 70.5 70.3 60.1 94.3 57.9 100.0 75.5
AdaBN [19] 73.1 74.2 59.8 95.7 57.4 99.8 76.7
AdaBN + CORAL [19] 72.7 75.4 59.0 96.2 60.5 99.6 77.2
DDC [32] 73.2 72.5 61.6 95.5 61.6 98.1 77.1
DAN [21] 74.4 76.0 61.5 95.9 60.3 98.6 77.8
JAN [22] 77.5 78.1 68.4 96.4 65.0 99.3 80.8

AutoDIAL – Inception-BN 82.3 84.2 64.6 97.9 64.2 99.9 82.2

Table 2. Inception-based approaches on Office31 / full sampling protocol.

Method
Source Amazon Webcam DSLR Caltech Caltech Caltech

Average
Target Caltech Caltech Caltech Amazon Webcam DSLR

AlexNet – source [18] 83.8 76.1 80.8 91.1 83.1 89.0 84.0
DDC [32] 85.0 78.0 81.1 91.9 85.4 88.8 85.0
DAN [21] 85.1 84.3 82.4 92.0 90.6 90.5 87.5
RTN [23] 88.1 86.6 84.6 93.7 96.9 94.2 90.6

AutoDIAL – AlexNet 87.4 86.8 86.9 94.3 96.3 90.1 90.3

Table 3. Results on the Office-Caltech dataset using the full protocol.

Method
Source Caltech Imagenet

Target Imagenet Caltech

SDT [31] – 73.6
Tommasi et al. [29] – 75.4

Inception-BN – source [16] 82.1 88.4
AdaBN [19] 82.2 87.3

AutoDIAL – Inception-BN 85.2 90.5

Table 4. Results on the Cross-Dataset Testbed using the experi-

mental setup in [30].

this scenario. Additionally, we plan to extend the proposed

framework to handle multiple source domains.

6. Acknowledgements

This work was partially founded by: project CHIST-

ERA ALOOF, project ERC #637076 RoboExNovo (F.M.C.,

Method
Source Caltech Imagenet

Target Imagenet Caltech

SA [8] 43.7 52.0
GFK [12] 52.0 58.5
TCA [25] 48.6 54.0
CORAL [27] 66.2 74.7

Inception-BN – source [16] 82.1 88.4
AdaBN [19] 81.9 86.5

AutoDIAL – Inception-BN 84.2 89.8

Table 5. Results on the Cross-Dataset Testbed using the experi-

mental setup in [27].

B. C.), and project DIGIMAP, funded under grant #860375

by the Austrian Research Promotion Agency.

5074



References

[1] R. Aljundi and T. Tuytelaars. Lightweight unsupervised do-

main adaptation by convolutional filter reconstruction. In

ECCV TASK-CV Workshops, 2016.

[2] S. Ben-David, T. Lu, T. Luu, and D. Pl. Impossibility theo-

rems for domain adaptation. In AISTATS, 2010.

[3] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and

D. Erhan. Domain separation networks. In NIPS, 2016.

[4] F. M. Carlucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulò.
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