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Abstract

Shape reconstruction techniques using structured light

have been widely researched and developed due to their

robustness, high precision, and density. Because the tech-

niques are based on decoding a pattern to find correspon-

dences, it implicitly requires that the projected patterns be

clearly captured by an image sensor, i.e., to avoid defocus

and motion blur of the projected pattern. Although inten-

sive researches have been conducted for solving defocus

blur, few researches for motion blur and only solution is

to capture with extremely fast shutter speed. In this paper,

unlike the previous approaches, we actively utilize motion

blur, which we refer to as a light flow, to estimate depth.

Analysis reveals that minimum two light flows, which are

retrieved from two projected patterns on the object, are re-

quired for depth estimation. To retrieve two light flows at

the same time, two sets of parallel line patterns are illumi-

nated from two video projectors and the size of motion blur

of each line is precisely measured. By analyzing the light

flows, i.e. lengths of the blurs, scene depth information is

estimated. In the experiments, 3D shapes of fast moving ob-

jects, which are inevitably captured with motion blur, are

successfully reconstructed by our technique.

1. Introduction

3D shape reconstruction techniques by projecting spe-

cial light to objects (i.e., active lighting techniques) have

been important research topics. Since they have significant

advantages, e.g., a textureless object can be robustly recon-

structed with dense and high accuracy irrespective of light

conditions, commercial 3D scanners are primarily based

on active lighting techniques. Among two important ac-

tive lighting techniques, such as structured light and pho-

tometric stereo, structured light techniques, which encode

the positional information of projector pixels into projected

patterns, have been widely researched and developed due to

their robustness, high precision, and density.

Recently, capturing 3D shapes of moving objects from a

moving sensor has become increasingly important, such as

measuring a scene from self-driving cars, etc., and solution

is strongly desired. The one-shot scanning technique, which

is one of structured light techniques, is a promising tech-

nique because it required just single image and unaffected

by motion. In general, one-shot scanning techniques embed

the pattern’s positional information into a small area of the

pattern for decoding [11, 6, 10, 20], and thus, the projected

pattern tends to be complicated to increase robustness and

density. If object/sensor motion is faster than an assump-

tion, the reflected patterns are easily blurred out, resulting

in unstable and inaccurate reconstruction.

To solve such motion blur problem, one may con-

sider applying an algorithm developed for deblurring pho-

tographs. However, although the phenomena look similar,

the optical processes are completely different1 and such al-

gorithms cannot be applied to structured light. In this paper,

we analyze the information that is implied in the motion of

a projected pattern (hereafter “light flow”) to recover the

shape. In fact, it is shown that light flows are explained by

three factors such as depth, normal, and velocity of the ob-

ject surface and extracting one of them from a single light

flow is impossible, but possible with two light flows. In this

paper, we propose a technique to decouple the three val-

ues from multiple light flows. It is also revealed that light

flows includes only little depth information, and thus, accu-

rate detection of motion blur is required for practical depth

estimation. To achieve this, we project the pattern of par-

allel lines onto the objects so that a blur size is precisely

measured as the width of the band of motion blur of each

line.

The contributions of this paper is as follows: (1) Depth

from light flows, which does not require a decoding pro-

cess, or a matching process, is presented. (2) Shape re-

covery of “fast motion,” where motion speed is faster than

the shutter speed causing blurred patterns, is achieved. (3)

Two algorithms using two different patterns are proposed

to reconstruct shapes of fast moving objects. By using our

technique, multiple fast moving objects, which are almost

impossible to scan with state of the art techniques, can be

reconstructed, for example, rotating blades of a fan are re-

constructed by using a normal camera and a video projector.

1Imagine the case where a planar board moves perpendicular direction

to its surface normal. It is obvious that no blur effect appears on projected

pattern.
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Figure 1. Motion of the object surfaces and patterns. Note that his

figure represents a 2D section of the scene by an epipolar plane.

2. Related works

There are two major shape recovery techniques using ac-

tive light, such as photometric stereo and structured light.

Photometric stereo recovers the surface normal of each

pixel using multiple images captured by a camera while

changing the light source direction [5, 4, 3, 9]. Although

photometric stereo can recover surface normals, they can-

not recover absolute 3D distances; thus, their applicability

is limited. The structured light technique has been used

for practical applications [16, 22, 12]. Two primary ap-

proaches to encode positional information into patterns are

temporal and spatial encoding. Because temporal encod-

ing requires multiple images, it is not suitable for captur-

ing moving objects [17, 18]. Spatial encoding requires only

a single image and is possible to capture fast-moving ob-

jects [11, 6, 10, 20]. For example, some commercial de-

vices realize 30 fps at VGA resolution [11]. Another tech-

nique can scan the shape of a rotating blade [6]. Although

such techniques can capture fast moving objects, they still

require the patterns to be captured clearly. If the pattern is

blurred due to unexpected fast motion, the accuracy is re-

duced or reconstruction fails. Kawasaki et al. needed to use

a high-speed camera to measure a rotating blade [6]. In con-

trast, our technique uses a different approach, i.e., shapes

are reconstructed from motion blur of a projected pattern.

This helps to decrease the difficulty for scanning fast mov-

ing objects and allows off-the-shelf devices to be used for

such extreme conditions.

Another limitation of structured light techniques is that

they are highly dependent on the locally decoded pattern in-

formation. If decoding the positional information fails for

some reason, such as noise, specularity, blur, etc., shape

reconstruction will subsequently fail. To avoid this limita-

tion, some techniques are based on geometric constraints

rather than decoding [15, 13, 8, 20] or active usage of de-

focus effect by coded aperture [7]. One problem with such

techniques is that, because they are heavily dependent on

geometric constraints or special devices, strong motion blur

cannot be handled.

Our technique uses relationship between two overlapped

patterns and such techniques have been researched. The

Moire method is a well-known technique where a high-

frequency pattern is projected on an objected and is ob-

served by a high-frequency gate, which generates Moire

patterns [19, 2]. Recently, a technique that uses the inter-

section of multiple parallel line patterns was proposed to

achieve an entire scene reconstruction [1]. Both techniques

assume a static scene and recover shape from geometric

constraints, whereas our technique recovers shape from a

temporal gradient. To the best of our knowledge, no such

technique has been proposed previously.

3. Analysis of projected pattern flow

3.1. Overview

In this section, we briefly overview information that can

be obtained from apparent motion of projected patterns. We

assume that the projectors and the camera are relatively

static and calibrated. If the object moves, the observed pat-

terns move along epipolar lines. For the target scene, we

assume that the regions around the measured 3D points can

be regarded as locally planer and depth of the points are

changing. Otherwise, we would not be able to observe con-

tinuous motions of patterns moving with the scene motions.

Without losing generality, the relationships between the

motions of the target surfaces and the patterns can be con-

sidered within the epipolar planes. Fig. 1 shows the rela-

tionship.

Let the apparent position of the pattern be p, and the

apparent motion of the pattern (i.e., light flow) be dp

dt
. dp

dt

depends on the surface depth z, surface normal n, and the

depth velocity dz
dt

as shown in Fig. 1. dp

dt
is proportional to

dz
dt

, and represented as

dp

dt
= F (z, n)

dz

dt
, (1)

where F is a nonlinear function that can be defined from

the projection model and calibration parameters of the pro-

jectors and cameras (i.e., the information of the epipolar

geometry of the projector-camera pair is included in F ). By

limiting the geometry within a epipolar plane, the normal

direction at a point on the surface can be represented by a

scalar variable, thus, F (z, n) is a 2D real function.

Here, we assume that we have N projectors. The light

flows can be observed for each projector.

In case of N = 3, where we use three patterns from

three projectors, the observed light flows are dpi

dt
where i =

1, 2, 3, and we obtain three equations

dpi
dt

= Fi(z, n)
dz

dt
, (i = 1, 2, 3) (2)

where Fi is the same function with Eqn. 1 for pattern i. By
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eliminating dz
dt

, we obtain two equations:

dp1
dt

/
dp2
dt

= F1(z, n)/F2(z, n)

dp2
dt

/
dp3
dt

= F2(z, n)/F3(z, n). (3)

The unknown variables are z and n, and F1, F2, F3 are

known functions since they are defined from calibration pa-

rameters. Since we have two equations with two unknowns,

we can estimate z and n by numerically solving these equa-

tions.

Note that, from Eqn. 3, geometrical information are ob-

tained from “ratio” of the pattern motions dpi

dt
/
dpj

dt
(i 6= j),

rather than dpi

dt
themselves.

In case of N = 2, we obtain only one equation by elim-

inating dz
dt

, which is dp1

dt
/dp2

dt
= F1(z, n)/F2(z, n). Since

we have one equation with two unknowns, we cannot deter-

mine z, n for this case.

However, if we use additional information such as

knowledges of the projected patterns, we can estimate z.

As described in the following sections, we propose to use

uniformly spaced parallel patterns from “two” projectors to

estimate depths. Moreover, we also show a special case of

N = 2, where the two patterns are projected from a “sin-

gle” projector. In the case of single projector, we should use

non-uniformly spaced parallel pattens.

In case of N = 1, we use only one pattern, we ob-

tain only dp1

dt
= F1(z, n)

dz
dt

. Obviously, we cannot solve

z, n, dz
dt

from the form.

As explained here, we can estimate depths if we can

observe three patterns from three projectors. However, to

achieve this, three patterns should be decoupled from cap-

tured images, which is not an easy task. One solution may

be using three color channels, however, crosstalks between

color channels are problematic. On the other hand, decou-

pling two patterns are relatively stable, since crosstalks be-

tween red-blue channels are small. Thus, in this paper, we

propose a technique which requires only two colors, i.e. two

projection patterns, for shape reconstruction.

3.2. Depth estimation with two-pattern case

In this section, we explain depth estimation with two pat-

terns using uniformly spaced parallel lines. To achieve this,

we estimate the light flows “in the projectors’ image coordi-

nates” instead of in the camera’s image coordinates. Then,

we can avoid considering normals of the surfaces as shown

in the the following discussions.

First, we assume a pixel p while observing a target object

from a camera. We define the ray from the camera corre-

sponding to p as r, the intersection between the object and

r as s, and the depth of s as z . Thus,

s = z r. (4)

CameraProjector 1

zD

Surface at current time

Surface after a small motion

z

1hq
p

Epipolar plane

1hqD r

rs z=
sD

Figure 2. Light flows observed with respect to the pattern coordi-

nates qh.

Camera
Projector 1

Projector

2 Projector 2
Camera

position

View from the top of the camera

Front directions 

of the projectors

Projector 1

View from the rear of the camera

Up directions

of the projectors

Figure 3. Positions of the camera and the projectors.

We assume that the object is moving with respect to the

camera; thus, depth z changes. Let a small displacement of

z be ∆z. Then, the position of s is expressed as follows:

s+∆s = (z +∆z)r. (5)

Fig. 2 shows the relationships between the symbols used in

this section.

The projector can be geometrically regarded as an “in-

verse camera,” i.e., the relationship between a 3D coor-

dinate s of point s and the 2D coordinate on the pattern

pixel coordinate q that illuminates s can be formulated in

the same as the projections of the camera. This can be ex-

pressed as follows:

q = f(Rs+ t), (6)

where s is the coordinates of s in the camera coordinate sys-

tem; R and t are the rotation matrix and the translation vec-

tor of the rigid transformation from the camera coordinates

to the projector coordinates, respectively; and f is a perspec-

tive projection function that is the same as the normalized

camera. We assume that the pattern image illuminated from

the projector is parallel lines that is near the vertical direc-

tion, and the epipolar lines are assumed to be near the hori-

zontal direction. Thus, the pattern intensity only varies with

the horizontal coordinate, which we define as qh. Then,

qh = fh(Rs+ t) = fh(zRr+ t), (7)

where fh((x, y, z)
T) ≡ (−x/z).
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(a): h(z) for the setup shown in Fig. 3.

Top view from the camera with 

directions of the projectors

(b): Bad setup where gradient of h(z) becomes small.

Figure 4. Function from the depth to the log ratio of light flows (

h(z) of Eqn. 12) : (a) The experimental setup used in this paper.

The horizontal axis is the x position of the camera in the coordi-

nates of the normalized camera. (b) A bad setup where projectors

1 and 2 are placed in parallel.

Let the relationship between the depth z and qh be sub-

stituted by a function g. Thus,

qh = fh(zRr+ t) = g(z). (8)

Here assume that pattern coordinate qh is changed by ∆qh
for a small displacement ∆z of z. ∆qh can be observed

as light flow. Then, the ratio between the changes can be

approximated by the derivative of g:

∆qh
∆z

≈ g′(z). (9)

Function g′(z) changes depending on the depth z.

Since two projectors are assumed in this analysis, there

are two pattern coordinates for each projector, such as qh1
and qh2, and two functions for each projector, such as g1
and g2. Thus,

∆qh1
∆z

≈ g1
′(z),

∆qh2
∆z

≈ g2
′(z) (10)

can be reduced to

∆qh1
∆qh2

≈
g1

′(z)

g2′(z)
. (11)

Here, function h is defined as follows:

h(z) ≡ log

(

g1
′(z)

g2′(z)

)

, (12)

where h(z) is a function of z and does not depend on ∆z.

If h(z) is a monotonic function in the domain of the work-

ing distances of z, there is an inverse function h−1 for this

domain, and depth z can be estimated from the ratio of the

two light flows (∆qh1 and ∆qh2) as follows:

z ≈ h−1

(

log

(

∆qh1
∆qh2

))

. (13)

Function h(z) depends on the pixel position p, i.e., for

different pixel positions, h becomes different functions.

Thus, let h(z) for a pixel position p be expressed as hp(z).
Similarly to F , the information of the epipolar geometry is

included in h, where the explicit dependency is based on

Eqn. 8.

An example of the camera setup is shown in Fig. 3 (this

setup is also used in the later experiments), and hp(z) for

this example setup is shown in Fig. 4(a), where p is on

a horizontal line in a camera image (including the image

center) and the vertical axis represents z. As can be seen,

h(z) actually varies depending on z and h−1

p can be de-

fined for each pixel. In real implementation, we can sample

pairs of z and the function value hp(z) as {(z, hp(z))|z ∈
{z1, z2, · · · , zn}} and h−1

p can be approximated by inter-

polation of the samples. Then, depth estimation can be pro-

cessed efficiently.

Note that the positional setup of the projector and the

camera affects severely to the sensitivity of the depth esti-

mation. For example, an example of a bad setup is shown

in Fig. 4(b), where the two projectors are placed in paral-

lel. Although this setup look similar to the setup of Fig. 3,

the gradient of hp(z) becomes much smaller, thus, depth

estimation using h−1

p becomes much sensitive to observa-

tion noises. Specifically, if the projectors and the camera

are placed in perfect fronto-parallel configuration, hp(z) be-

comes constant and h−1

p does not exist.

In the proposed method, the required input value is the

ratio of the light flows ∆qh1/∆qh2, whereas the absolute

values of qh1 or qh2 are not required. If the pattern image is

repetitive, the depth can be estimated from only the relative

local changes as described later. This means that we do not

need to encode the absolute pixel position into the pattern

image and this is an important advantage of our method.

The light flows are observed as the motion on the image

planes of the projectors in Fig. 2, rather than the motion on

the image plane of the camera as shown in Fig. 1. Observing

light flows on the projectors’ image planes is possible if we

use knowledge of the projected pattern, such as uniformly

spaced parallel lines. As described later, we use the uni-

form intervals as “scales” on the projectors’ image planes.

Also, in the discussion of this section, normal directions of

the object surface are not considered. This is because the

relationships between the light flows and the object motion

are considered on the fixed “ray” from the camera along r.
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hp(z) does not depend on the intrinsic parameters of the

projector-camera pair, since the displacements ∆qh1 and

∆qh2 are represented in normalized coordinates. For real

measurements, displacements in the units of projector pix-

els ∆qhp1 and ∆qhp2 are observed instead. The ratio of

these values can be converted by

∆qh1
∆qh2

=
f2
f1

∆qhp1
∆qhp2

, (14)

where f1 and f2 are the focal lengths of the projectors.

4. Experimental systems

4.1. System configurations

As experimental systems, we have constructed a two-

projector system and single-projector system. For two-

projector system, the projectors and the camera are posi-

tioned so that the camera can observe overlapping patterns

projected by the projectors. The two projectors project

uniformly-spaced parallel lines and because discrimination

of the two patterns is required for reconstruction, different

colors are used. The setup with two projectors and a camera

is shown in Fig. 7(b). For single-projector system, one pro-

jector projects two non-uniformly-spaced parallel line sets

with different color. The setup with single projector and a

camera is shown in Fig. 7(a).

For both systems, the projected patterns are static and do

not change; thus, synchronization is not required. The cam-

era and projector(s) are assumed to be calibrated (i.e., the

intrinsic parameters of the devices and their relative posi-

tions and orientations are known). Depths are estimated by

the light flow analysis as already described.

4.2. Light flow estimation with two projectors

In the analysis of section 3.2, pattern motion on the pro-

jectors’ image planes (∆qh1 and ∆qh2) were used. To ob-

serve these values, we propose to use a uniformly spaced

line pattern with constant intervals as “scale” for measuring

the pattern motion. In this method, the length of blur is re-

trieved from the observed image as the width of the band

of blurred lines. Then, the ratio of the blur on the projector

plane can be calculated by dividing the length by the line

intervals on the same image. Since the line intervals are

constant on the projector’s image plane, the ratio becomes

a pattern motion on the projector’s image plane.

The blur of the parallel lines are observed only for each

lines, thus, the resolution of this approach is relatively

sparse. However, it has a great potential to reconstruct ex-

tremely fast motion using only a single image.

The method is as follows: The projected pattern is a set

of parallel vertical lines. The captured lines projected onto

the object move with the motion of the object. The exposure

time of the camera is assumed to be set so that the apparent

motion of the vertical line of the image is observed as mo-

tion blurs of the lines.

Let the width of the motion blur of the line defined as ∆r.

∆r cannot be used directly as ∆qh in Eqn. 9, because ∆qh
is a displacement on the projected pattern image, whereas

∆r is a displacement on the captured camera image. If ver-

tical lines at uniform intervals are projected, ∆r can be nor-

malized by the apparent intervals on the camera image and

can be used as ∆qh. If the apparent motion blur of the line

on a local patch in the camera image is ∆r and the interval

between the lines on the same patch is B, then ∆qh can be

approximated as follows:

∆qh ≈ ∆r/B. (15)

In the current implementation, the blur is detected just by

simple adaptive binarization. Then, ∆r and B of Eqn. 15

are estimated with sub-pixel accuracy by localizing cross-

ing positions of the profile with the threshold levels of the

adaptive binarization (the positions marked by red circles in

Fig. 5(e)).

By projecting vertical lines from two projectors in dif-

ferent colors (e.g., red and blue) and by estimating ∆qh1
and ∆qh2 from the different color channels, depth estima-

tion from motion blur becomes possible. Fig. 5 shows the

pattern images in (a, b), projected line patterns with motion

blurring in (c), an apparent line interval (i.e., B) and a size

of blur (i.e., ∆r) in (d), and the light flow estimation by

interpolating ∆r/B.

If the target surfaces have object boundaries, the line

patterns cannot be detected outside the boundaries. Thus,

blurred patterns are disconnected and values of ∆r or B
become abnormal at those points. Since the assumption of

smooth surfaces are not fulfilled there, we remove these re-

gions. In the current implementation, we specify the upper

and lower limits for the intervals B and label pixels as out-

liers where B exceeds this range. The outlier points are

removed from the 3D reconstruction. The boundary points

are removed from the reconstruction process using this tech-

nique.

The line directions of the pattern are not required to be

perpendicular to scan lines. This is because although blur

widths ∆r and line intervals B along scan lines are affected

by the apparent line directions, the ratio ∆r/B are not af-

fected by the directions.

In this method, the spatial resolution of the light flows

is as coarse as the apparent line intervals, but fast-moving

objects that are only observable as motion blur can be mea-

sured.

About the precision of the method, we can conduct a

coarse analysis on depth precision based on Fig. 4(a). Let

∆r and B be 10 and 30 pixels, which is a typical setup of the

experiments shown later. Also, let precisions of those val-

ues be 1/4 subpixels. Then, the errors of log (∆r)/B is ap-
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Figure 5. Light flow estimation from uniform line patterns: (a,b) line pattens, (c) projected line patterns with motion blurring, (d) an

apparent line interval and a size of blur, (e) flow estimation using line intervals and the blur sizes.

Figure 6. Left: Modulated nonuniform parallel line patterns and

Right: captured image with strong motion blur.

proximately 0.049 (we take log because h−1 takes log val-

ues). In Fig. reffig:depthfigratiofunc(a), this is about 0.02-

0.03m depth errors at 0.5m distance, and about 0.06m depth

errors at 1.0m distance.

4.3. Light flow estimation with a single projector

We have explained depth estimation method with two

patterns projected from two projectors. Now, we consider

the special case of two patterns, where the two patterns are

projected from a single projector. In this case, depth estima-

tion becomes impossible because of degenerate conditions.

Specifically, the function h(z) becomes constant functions

for all the camera pixels, thus, h−1 cannot be defined.

Even in this case, by applying different modulation for

these patterns, depth estimation becomes possible. For ex-

ample, we modulate the pattern intervals so that the inter-

vals becomes wide by two times at the right side with re-

spect to the left side (Fig. 6). This modulation is achieved

with the mapping of the horizontal coordinate p0 by pnew
0

=
2p0 − 1, where range of p0 is [0, 1]. On the contrary, for

the other pattern, intervals are modulated by the mapping

reversed for the left and right side: pnew
1

= 2 − 21−p1 .

With this setup, in calculation of h(z), the inverse mappings

p0 = log
2
(pnew

0
+ 1), p1 = 1 − log

2
(2 − pnew

1
), are ap-

plied. Then, non-constant h(z) can be obtained. With this

technique, we can estimate depth using two patterns pro-

jected from a single projector with the same algorithm as

the two-projectors case.

5. Experiments

5.1. Evaluation with planar board

The first experiment was conducted with two-projector

system (Fig. 7(b)). The camera resolution was 1600× 1200

Camera

Single projector

Target object

Camera

Two projectors

Target object

(a) (b)
Figure 7. Two examples of the system configuration. (a) single

projector projects non-uniformly spaced lines with two colors and

(b) two projectors project uniformly spaced lines to make overlap-

ping pattern on the object.
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Wave
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Figure 8. Accuracy evaluation for captured plane with line pat-

terns. Vertical axis are RMSEs and horizontal axis are shutter

speeds. Since light flows are approximated by piecewise linear

interpolation as Fig. 5(e), they are smoothed with Gaussian filters

with σ = 2, 30, 60. The size of the board is 600× 400mm.

pixels, projector resolution was 1280 × 800 pixels, and the

baselines between the camera and the two projectors were

both approximately 400mm.

For evaluation, we attached a target board onto the mo-

torized stage, and captured it with the camera while the

board was moving under different conditions, such as dif-

ferent shutter speed and different projection pattern. The

RMSE was calculated after plane fitting to the estimated

depth. Results are shown in Fig.8.

Since the spatial accuracy of the flow estimation with the

line pattern is an approximation and is affected by the appar-

ent sizes of the blur bands and the apparent line intervals, we

smoothed the flow estimation with Gaussian kernels with σ
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values of 2, 30, and 60 (the apparent line intervals were

around 40 pixels in the experiment.) In the results, we can

clearly observe that the increase in the shutter speed im-

proves the RMSE. This is because the longer shutter speed

makes the longer bands for blur of lines, which helps to in-

crease the accuracy on estimating the ratio of light flows.

Although we also captured data with the shutter speed of

500 ms, the bands began to overlap each other and the depth

estimation failed. For the shutter speed of 400 ms, filtering

with σ = 60 did not improve the result than the case of

σ = 30. This can be because the spatial resolution in the

case of 400 ms shutter speed was worse than the case of

300 ms.

Fig. 10 shows examples of the actual captured image and

reconstructed depth maps with our method. As can be seen,

depth are correctly reconstructed just from relative informa-

tion of flows without coded positions. We also applied the

line based technique to textured materials, such as newspa-

per and RMSE was about 30mm for the shutter speed of 300

ms. This is because our image processing is based on sim-

ple thresholding and easily affected by textures; solution is

our important future work.

We also recover the moving planar board with four other

methods for comparison, such as grid based reconstruc-

tion [21], wave based reconstruction [14], random dot based

reconstruction, which is equivalent to Kinect [11], and

stereo-based reconstruction using two cameras. As clearly

shown in the graph, longer shutter speed (equivalent to fast

motion) drastically decreases the accuracy, and no tech-

nique can recover meaningful shapes when shutter speed

exceeds 300 ms.

The above performance decrease of the conventional

methods is caused by motion blurred patterns. Fig. 9 show

examples of the projected patterns, the real captured im-

ages, and the line detection results at the shutter speed of

300 ms. As can be seen, the line detection results become

unstable with severely blurred pattern, resulting in failure

reconstruction. As for the two camera stereo case, since

light flow is view-dependent, which is apparently shown in

(i) and (j), it fails to find correspondences for reconstruction

(the sizes and directions of the blur are different).

5.2. Arbitrary shape reconstruction

We applied our method to object with curved surfaces

and fast motion as shown in Figs. 11, 12, and 13.

The first target was a rotating fan using the uniformly

spaced line pattern (Fig. 11). As can be seen, the blades are

blurred even with the fastest shutter speed (1ms) as shown

in (a), whereas a projected pattern made a clear band of

blur for each line as shown in (b,c). Using the detected

bands and their width, light flows are estimated as (d,e), and

depths are correctly reconstructed as shown in (f) using the

calculated ratio of the light flows. Note that, in the flow val-

ues shown in (d,e) at the “front” parts of the blades (marked

by red and black ellipses in (a) and (d)) are larger than the

other parts. Because the fan blades are curved so that the

air can be accelerated mostly by the front parts of the blade,

the changing velocity at these parts are the highest. In this

example, boundaries of the fan blades are removed from the

reconstruction as outliers as described in Sec. 4.2.

The second target was a thrown ball using the same

setup. Similar to the blades, ball has strong blur on captured

image (Fig. 12(a)), whereas the projected pattern made a

clear band of blur for each line ((b,c)). Using the detected

bands, depths are correctly reconstructed, as shown in over-

lapped three frames of depth maps in (d). From (d), the

motion of the ball moving from the camera can be clearly

observed.

Finally, two balls were thrown and shapes are recon-

structed by a single projector setup as shown in Fig. 7(a).

Fig. 13(a) shows that projected lines were strongly blurred

on the target objects, however two color bands are robustly

extracted by our algorithm as shown in (b) and (c). Then,

shapes are correctly reconstructed as shown in (d). In the

next frame, two balls are reconstructed at further distance

as shown in (e).

6. Conclusion

In this paper, we have proposed techniques to reconstruct

the shape of fast moving objects which are captured with

motion blur of a projected pattern using the ratio of light

flows of two projections. With the proposed technique, the

distances can be directly calculated from local displacement

information. Encoding and decoding of global positional

information from the pattern is not required, which is usu-

ally a difficult task. We have presented two types of setups,

i.e., single and two projectors configurations, to efficiently

estimate the light flow and the depth of an object. Our exper-

imental results demonstrate that depth is actually recovered

by the ratio of the light flows on several moving objects,

such as planar board, rotating fan and thrown ball.

There are, of course, limitations in the proposed method,

such as the spatial resolution becoming as coarse as the

line intervals. However, this is the first technique which

achieves depth estimation only from a flow of projected

pattern, which is observed as a blur with the best of our

knowledge. In addition, if we use a precision device like

laser projector with phase based analysis which can realize

high precision pixel detection, it can improve the accuracies

and spatial resolution in theory, which will be our future re-

search.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 9. (a) grid pattern, (b) captured image of grid pattern, (c) line detection result of grid pattern, (d) random dot pattern, (e) captured

image of random dots, (f) wave pattern, (g) captured image of wave pattern, (h) line detection result of wave pattern, (i) captured image of

random dots from the first camera and (j) from the second camera. All the images are captured with shutter speed 300 ms.

(a) (b) (c) (d) (e)
Figure 10. Capturing plane with line pattern for evaluation: (a) captured image, (b) blurred bands (c,d) (c,d) flow estimation of ∆qh1 and

∆qh2, and (e) estimated depth.

(a) (b) (c) (d) (e) (f)
Figure 11. Depth estimation of a rotating fan (uniformly spaced line pattern): (a) captured image, (b,c) blurred bands (d,e) flow displace-

ments for two projectors, and (f) estimated depth. Color mapping of (d,e,f) is the same as Fig. 10(c,d,e).

ABCA

B

C

(a) (b) (c) (d)
Figure 12. Depth estimation of a thrown ball (uniformly spaced line pattern):(a) the ball and the trajectory of the throw, (b) the captured

image, (c) blurred bands, (d) the estimated depth maps for 3 consequent frames overlapped. Note that, since the image of (a) is blurred,

normal structured light methods would fail.

(a) (b) (c) (d) (e)
Figure 13. Depth estimation of two ball throwing (non-uniformly spaced line pattern):(a) capturing scene of the throwing, (b) extracted red

band, (c) extracted blue band, (d) the estimated depth maps for frame 1 and (e) the estimated depth maps for frame 2.
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