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Abstract

Compression artifacts arise in images whenever a lossy

compression algorithm is applied. These artifacts eliminate

details present in the original image, or add noise and small

structures; because of these effects they make images less

pleasant for the human eye, and may also lead to decreased

performance of computer vision algorithms such as object

detectors. To eliminate such artifacts, when decompressing

an image, it is required to recover the original image from

a disturbed version. To this end, we present a feed-forward

fully convolutional residual network model trained using a

generative adversarial framework. To provide a baseline,

we show that our model can be also trained optimizing the

Structural Similarity (SSIM), which is a better loss with re-

spect to the simpler Mean Squared Error (MSE).

Our GAN is able to produce images with more photore-

alistic details than MSE or SSIM based networks. Moreover

we show that our approach can be used as a pre-processing

step for object detection in case images are degraded by

compression to a point that state-of-the art detectors fail.

In this task, our GAN method obtains better performance

than MSE or SSIM trained networks.

1. Introduction

Image and video compression algorithms are commonly

used to reduce the dimension of media files, to lower their

storage requirements and transmission time. These algo-

rithms often introduce compression artifacts, such as block-

ing, posterizing, contouring, blurring and ringing effects,

as shown in Fig. 1. Typically, the larger the compression

factor, the stronger is the image degradation due to these

artifacts. However, simply using images with low com-

pression is not always a feasible solution: images used

in web pages need to be compressed as much as possible

to speed up page load to improve user experience. Many

types of video/image streams are necessarily requiring low-

bandwidth, e.g. for drones, surveillance and wireless sensor

networks. Also in tasks such as entertainment video stream-

ing, like Netflix, there is need to reduce as much as possi-

Figure 1: Left: A JPEG compressed image with two high-

lights of degraded regions. Right: our reconstruction where

both regions are consistently sharper and most artifacts are

removed. Best viewed in color on computer screen.

ble the required bandwidth, to avoid network congestions

and to reduce costs. So far, the problem of compression

artifact removal has been treated using many different tech-

niques, from optimizing DCT coefficients [41] to adding

additional knowledge about images or patch models [20];

however the very vast majority of the many works address-

ing the problem have not considered convolutional neural

networks (CNN). To the best of our knowledge CNNs have

been used recently to address artifact reduction only in two

works [5, 31], while another work has addressed just image

denoising [40]. These techniques have been successfully

applied to a different problem of image reconstruction, that

is super-resolution, to reconstruct images from low resolu-

tion, adding missing details to down-sampled images [17].

In this work we address the problem of artifact removal

using convolutional neural networks. The proposed ap-

proach can be used as a post-processing technique applied

to decompressed images, and thus can be applied to differ-

ent compression algorithms such as JPEG, intra-frame cod-

ing of H.264/AVC and H.265/HEVC.

To evaluate the quality of reconstructed images, after ar-

tifact removal, there is need to evaluate both subjective and

objective assessments. The former are important since most

of the time a human will be the ultimate consumer of the

compressed media. The latter are important since obtain-
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ing subjective evaluations is slow and costly, and the goal

of objective metrics is to predict perceived image and video

quality automatically. Peak Signal-to-Noise Ratio (PSNR)

and Mean Squared Error (MSE) are the most widely used

objective image quality/distortion metrics. However, they

have been criticized because they do not correlate well with

perceived quality measurement [32]. To face these issues,

Structural Similarity index (SSIM) has been proposed [33].

Finally, we can expect that more and more viewers will be

computer vision systems that automatically analyze media

content, e.g. to interprete it in order to perform other pro-

cessing. To consider also this scenario we have to assess

the performance of computer vision algorithms when pro-

cessing reconstructed images.

In this work we show how deep CNNs can be used to re-

move compression artifacts by directly optimizing SSIM on

reconstructed images, showing how this approach leads to

state-of-the-art result on several benchmarks. However, al-

though SSIM is a better model for image quality than PSNR

or MSE, it is still too simplistic and insufficient to capture

the complexity of the human perceptual system. Therefore,

to learn better reconstructive models, we rely on a Genera-

tive Adversarial Network where there is no need to specify

a loss directly modeling image quality.

We have performed different types of experiments, to as-

sess the diverse benefits of the different types of networks

proposed in this paper, using subjective and objective as-

sessments. Firstly, we show that not only SSIM objective

metric is improved, but also that performance of object de-

tectors improve on highly compressed images; this is espe-

cially true for GAN artifact removal. Secondly, according

to human viewers our GAN reconstruction has a higher fi-

delity to the uncompressed versions of images.

2. Related Work

Removing compression artifacts has been addressed in

the past. There is a vast literature of image restora-

tion, targeting image compression artifacts. The vast ma-

jority of the approaches can be classified as processing

based [8, 36, 37, 41, 18, 2, 39, 4] and a few ones are learning

based [5, 31, 22, 34].

Processing based methods typically rely on information

in the DCT domain. Foi et al. [8] developed SA-DCT,

proposing to use clipped or attenuated DCT coefficients to

reconstruct a local estimate of the image signal within an

adaptive shape support. Yang et al. [37], apply a DCT-based

lapped transform directly in the DCT domain, in order to

remove the artifacts produced by quantization. Zhang et

al. [41], fuse two predictions to estimate DCT coefficients

of each block: one prediction is based on quantized val-

ues of coefficients and the other is computed from nonlocal

blocks coefficients as a weighted average. Li et al. [18]

eliminate artifacts due to contrast enhancement, decompos-

ing images in structure and texture components, then elim-

inating the artifacts that are part of the texture component.

Chang et al. [2] propose to find a sparse representation over

a learned dictionary from a training images set, and use it

to remove the block artifacts of JPEG compression images.

Dar et al. [4] propose to reduce artifacts by a regularized

restoration of the original signal. The procedure is formu-

lated as a regularized inverse-problem for estimating the

original signal given its reconstructed form, and the non-

linear compression-decompression process is approximated

by a linear operator, to obtain a tractable formulation. The

main drawback of these methods is that they usually over-

smooth the reconstructed image. Indeed it is hardly possi-

ble to add consistent details at higher frequencies with no

semantic cues of the underlying image.

Learning based methods have been proposed following

the success of deep convolutional neural networks (DCNN).

The basic idea behind applying a DCNN to this task is to

learn an image transformation function that given an input

image will output a restored version. Training is performed

by generating degraded versions of images which are used

as samples for which the ground truth or target is the origi-

nal image. The main advantage of learning based methods

is that, since they are fed with a large amount of data they

may estimate accurately an image manifold, allowing an

approximated inversion of the compression function. This

manifold is also aware of image semantics and does not rely

solely on DCT coefficient values or other statistical image

properties. Dong et al. [5] propose artifact reduction CNN

(AR-CNN) which is based on their super-resolution CNN

(SRCNN); both models share a common structure, a fea-

ture extraction layer, a feature enhancement layer, a non-

linear mapping and a reconstruction layer. The structure

is designed following sparse coding pipelines. Svoboda et

al. [31] report improved results by learning a feed-forward

CNN to perform image restoration; differently from [5] the

CNN layers have no specific functions but they combine

residual learning, skip architecture and symmetric weight

initialization to get a better reconstruction quality.

Similar approaches have been devised, to target differ-

ent image transformation problems, such as image super-

resolution [1, 17, 14, 3], style-transfer [10, 14] and image

de-noising [40]. Zhang et al. [40] have recently addressed

the problem of image denoising, proposing a denoising con-

volutional neural networks (DnCNN) to eliminate Gaussian

noise with unknown noise level and showing that residual

learning (used in a single residual unit of the network) and

batch normalization are beneficial for this task. The pro-

posed network obtains promising results also on other de-

noising tasks such as super resolution and JPEG deblocking.

Gatys et al. [10] have shown that optimizing a loss account-

ing for style similarity and content similarity it is possible

to keep the semantic content of an image and alter its style,
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which is transferred from another source. Johnson et al.

[14] propose a generative approach to solve style transfer,

building on the approach of Gatys et al. Their method im-

proves in terms of performance with respect of [10], since

the optimization is performed beforehand, for each style, it

is possible to apply the transformation in real-time. Interest-

ingly, with a slight variation on the learning, their method

also can solve super-resolution. Kim et al. [15] use a deeper

architecture [30] trained on residual images applying gradi-

ent clipping to speed-up learning. Bruna et al. [1] addressed

super-resolution learning sufficient statistics for the high-

frequency component using a CNN, Ledig et al. [17] used

a deep residual convolutional generator network, trained in

an adversarial fashion. Dahl et al. [3] propose to use a Pix-

elCNN architecture for super-resolution task, applying it to

magnification of 8×8 pixel images. Human evaluators have

indicated that samples from this model look more photo re-

alistic than a pixel-independent L2 regression baseline.

We make the following contributions. We define a deep

convolutional residual generative network [12], that we

train with two strategies. Similarly to [31] our network is

fully convolutional and is therefore able to restore images

of any resolution. Differently from [31] we avoid MSE

loss and we use a loss based on SSIM, this improves results

perceptually. Nonetheless, as also happening in the super-

resolution task, networks trained to optimize the MSE pro-

duce overly smoothed images; this behavior unfortunately

is also present in our SSIM trained feed-forward network.

Generative adversarial networks [11], are instead capa-

ble of modeling complex multi-modal distributions and are

therefore known to be able to generate sharper images. We

propose an improved generator, trained in an adversarial

framework. To the best of our knowledge we are the first

proposing GANs to recover from compression artifacts. We

use a conditional GAN [24], to allow the generator to bet-

ter model the artifact removal task. An additional relevant

novelty of this work is the idea of learning the discrimina-

tor over sub-patches of a single generated patch to reduce

high frequency noise, such as mosquito noise, which in-

stead arises when using a discriminator trained on the whole

patch.

3. Methodology

In the compression artifact removal task the aim is to

reconstruct an image IRQ from a compressed input image

ILQ. In this scenario, ILQ = A
(

IHQ
)

is the output image

of a compression algorithm A with IHQ as uncompressed

input image. Typically compression algorithms work in the

YCrCb color space (e.g. JPEG, H.264/AVC, H.265/HEVC),

to separate luminance from chrominance information, and

sub-sample chrominance, since the human visual system is

less sensitive to its changes. For this reason, in the follow-

ing, all images are converted to YCrCb and then processed.

We describe IRQ, ILQ and IHQ by real valued tensors

with dimensions W × H × C, where C is the number of

image channels. Certain quality metrics are evaluated us-

ing the luminance information only; in those cases all the

images are transformed to gray-scale considering just the

luminance channel Y and C = 1. Of course, when dealing

with all the YCrCb channels C = 3.

An uncompressed image IHQ ∈ [0, 255]W×H×C is

compressed by:

ILQ = A
(

IHQ, QF
)

∈ [0, 255]W×H×C (1)

using a compression function A, using some quality fac-

tor QF in the compression process. The task of com-

pression artifacts removal is to provide an inverse function

G ≈ A−1

QF reconstructing IHQ from ILQ:

G
(

ILQ
)

= IRQ ≈ IHQ (2)

where we do not include the QF parameter in the recon-

struction algorithm since it is desirable that such function is

independent from the compression function parameters.

To achieve this goal, we train a convolutional neural net-

work G
(

ILQ; θg
)

with θg = {W1:K ; b1:K} the parameters

representing weights and biases of the K layers of the net-

work. Given N training images we optimize a custom loss

function lAR by solving:

θ̂g = argmin
θ

1

N

N
∑

n=1

lAR
(

IHQ, G
(

ILQ, θg
))

(3)

Removing compression artifacts can be seen as an im-

age transformation problem, similarly to super-resolution

and style-transfer. This category of tasks is conveniently

addressed using generative approaches, i.e. learning a fully

convolutional neural network (FCN) [21] able to output an

improved version of some input. FCN architectures are ex-

tremely convenient in image processing since they perform

local non-linear image transformations, and can be applied

to images of any size. We exploit this property to speed-up

the training process: since the artifacts we are interested in

appear at small scales (close to the block size), we can learn

from smaller patches, thus using larger batches.

We propose a generator architecture that can be trained

with direct supervision or combined with a discriminator

network to obtain a generative adversarial framework. In

the following we detail the network architectures that we

have used and the loss functions devised to optimize such

networks in order to obtain high quality reconstructions.

3.1. Generative Network

In this work we use a deep residual generative net-

work, which contains just blocks of convolutional layers

and LeakyReLU non-linearities.
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Generator Network

Conv 3x3 n64 s1

 

Conv 3x3 n64 s2

 
...

Residual Block

Residual Block

Upsampling NN 2x

Conv 3x3 n64 s1

Conv 3x3 n1 s1

Conv 3x3 n64 s1

Conv 3x3 n64 s1

Conv 3x3 n64 s1

+

Tanh

Figure 2: Architecture of Generator Network indicating

with n the number of filters and with s the stride value for

each Convolutional Layer.

The architecture, shown in Fig. 2, is inspired by [12].

Specifically, we use convolutional layers with 3× 3 kernels

and 64 feature maps. Each convolutional layer is followed

by a LeakyReLU activation. To reduce the overall number

of parameters and to speed up the training time, we first use

a convolution with stride 2 to obtain the feature maps half

the original size, and finally we employ a nearest-neighbor

upsampling as suggested in [26] to get the feature maps with

original dimensions. We apply a padding of 1 pixel after

every convolution, in order to keep the image size across the

15 residual blocks. We use replication as padding strategy

in order to moderate border artifacts.

We add another convolutional layer after the upsampling

layer to minimize potential artifacts generated by the up-

sampling process. The last layer is a simple convolutional

layer with one feature map followed by a tanh activation

function, in order to keep all the values of the reconstructed

image in the range [−1, 1] making the output image compa-

rable with the input which is rescaled so to have values in

the same range.

3.2. Loss Functions for Direct Supervision

In this section we deal with learning a generative net-

work with a direct supervision, meaning that the loss is

computed as a function of the reconstructed image IRQ and

the target original image IHQ. Weights are updated with a

classical backpropagation.

3.2.1 Pixel-wise MSE Loss

As a baseline we use the Mean Squared Error loss (MSE):

lMSE =
1

WH

W
∑

x=1

H
∑

y=1

(

IHQx,y − IRQx,y
)2

. (4)

This loss is commonly used in image reconstruction and

restoration tasks [5, 31, 22], and is This kind of approach

has shown to be effective to recover the low frequency de-

tails from a compressed image, but on the other hand most

of the high frequency details are suppressed.

3.2.2 SSIM Loss

The Structural Similarity (SSIM) [33] has been proposed

an alternative to MSE and Peak Signal-to-Noise Ration

(PSNR) image similarity measures, which have both shown

to be inconsistent with the human visual perception of im-

age similarity. Given images I and J , SSIM is defined as

follows:

SSIM (I, J) =
(2µIµJ + C1) (2σIJ + C2)

(µ2

I + µ2

J + C1) (σ2

I + σ2

J + C2)
(5)

We optimize the training of the network with respect to

the structural similarity between the uncompressed images

and the reconstructed ones. Since the SSIM function is dif-

ferentiable, we can define the SSIM loss as:

lSSIM = −
1

WH

W
∑

x=1

H
∑

y=1

SSIM
(

IHQx,y , I
RQ
x,y

)

(6)

Note that we minimize −SSIM
(

IHQ, IRQ
)

instead of

1− SSIM
(

IHQ, IRQ
)

since the gradient is equivalent.

3.3. Generative Adversarial Artifact Removal

The generative network architecture, defined in Sect. 3.1

can be used in an adversarial framework, if coupled with a

discriminator. Adversarial training [11] is a recent approach

that has shown remarkable performances to generate syn-

thetic photo-realistic images in super-resolution tasks [17].

The aim is to encourage a generator network G to pro-

duce solutions that lay on the manifold of the real data by

fooling a discriminative network D. The discriminator is

trained to distinguish reconstructed patches IRQ from the

real ones IHQ. To condition the generative network, we

feed as positive examples IHQ|ILQ and as negative exam-

ples IRQ|ILQ, where ·|· indicates channel-wise concatena-

tion. For samples of size N ×N ×C we discriminate sam-

ples of size N ×N × 2C.
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Figure 4: Left: reconstruction without sub-patch strategy.

Right: our sub-patch strategy reduces mosquito noise and

ringing artifacts.

3.3.1 Discriminative Network

Our discriminator architecture uses convolutions without

padding with single-pixel stride and uses LeakyReLU ac-

tivation after each layer. Every two layers, except the last

one, we double the filters. We do not use fully connected

layers. Feature map size decreases as a sole effect of con-

volutions reaching unitary dimension at the last layer. A

sigmoid is used as activation function. The architecture of

the discriminator network is shown in Fig.3.

The set of weights ψ of the D network are learned by

minimizing:

ld =− log
(

Dψ

(

IHQ|ILQ
))

− log
(

1−Dψ

(

IRQ|ILQ
))

(7)

Discrimination is performed at the sub-patch level, as indi-

cated in Fig. 3, this is motivated by the fact that compres-

sion algorithms decompose images into patches and thus

artifacts are typically created within them. Since we want

to encourage to generate images with realistic patches, IHQ

and IRQ are partitioned into P patches of size 16× 16 and

then they are fed into the discriminative network. In Fig-

ure 4 it can be seen the beneficial effect of this approach in

the reduction of mosquito noise.

3.3.2 Perceptual Loss

Following the contributions of Dosovitskiy and Brox [6],

Johnson et al. [14], Bruna [1] and Gatys [9] we use a loss

based on perceptual similarity in the adversarial training.

The distance between the images is not computed in image

space: IHQ and IRQ are initially projected on a feature

space by some differentiable function φ, then the Euclidean

distance is computed between the feature representation of

the two images:

lP =
1

WfHf

Wf
∑

x=1

Hf
∑

y=1

(

φ
(

IHQ
)

x,y
− φ

(

IRQ
)

x,y

)2

(8)

where Wf and Hf are respectively the width and the height

of the feature maps. The model optimized with the percep-

tual loss generates reconstructed images that are not nec-

essarily accurate according to the pixel-wise distance mea-

sure, but on the other hand the output will be more similar

from a feature representation point of view.

3.3.3 Adversarial Patch Loss

In the present work we used the pre-trained VGG19 model

[30], extracting the feature maps obtained from the second

convolution layer before the last max-pooling layer of the

network. We train the generator using the following loss:

lAR = lP + λladv. (9)

Where ladv is the standard adversarial loss:

ladv = − log
(

Dψ

(

IRQ|ILQ
))

(10)

clearly rewarding solutions that are able to “fool” the dis-

criminator.

4. Experiments

4.1. Implementation Details

All the networks have been trained with a NVIDIA Titan

X GPU using random patches from MSCOCO [19] train-

ing set. For each mini-batch we have sampled 16 random

128×128 patches, with flipping and rotation data augmenta-

tion. We compress images with MATLAB JPEG compres-

sor at multiple QFs, to learn a more generic model. For the

optimization process we used Adam [16] with momentum

0.9 and a learning rate of 10−4. The training process have

been carried on for 70, 000 iterations. In order to ensure

the stability of the adversarial training we have followed the

guidelines described in [28], performing the one-sided label

smoothing for the discriminator training.

4.2. Dataset and Similarity Measures

We performed experiments on two commonly used

datasets: LIVE1 [29] and the validation set of BSD500 [23]

using JPEG as compression. For a fair comparison with

the state-of-the art methods, we report evaluation of PSNR,

PSNR-B [38] and SSIM measures for the JPEG quality fac-

tors 10, 20, 30 and 40. We further evaluate perceptual sim-

ilarity through a subjective study on BSD500. Finally we

use PASCAL VOC07[7] to benchmark object detector per-

formance for different reconstruction algorithms.

4.3. Comparison with StateoftheArt

We first evaluate the performance of our generative net-

work trained without the adversarial approach, testing the

effectiveness of our novel architecture and the benefits of
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Figure 3: Architecture of Discriminator Networks indicating with n the number of filters for each Convolutional Layer. White

squares indicate real (IHQ) or generated patches (IRQ), while purple ones are their respective compressed versions ILQ.

SSIM loss in such training. For this comparison we have

reported the results of our deep residual networks with skip

connections trained with the baseline MSE loss and with the

proposed SSIM loss. We compare our performance with the

JPEG compression and three state-of-the-art approaches:

SA-DCT [8], AR-CNN from Dong et al. [5] and the work

described by Svoboda et al. [31]. In Table 1 are reported

the results of our approaches respectively on BSD500 and

LIVE1 datasets compared to the other state-of-the-art meth-

ods for the JPEG restoration task. The results confirm that

our method outperforms the other approaches for each qual-

ity measure. Specifically, we have a great improvement of

PSNR and PSNR-B for the networks trained with the classic

MSE loss, while as expected the SSIM measure improves a

lot in every evaluation when the SSIM loss is chosen for

training.

Regarding GAN, we can state that the performance is

much lower than the standard approach from a quality index

point of view. However, the generated images are percep-

tually more convincing for human viewers as can be seen

in Fig. 5. Further confirmation will be given in Sect. 4.5,

in a subjective study. The combination of perceptual and

adversarial loss is responsible of generating realistic tex-

tures rather than the smooth and poor detailed patches of

the MSE/SSIM based approaches. In fact, MSE and SSIM

metrics tend to evaluate better more conservative blurry av-

erages over more photo realistic details, that could be added

slightly displaced with respect to their original position, as

observed also in super-resolution tasks [3].

4.4. Object Detection

We are interested in understanding how a machine

trained object detector performs depending on the qual-

ity of an image, in term of compression artifacts. Com-

pressed images are degraded, and object detection perfor-

mance degrades, in some cases even dramatically when

strong compression is applied. In this experiment we use

Faster R-CNN [27] as detector and report results on dif-

ferent versions of PASCAL VOC2007; results are reported

in Tab. 2. As an upper bound we report the mean aver-

age precision (mAP) on the original dataset. As a lower

bound we report performance on images compressed us-

Table 1: Average PSNR, PNSR-B and SSIM results on

BDS500 and LIVE1. Evaluation using luminance.

QF Method
LIVE1 BSD500

PSNR PSNR-B SSIM PSNR PSNR-B SSIM

10 JPEG 27.77 25.33 0.791 27.58 24.97 0.769

SA-DCT [8] 28.65 28.01 0.809 - - -

AR-CNN [5] 29.13 28.74 0.823 28.74 28.38 0.796

L4 [31] 29.08 28.71 0.824 28.75 28.29 0.800

Our MSE 29.45 29.10 0.834 29.03 28.61 0.807

Our SSIM 28.94 28.46 0.840 28.52 27.93 0.816

Our GAN 27.29 26.69 0.773 27.01 26.30 0.746

20 JPEG 30.07 27.57 0.868 29.72 26.97 0.852

SA-DCT [8] 30.81 29.82 0.878 - - -

AR-CNN [5] 31.40 30.69 0.890 30.80 30.08 0.868

L4 [31] 31.42 30.83 0.890 30.90 30.13 0.871

L8 [31] 31.51 30.92 0.891 30.99 30.19 0.872

Our MSE 31.77 31.26 0.896 31.20 30.48 0.876

Our SSIM 31.38 30.77 0.900 30.79 29.92 0.882

Our GAN 28.35 28.10 0.817 28.07 27.76 0.794

30 JPEG 31.41 28.92 0.900 30.98 28.23 0.886

SA-DCT [8] 32.08 30.92 0.908 - - -

AR-CNN [5] 32.69 32.15 0.917 - - -

Our MSE 33.15 32.51 0.922 32.44 31.41 0.906

Our SSIM 32.87 32.09 0.925 32.15 30.97 0.909

Our GAN 28.58 28.75 0.832 28.5 28.00 0.811

40 JPEG 32.35 29.96 0.917 31.88 29.14 0.906

SA-DCT [8] 32.99 31.79 0.924 - - -

AR-CNN [5] 33.63 33.12 0.931 - - -

Our MSE 34.09 33.40 0.935 33.30 32.18 0.921

Our SSIM 33.82 33.00 0.937 33.04 31.72 0.924

Our GAN 28.99 28.84 0.837 28.61 28.20 0.815

ing JPEG with quality factor set to 20 (6, 7× less bitrate).

Then we benchmark object detection on reconstructed ver-

sions of the compressed images, comparing AR-CNN [5],

our generative MSE and SSIM trained generators with the

GAN. First of all, it must be noted that the decrease in the

overall mAP measured on compressed images with respect

to the upper bound is large: 14.2 points. AR-CNN, MSE

and SSIM based generators are not recovering enough in-

formation yielding around 2.1, 2.4 and 2.5 points of im-

provements respectively. As can be observed in Table 2 our

GAN artifact removal restores the images in a much more

effective manner yielding the best result increasing the per-

formance by 7.4 points, just 6.8 points less than the upper

bound.

Our GAN artifact removal process recovers impressively

on cat (+16.6), cow (+12.5), dog (+18.6) and sheep (+14.3),

which are classes where the object is highly articulated and

texture is the most informative cue. In these classes it can
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Original JPEG 20 ARCNN Our GAN Original Detail

Figure 5: Qualitative results shown on two complex textured details. JPEG compression introduces severe blocking, ringing

and color quantization artifacts. ARCNN is able to slightly recover but produces a blurry result. Our reconstruction is hardly

discernible from the original image.
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Figure 6: Mean average precision (mAP), for different

Quality Factors (QF), and restoration approaches, on PAS-

CAL VOC2007.

also be seen that MSE and SSIM generators are even dete-

riorating the performance, as a further confirmation that the

absence of higher frequency components alters the recog-

nition capability of an object detector. To assess the effect

of color we report the use of GAN using only luminance

(GAN-Y). Using lP defined as in Eq. 8 is important, switch-

ing to a simpler L1 loss (GAN-L1) we obtain much lower

performance. Our GAN trained with a full patch discrimi-

nator obtains .605 mAP, while our sub-patch discriminator

leads to .623 mAP, highlighting its importance.

In Fig. 6 we analyze the effects of different compression

levels, changing the quality factor. GAN is able to recover

details even for very aggressive compression rates, such as

QF=10. In Fig. 6 it can be seen how GAN always outper-

form other restoration algorithms. The gap in performance

is reduced when QF raises, e.g QF=40 (4, 3× less bitrate).

To assess the generality of our approach we tested it

on other codecs: WebP, BPG and JPEG2000. We tuned

all codecs to obtain the same average bitrate on the whole

VOC2007 dataset of the respective JPEG codec using a

QF of 20. The improvement in mAP is using our GAN

is the following WebP(+4%), JPEG2000 (+2.9%) and BPG

(+2.1%).

4.5. Subjective evaluation

In this experiment we evaluate how images processed

with the proposed methods are perceived by a viewer, com-

paring in particular how the SSIM loss and the GAN-based

approaches preserve the details and quality of an image.

We have recruited 10 viewers, a number that is considered

enough for subjective image quality evaluation tests [35];

none of the viewers was familiar with image quality eval-

uation or the work presented in this paper. Evaluation has

been done following a DSIS (Double-Stimulus Impairment

Scale) setup, created using VQone, a tool specifically de-

signed for this type of experiments [25]: subjects evalu-

ated the test image in comparison to the original image, and

graded how similar is the test image to the original, using

a continuous scale from 0 to 100, with no marked values to

avoid choosing preferred numbers. We have randomly se-

lected 50 images from the BSD500 dataset, containing dif-

ferent subjects, such as nature scenes, man-made objects,

persons, animals, etc. For each original image both an im-

age processed with the SSIM loss network and the GAN

network have been shown, randomizing their order to avoid

always showing one of the two approaches in the same or-

der, and randomizing also the order of presentation of the

tests for each viewer. The number of 50 images has been

selected to maintain the duration of each evaluation below

half an hour, as suggested by ITU-R BT.500-13 recommen-

dations [13] (typical duration was ∼ 20 minutes). Overall

1,000 judgments have been collected and final results are

reported in Table 3 as MOS (Mean Opinion Scores) with

standard deviation. Results show that the GAN-based net-

work is able to produce images that are perceived as more

similar to the original image. A more detailed analysis of

results is shown in Fig. 7, where for each image is reported

its MOS with 95% confidence. It can be observed that in

90% of the cases the images restored with the GAN-based

network are considered better than using the SSIM-based
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JPEG 20 0.587 0.692 0.516 0.434 0.350 0.673 0.71 0.559 0.334 0.559 0.579

AR-CNN [5] 0.641 0.686 0.523 0.413 0.367 0.702 0.742 0.530 0.363 0.574 0.607

MSE 0.647 0.696 0.512 0.406 0.409 0.713 0.75 0.542 0.386 0.546 0.614

Our SSIM 0.655 0.706 0.513 0.417 0.411 0.713 0.746 0.555 0.387 0.538 0.615

Our GAN-Y 0.657 0.696 0.547 0.461 0.354 0.719 0.708 0.673 0.380 0.653 0.605

Our GAN-L1 0.644 0.75 0.524 0.421 0.427 0.691 0.755 0.667 0.402 0.616 0.597

Our GAN 0.666 0.753 0.565 0.475 0.395 0.727 0.770 0.725 0.403 0.684 0.602

Original 0.698 0.788 0.692 0.559 0.488 0.769 0.798 0.858 0.487 0.762 0.637

mAP

JPEG 20 0.532 0.691 0.665 0.638 0.260 0.482 0.434 0.707 0.570 0.549

AR-CNN [5] 0.581 0.724 0.661 0.658 0.313 0.499 0.526 0.712 0.578 0.570

Our MSE 0.595 0.713 0.668 0.664 0.310 0.485 0.522 0.676 0.600 0.573

Our SSIM 0.596 0.720 0.666 0.663 0.308 0.482 0.532 0.668 0.598 0.574

Our GAN-Y 0.681 0.738 0.661 0.662 0.290 0.608 0.544 0.722 0.600 0.598

Our GAN-L1 0.679 0.749 0.666 0.664 0.309 0.543 0.587 0.655 0.613 0.598

Our GAN 0.718 0.753 0.707 0.670 0.303 0.625 0.586 0.712 0.611 0.623

Original 0.790 0.802 0.757 0.763 0.376 0.683 0.672 0.777 0.667 0.691

Table 2: Object detection performance measured as mean average precision (mAP) on PASCAL VOC2007 for different

reconstruction algorithms. Bold numbers indicate best results among reconstruction approaches.

Table 3: Subjective image quality evaluation in terms of

Mean Opinion Score(MOS) on BSD500.

Method MOS std. dev.

Our SSIM 49.51 22.72

Our GAN 68.32 20.75
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Figure 7: MOS values, with 0.95 confidence, for all the 50

images used in the subjective evaluation.

loss. Fig. 7 shows two examples, one where GAN performs

better (see the texture on the elephant skin) and one of the

few where SSIM performs better (see the faces).

5. Conclusion

We have shown that it is possible to remove compres-

sion artifacts by transforming images with deep convolu-

tional residual networks. Our generative network trained

using SSIM loss obtains state of the art results according

to standard image similarity metrics. Nonetheless, images

G
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S
S

IM
G

A
N

Figure 8: Samples of BSD500 validation set used in our

subjective evaluation. Left column: best result for the GAN

approach, right column: best result for the SSIM approach.

reconstructed as such appear blurry and missing details at

higher frequencies. These details make images look less

similar to the original ones for human viewers and harder

to understand for object detectors. We therefore propose

a conditional Generative Adversarial framework which we

train alternating full size patch generation with sub-patch

discrimination. Human evaluation and quantitative experi-

ments in object detection show that our GAN generates im-

ages with finer consistent details and these details make a

difference both for machines and humans.
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