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Abstract

We present an approach to learning features that rep-

resent the local geometry around a point in an unstruc-

tured point cloud. Such features play a central role in ge-

ometric registration, which supports diverse applications

in robotics and 3D vision. Current state-of-the-art local

features for unstructured point clouds have been manually

crafted and none combines the desirable properties of pre-

cision, compactness, and robustness. We show that features

with these properties can be learned from data, by optimiz-

ing deep networks that map high-dimensional histograms

into low-dimensional Euclidean spaces. The presented ap-

proach yields a family of features, parameterized by dimen-

sion, that are both more compact and more accurate than

existing descriptors.

1. Introduction

Local geometric descriptors represent the local geome-

try around a point in a point cloud. They play a central role

in geometric registration, which supports diverse applica-

tions in robotics and 3D vision [16] and underpins modern

3D reconstruction pipelines [42]. To enable accurate and

efficient registration, the descriptor must possess a number

of properties [12]. First, it should map the local geometry

to a vector in a Euclidean space R
n; such Euclidean repre-

sentations support efficient geometric search structures and

nearest-neighbor queries. Second, the descriptor should be

discriminative: nearest neighbors in feature space should

correspond to points with genuinely similar local neighbor-

hoods. Third, the representation should be compact, with

a small dimensionality n: this supports fast spatial search.

Finally, the representation should be robust to artifacts that

are commonly encountered in real data, such as noise and

missing regions.

The design of local geometric descriptors has been the

subject of intensive study for the past two decades. Many

hand-crafted descriptors have been designed and evalu-

ated [19, 11, 25, 27]. Nevertheless, no existing descriptor

jointly satisfies the desiderata of high discriminative abil-

ity, compactness, and robustness [12]. Part of the challenge
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Figure 1. Our approach yields a family of Compact Geometric

Features (CGF), parameterized by dimension. This figure illus-

trates the performance of CGF on the SceneNN test set. Our fea-

tures are both more compact and more precise than the baselines.

The horizontal axis (dimensionality) is on a logarithmic scale.

is the difficulty of optimizing the parameters of a high-

dimensional feature representation by hand.

In this paper, we present an approach to learning local

geometric features from data. Our descriptor applies di-

rectly to unstructured point clouds and does not require a

clean and consistent surface parameterization [5], a vol-

umetric representation [41], or the synthesis of auxiliary

depth images [35]. Our features support nearest-neighbor

queries in a Euclidean space, which allows establishing

dense correspondences across point sets in near-linear time,

in contrast to the quadratic complexity required by pair-

wise matching networks. We thus obtain the first learned

geometric feature that can serve as a drop-in replace-

ment for state-of-the-art hand-crafted features in existing

pipelines [16, 42].

We show that the presented approach yields descrip-

tors that are both more discriminative and more compact

than state-of-the-art hand-crafted features. An illustration

is provided in Figure 1. Experiments demonstrate that our

Compact Geometric Features (CGF) yield more accurate

matches at lower query times. When CGF is used on the

standard Redwood benchmark for geometric registration,

with no training or fine-tuning on that dataset, it yields the

highest recall reported on the benchmark to date.
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2. Background

The development of geometric descriptors for rigid

alignment of unstructured point clouds dates back to the

90s. Classic descriptors include Spin Images [19] and 3D

Shape Context [11]. More recent work introduced Point

Feature Histograms (PFH) [26], Fast Point Feature His-

tograms (FPFH) [25], Signature of Histogram Orientations

(SHOT) [27], and Unique Shape Contexts (USC) [33]. A

comprehensive evaluation of existing local geometric de-

scriptors is reported by Guo et al. [12].

Significant work has also been conducted on descrip-

tors for nonrigid registration of deformable surfaces [1, 32].

These descriptors tend to make stronger assumptions, such

as the existence of a reasonably clean meshed surface, and

are designed to be invariant to isometric deformations. In

contrast, rigid registration requires sensitivity to isometric

deformations – the opposite of invariance. And applica-

tions in robotics require handling noisy unstructured point

sets. Our work is devoted to rigid registration of unstruc-

tured point clouds.

A number of recent works applied learning to the prob-

lem of matching corresponding points based on local ge-

ometry. Wei et al. [35] describe an approach that matches

points on human body scans and operates on ensembles

of depth images. Boscani et al. [5] extend convolutional

networks to Riemannian manifolds and apply them to es-

tablish correspondences across compatible manifolds. The

contemporaneous work of Zeng et al. [41] uses volumet-

ric signed distance fields and develops learned descriptors

that use such volumetric representations as input. Cosmo

et al. [8] learn descriptors for isometry-invariant nonrigid

matching. In contrast, our work is devoted to learning com-

pact descriptors for local geometry in unstructured point

clouds, which can be used as highly efficient drop-in re-

placements for prior such descriptors in existing rigid reg-

istration pipelines [16, 42].

Deep networks have been applied to matching image

patches and learning local image descriptors [3, 14, 30, 38,

39, 40]. Our research is informed by this work and applies

related techniques to a different domain: point cloud reg-

istration. In particular, we investigate the effect of output

dimensionality on accuracy and show that extremely low-

dimensional descriptors can effectively represent the local

geometry in an unstructured point cloud, significantly accel-

erating correspondence search in point cloud registration.

Learning has also been applied to shape classification

and retrieval. Researchers have considered volumetric [37,

22] and multi-view representations [31]. These works do

not deal with local geometric features and do not address

the challenge of obtaining a local feature that is both ac-

curate and compact. The difference between learning local

geometric features and shape classification/retrieval is anal-

ogous to the difference between learning local image fea-

tures [30] and image classification/retrieval [15, 2].

3. Overview

Parameterization. We parameterize the input to our model

using spherical histograms centered at each point. These

spherical histograms capture the local geometry in a neigh-

borhood around each point. To incorporate rotational invari-

ance, each spherical histogram is oriented to the normal and

tangent spaces at each point. The interior of these spheres

is subdivided along the radial, elevation, and azimuth direc-

tions. All neighboring points in the sphere are accumulated

into the bins of the subdivision. The input parameterization

is described in Section 4.

Feature embedding. We train a deep network to map from

the high-dimensional space of spherical histograms to a

very low-dimensional Euclidean space. The network learns

an embedding into a low-dimensional feature space that

maps similar geometric neighborhoods to nearby points.

The model is trained using the triplet embedding loss. This

is described in Sections 5 and 6.

Correspondences. Given a mapping f from a point into our

learned feature space, computing correspondences between

two point clouds Pi and Pj reduces to performing nearest-

neighbor queries. We compute the set of features f(Pi) and

f(Pj), and construct a k-d tree T on the point set f(Pj).
For each point in f(Pi), we compute its nearest neighbor in

f(Pj) using T . As demonstrated in Section 7, correspon-

dences computed using our feature space are much more ac-

curate than correspondences computed using prior geomet-

ric feature descriptors. The low dimensionality of our fea-

tures enables nearest-neighbor queries that are much faster

than the second most accurate feature descriptor on real-

world data.

Applications. Our features can serve as drop-in re-

placements for existing descriptors. We demonstrate this

by replacing widely used Fast Point Feature Histograms

(FPFH) [25] in existing geometric registration pipelines.

This yields higher registration accuracy with no other mod-

ifications. These experiments are reported in Section 7.

4. Input Parameterization

Our basic approach is to start with a very high-

dimensional representation of the raw local geometry

around a point and train a deep network to embed this initial

representation into a compact Euclidean space. Forming the

initial representation is not trivial. Unlike images, which

are laid out on a regular grid with a clear parameteriza-

tion, a point cloud constitutes a set of unorganized points in

R
3. Even the cardinality of the set of points within a given

neighborhood is not fixed. One possibility is to discretize

the input into a uniform voxel grid, but such representa-
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Figure 2. Our input parameterization, illustrated in two dimensions

for clarity. The sphere S is centered at the point p. In this two-

dimensional illustration, the interior of S is subdivided into three

bins along the radial direction and eight bins along the polar direc-

tion. This yields a 24-bin histogram into which the points in S are

accumulated. The subdivision is aligned to the normal np. In the

real three-dimensional setting, the histogram has approximately

two thousand bins.

tions are wasteful. For a 3-dimensional grid with C3 cells,

a smooth 2-dimensional surface will only intersect O(C2)
cells: the rest are empty [18]. An alternative is to assume

a clean parameterization of the underlying surface [5], but

such a parameterization is not available in general.

Our initial representation is a histogram of the distri-

bution of points in a local neighborhood, binned along a

non-uniform radial grid [11]. Consider p ∈ P and let S
be a sphere centered at p with radius r. For rotational in-

variance, we estimate the normal np and a local reference

frame based on this normal [27]. Consider the third vector

zp of the estimated local reference frame. If the dot product

〈np, zp〉 < 0, we flip the signs of all three vectors in the

local reference frame.

The volume bounded by S can be subdivided into bins

along the radial, elevation, and azimuth directions. These

directions are defined in terms of the local reference frame.

We subdivide the azimuth direction into A bins, each of ex-

tent 2π/A. The elevation direction is subdivided into E
bins, each of extent π/E. The radial direction, which has

total span r, is logarithmically subdivided into R bins with

the following thresholds:

ri = exp

(

ln rmin +
i

R
ln

(

r

rmin

))

. (1)

The first threshold r0 evaluates to rmin, which avoids

excessive binning near the center. The thresholds grow

exponentially, yielding an initial representation of multi-

scale context. The result is a spherical histogram with

N = R× E ×A bins. This is illustrated in Figure 2.

Let N ⊂ P be the set of neighboring points that lie in-

side the sphere S . The set N can be found efficiently using

a k-d tree. For each point q ∈ N , we locate the histogram

bin that contains q in constant time and increment the cor-

responding histogram value. After binning all the points in

N , we normalize the histogram by dividing each entry by

|N |. This yields a normalized N -dimensional feature vec-

tor that is used as input for a nonlinear embedding into a

lower-dimensional Euclidean space.

5. Feature Embedding

We train a deep network f : R
N → R

n to map the

space of input histograms into a lower-dimensional Eu-

clidean space Rn. This mapping serves two purposes. First,

Euclidean distances between input histograms in R
N are

to a significant extent arbitrary and do not appropriately re-

flect the similarity or dissimilarity of the geometric contexts

represented by the histograms. Second, nearest-neighbor

search in the lower-dimensional space R
n is much faster,

which is important because nearest-neighbor search dom-

inates the runtime of geometric registration pipelines [10,

42].

The mapping is trained to pull similar features together

while pushing dissimilar features apart. To this end, we use

the triplet loss [29, 36]. This objective has been used to

optimize feature embeddings for a number of applications

in computer vision [6, 28, 40].

Consider a set of triplets of input histograms

T = {(xa
i ,x

p
i ,x

n
i )}i. Vector xa

i is referred to as the

anchor of triplet i, vector x
p
i is a positive example that

is known to be similar to the anchor, and vector xn
i is a

negative example that is known to be dissimilar. Given

such a set of triplets, we optimize the following objective:

L(θ) =
1

|T |

|T |
∑

i=1

[

‖f(xa
i ;θ)− f(xp

i ;θ)‖
2

− ‖f(xa
i ;θ)− f(xn

i ;θ)‖
2 + 1

]

+
, (2)

where θ are the parameters of the mapping f and [·]+ de-

notes max(·, 0). Intuitively, f is optimized such that xa
i is

embedded closer to x
p
i than to xn

i , with a margin separating

the distances.

We use a fully-connected network f with 5 hidden lay-

ers. Each hidden layer contains 512 nodes and is followed

by an elementwise truncation max(·, 0). We validated our

model architecture with a controlled experiment reported in

the supplement. At test time, computing the n-dimensional

descriptor corresponding to an input histogram amounts to

a sequence of matrix multiplications and elementwise oper-

ations.

6. Training

Consider a set of point clouds {Pi}i that depict overlap-

ping fragments of a scene. Let {Ti}i be a set of rigid trans-

formations that align the point clouds {Pi}i. Thus {TiPi}i
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Figure 3. Two overlapping points clouds, shown here in red and

black, are sampled from an underlying surface. We consider two

concentric spheres of radius τ and 2τ around a black point p.

The red points in the innermost sphere, which form the set Np,τ ,

are good correspondences for p. The red points in the outermost

sphere form the set Np,2τ . We generate triplets for p by sampling

x
p ∈ Np,τ and x

n ∈ Np,2τ \ Np,τ .

is a set of point clouds aligned to a common coordinate

frame, in which distances between points p ∈ TiPi and

q ∈ TjPj that depict nearby points in the latent scene are

small. In this section we assume that the point clouds {Pi}i
and transformations {Ti}i are given. Data in this form can

be obtained from a variety of sources including scene re-

construction pipelines.

Consider a single point cloud Pi and a point p ∈ Pi.

Let nn(p,Pi) denote the nearest neighbor of p in

Pi \ p. Let εi be the median of the set of distances

{‖p− nn(p,Pi)‖ : p ∈ Pi} and define ε = maxi εi.
Now consider a pair of point clouds (Pi,Pj). For each

point p ∈ TiPi we can compute the nearest neighbor

nn(p,TjPj) of p in TjPj . Consider the fraction of such

pairs that are within distance ε. Specifically, define

αi,j =
|{p ∈ TiPi : ‖p− nn(p,TjPj)‖ ≤ ε}|

|Pi|
(3)

and similarly for αj,i. We say that Pi and Pj overlap if

min(αi,j , αj,i) ≥ 0.3. This implies that the underlying sur-

faces from which Pi and Pj were sampled overlap by at

least 30%.

Consider the set O of overlapping pairs of point clouds

from {Pi}i. For each pair (Pi,Pj) ∈ O we examine each

point p ∈ Pi. We compute the set of neighbors N j
p,τ in Pj

that are at distance at most τ from p. When τ is sufficiently

small, the points in N j
p,τ are good correspondences for p in

Pj . Similarly consider N j
p,2τ , the set of points in Pj that are

at distance at most 2τ from p. The set N j
p,2τ \N

j
p,τ contains

difficult negative examples for p. These points have local

geometries that are in general more similar to that of p than

a randomly chosen point, but are not as close as those in

N j
p,τ . This is illustrated in Figure 3.

We generate training triplets (xa,xp,xn) by sampling

a pair of point clouds (Pi,Pj) ∈ O, sampling a point

xa ∈ Pi from the overlap region of Pi and Pj , sampling

xp from the set N j
xa,τ , and sampling xn from the set

N j
xa,2τ \ N j

xa,τ . This procedure is used to generate a large

number of training triplets. The triplets are then permuted

randomly and partitioned into minibatches.

We use minibatches of size 512 and train the mapping f
using Adam [20]. The initial weights of the hidden nodes

are drawn from a normal distribution with mean 0 and stan-

dard deviation 0.1. The learning rate is set to 10−4. The

parameters for the exponential decay of the first and second

moment estimates are set to β1 = 0.9 and β2 = 0.999. The

network is trained for three epochs.

7. Experiments

7.1. Setup

Input parameterization. For the input parameterization,

we use R = 17 subdivisions in the radial direction, E = 11
in the elevation direction, and A = 12 in the azimuth di-

rection. The dimensionality of the input histogram is thus

N = 2,244. We validate these choices via controlled exper-

iments that are reported in the supplement.

Our approach yields a family of features parameterized

by dimension. The primary setting of our feature space di-

mensionality is n = 32; the corresponding feature is re-

ferred to as CGF-32. The experimental results will demon-

strate that this low dimensionality significantly outperforms

prior, much larger descriptors.

On laser scan data, the radius r of the sphere S is set

to 17% of the diameter of each model and rmin is set to

1.5% of the diameter. The value of the search radius is

validated via controlled experiments reported in the supple-

ment. The local reference frame at each point is computed

using a search radius of 2% of the diameter.

On data from SceneNN [17], which has absolute metric

scale, the radius r is set to 1.2 meters, which is approxi-

mately 17% of the diameter of the grid of each fragment,

and rmin is set to 0.1 meters. The local reference frame is

computed using a search radius of 0.25 meters.

Laser scan data. For experiments with laser scan data, we

use a number of public-domain 3D models that are com-

monly used for this purpose. We use three models from the

AIM@SHAPE repository (Bimba, Dancing Children, and

Chinese Dragon), four models from the Stanford 3D Scan-

ning Repository (Armadillo, Buddha, Bunny, and Stanford

Dragon), and the Berkeley Angel [21]. Four of these mod-

els – Angel, Bimba, Bunny, and Chinese Dragon – were

used as the training set, the Dancing Children model was

used for validation, and the remaining three models – Ar-

madillo, Buddha, and Stanford Dragon – were used as the

test set.

156



For each model in the training and validation sets – An-

gel, Bimba, Bunny, Chinese Dragon, and Dancing Chil-

dren – we synthesize depth images from 14 views uniformly

distributed along the surface of an enclosing sphere. For

each depth image we construct a point cloud that lies on the

model. We compute the set of pairs of point clouds O that

overlap in world space by at least 30%. Since some of these

models do not have absolute scale, we set parameters and

measure precision in relation to the diameter of the model.

Synthesizing depth images allows us to automatically gen-

erate as much training data as we need and provides a con-

trolled training environment in which we can validate our

design choices. We found that descriptors trained on such

synthetically scanned models successfully generalize to raw

laser scans.

For testing we use the original raw laser scans of the

models in our test set – Armadillo, Buddha, and Stanford

Dragon. All three models were scanned with a Cyberware

3030 MS scanner. Armadillo has 114 scans, Buddha has

58 scans, and the Stanford Dragon has 71 scans. Using the

provided alignments we compute a set of pairs of scans O
that overlap in world space by at least 30%. These mod-

els demonstrate the ability of CGF to generalize to new do-

mains, handle symmetric objects, and cope with noise en-

countered in laser scanned models.

SceneNN data. For experiments on real indoor scenes, we

use SceneNN [17], a comprehensive recent dataset of in-

door scenes scanned with consumer depth cameras. Start-

ing from the raw SceneNN scans, we create fragments and

register them using the pipeline of Choi et al. [7]. Each

fragment is fused from 100 consecutive frames.

50% of the scenes are used for training, 25% for valida-

tion, and 25% as the test set, split randomly. We will pub-

lish our train/val/test split so that others can replicate our

experiments. Let O be the set of pairs of overlapping frag-

ments in the training scenes. For maximally precise align-

ment during training, we refined the registration of each pair

(Pi,Pj) ∈ O using ICP [4]. We use the implementation of

ICP provided in the Point Cloud Library [16].

Training. For each point cloud in the training set (synthetic

depth image in the case of laser scan data, scene fragment

in the case of SceneNN), we sample 40 triplets per point.

Of these 40 triplets, 15 are constructed by sampling nega-

tives from Np,2τ \ Np,τ , as described in Section 6. The re-

maining 25 are constructed by sampling negatives from the

entire model. The threshold τ is set to 1% of the model’s

diameter in the case of laser scans and 7.5 cm in the case of

SceneNN.

Baselines. We compare CGF to six well-known lo-

cal descriptors: Point Feature Histograms (PFH) [26]

(dimensionality 125), Fast Point Feature Histograms

(FPFH) [25] (dimensionality 33), Rotational Projection

Statistics (RoPS) [13] (dimensionality 135), Signature of

Histogram Orientations (SHOT) [27] (dimensionality 352),

Spin Images (SI) [19] (dimensionality 153), and Unique

Shape Contexts (USC) [33] (dimensionality 1,980). For

RoPS we use the implementation provided by the au-

thors [13]. For all other baselines we use the implemen-

tations provided in the Point Cloud Library [16]. Each of

these existing geometric feature descriptors has several pa-

rameters that need to be tuned to ensure good performance.

We performed extensive hyperparameter sweeps to ensure

that each baseline performed as well as possible in our ex-

periments.

We have also applied Principal Components Analysis

(PCA) to embed our input 2,244-dimensional histograms

into R
n, using our primary dimensionality n = 32. This

evaluates the advantage of the presented nonlinear feature

embedding over a linear embedding of the same input into

the same space.

Additional baselines and controlled experiments are re-

ported in the supplement.

Accuracy measure. Let {Pi}i, {Ti}i, and O be defined as

in Section 6 and consider an overlapping pair (Pi,Pj) ∈ O.

Given a function f that maps points to geometric features,

a set of correspondences between Pi and Pj can be found

by first computing the sets of geometric features f(Pi) and

f(Pj). Then we build a k-d tree T on the set f(Pj). For

each point p ∈ Pi, we compute nn(f(p), f(Pj)) by per-

forming a nearest neighbor query in T . Define

Cf = {(p,q) : p ∈ Pi,q ∈ Pj , f(q) = nn(f(p), f(Pj))}
(4)

as the set of matches yielded by the feature f .

Since Pi only partially overlaps with Pj , we first discard

all correspondences (p,q) such that

‖Tip− nn(Tip,TjPj)‖ > τ. (5)

These points have no ground-truth correspondence in Pj .

Let C′
f denote the remaining set of correspondences.

For any distance threshold x, we can compute the frac-

tion of matches that are within distance x of the ground

truth:

precisionf (x) =
|{‖Tip−Tjq‖ ≤ x : (p,q) ∈ C′

f}|

|C′
f |

.

(6)

This will be our primary measure for evaluating the accu-

racy of different features f .

Timings. Average correspondence search times for differ-

ent descriptors were benchmarked using a single thread on

an Intel Xeon E7-8890 2.5 GHz CPU. We use FLANN [24]

to perform nearest-neighbor queries.
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(a) Precision on laser scan data test set (b) Precision on the SceneNN test set

Figure 4. (a) The precision of several geometric feature descriptors on laser scan data in the test set. For correspondences provided by

CGF-32, 41.4% are precise to within 1% of the diameter. Prior feature descriptors are less accurate. (b) Precision of local geometric

features on pairs of fragments from the SceneNN test set. CGF-32 yields the highest precision: 50.6% of the matches computed in the

learned feature space are within 10 cm of the ground truth. USC (a 1,980-dimensional descriptor) comes in second at 29.8%.
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(a) Query time and precision on laser scan data test set (b) Query time and precision on the SceneNN test set

Figure 5. (a) The query time and precision of several geometric feature descriptors on laser scan data in the test set. CGF-32 has an average

query time of 0.42 ms, 3.9 times faster than the second most accurate feature (SI, 1.62 ms). (b) The query time and precision of local

geometric features on pairs of fragments from the SceneNN test set. CGF-32 has an average query time of 0.1 ms, 67 times faster than the

second most accurate feature (USC, 6.75 ms). The horizontal axis (time) is on a logarithmic scale.

7.2. Laser scan data

Precision of different features on the test set is shown in

Figure 4(a). CGF-32 is much more accurate than existing

descriptors. For example, 41.4% of the correspondences

produced by CGF-32 lie within 1% of the model’s diameter

of the true match, whereas the most precise prior feature,

SI, yields only 32.2% precision at this distance. CGF-32

improves over SI by 28.5% in relative precision while being

4.7 times more compact.

Timings. Query times for different features are presented

in Figure 5. CGF-32 has an average query time of 0.42
ms, which is 3.9 times faster than the second most accurate

feature (SI, 1.62 ms) and 75 times faster than USC (31.6

ms). CGF-12 has an average query time of 0.05 ms, slightly

slower than the fastest feature (FPFH, 0.04 ms) while being

more precise than all baselines (33.2% at 1% of the diame-

ter).

Visualization. Figure 6 (top) shows error distributions of

correspondences established in different feature spaces over

two laser scans of the Buddha statue.

7.3. SceneNN data

Precision of different feature descriptors on real-world

scene fragments from the SceneNN test set is shown in Fig-

ure 4(b). 50.6% of the matches established with CGF-32

are within 10 cm of the true match, much more than USC

(29.8%), RoPS (22.7%), PFH (22.1%), FPFH (20.7%),

SHOT (20.2%), and SI (8.2%). The baseline constructed

by applying PCA to our 2,244-dimensional input param-

eterization yielded precision of 13.4%, far lower than the

precision of the learned nonlinear embedding into the same

space. Note that the second highest performing feature on

laser scan data, SI, performed poorest on SceneNN.

Timings. Query times for different features are presented in

158



L
as

er
sc

an
s

0

333

00

S
ce

n
eN

N

0

3

00

0.250.25

(a) source (b) target (c) FPFH (d) USC (e) CGF-32

Figure 6. Top. (a,b) Two laser scans of the Buddha statue. (c-e) Error magnitudes of matches established across the two scans in different

feature spaces. CGF provides broad coverage of the surface with accurate matches. Units are in percentage of the model’s diameter: black

corresponds to error of 3% of the diameter or higher. Bottom. (a,b) Two fragments in the SceneNN test set. (c-e) Error magnitudes of

correspondences established across these fragments in different feature spaces. Black corresponds to errors of 25 cm or higher. Correspon-

dences established via CGF are more precise on average. Note the thin structure above the large hole in the middle of the fragment, along

which all other feature spaces fail to establish good correspondences. Points shown in grey do not have a ground-truth correspondence on

the other point cloud.

Figure 5. CGF-32 has an average query time of 0.1 ms, 67
times faster than the second most accurate feature (USC,

6.75 ms). CGF-12 has an average query time of 0.025
ms, matching the speed of FPFH. In addition to its speed,

CGF-12 is more precise than all other features, with 31.5%
of correspondences within 10 cm of the true match.

Visualization. Figure 6 (bottom) shows error distributions

of correspondences established in different feature spaces

over two fragments in the SceneNN test set.

7.4. Visualization

To get a qualitative sense of the learned representa-

tion, we can visualize the variation of the learned features

over the surface of any model. Specifically, we can use

PCA to project from the learned feature space into the

3-dimensional RGB color space. Given a point set, we can

evaluate the learned feature for every point, use the learned

linear mapping to obtain the corresponding color, and as-

sign this color to the point. Figure 7 shows the result of this

procedure for two synthesized views of the Dancing Chil-

dren model. Note that the feature mapping appears stable,

coherent, and discriminative. Corresponding points on the

two views of the model tend to have similar color. Color

varies more rapidly in regions of high-frequency geometric

variation and is more stable in regions that are geometrically

more uniform.

Figure 7. Visualization of local features over two views of the

Dancing Children model. Features were projected from the

learned feature space into the RGB color space.

7.5. Geometric registration

We now evaluate the utility of CGF in geometric regis-

tration. For this purpose, we use Fast Global Registration

(FGR) [42], a state-of-the-art global registration algorithm

that relies on feature matching. Since feature matching is

the computational bottleneck of the algorithm, using a com-

pact feature is important. The authors’ implementation of

FGR uses FPFH [42]. We use the published FGR pipeline

as the baseline. To evaluate the utility of the learned CGF

descriptor, we simply replace FPFH by CGF in the FGR

pipeline.

To evaluate geometric registration accuracy, we follow

the evaluation protocol of Choi et al. [7], which was also
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OpenCV [9]
Super 4PCS

[23]
PCL [25, 16] FGR [42] CZK [7] 3DMatch [41]

FGR with

CGF-32

CZK with

CGF-32

Recall (%) 5.3 17.8 44.9 51.1 59.2 65.1 60.7 72.0

Precision (%) 1.6 10.4 14.0 23.2 19.6 25.2 9.4 14.6

Table 1. Evaluation on the Redwood benchmark. Plugging our learned descriptor into a pre-existing registration pipeline (CZK) yields the

highest recall reported on the benchmark to date, with no training or fine-tuning on this dataset.

used by Zhou et al. [42] and Zeng et al. [41] .

Laser scans. We compare the accuracy of FGR when FPFH

is used to the accuracy of FGR when CGF-32 is used. On

the laser scan test set, FGR with FPFH correctly aligns

82.96% of the pairs while FGR with CGF-32 correctly

aligns 92.27%. The average RMSE of FGR with FPFH is

13.8% of the diameter, while the average RMSE of FGR

with CGF-32 is 9.2% of the diameter.

SceneNN. On the SceneNN test set, FGR with FPFH cor-

rectly aligns 88.54% of the fragment pairs, while FGR with

CGF-32 correctly aligns 91.19%. The average RMSE of

FGR with FPFH is 14.86 cm, while the average RMSE of

FGR with CGF-32 is 11.83 cm.

If we focus on the correctly aligned pairs and evaluate the

average RMSE only across those, FGR with FPFH yields an

RMSE of 4.68 cm and FGR with CGF-32 yields an average

RMSE of 4.07 cm. This in effect evaluates the tightness

of the alignment produced by global registration. CGF-32

provides more precise correspondence pairs, which yield

tighter alignment.

Cross-dataset generalization: Redwood benchmark. We

now evaluate on the global registration benchmark of Choi

et al. [7]. This benchmark has four datasets, each con-

taining tens of scene fragments. Geometric registration is

performed on every pair of fragments, with no initializa-

tion. For this experiment, we use the feature embedding that

was trained on the SceneNN dataset. We did not retrain or

fine-tune the descriptor in any way. This demonstrates the

learned descriptor’s ability to generalize to new datasets, as

well as its ability to serve as a drop-in replacement in preex-

isting pipelines that depend upon discriminative geometric

features.

The results are reported in Table 1. We report all the

baselines from the evaluation conducted on this dataset by

Zhou et al. [42]. We plug CGF-32 into FGR [42] and

CZK [7], the existing implementations of which use the

FPFH feature. This yields the corresponding “FGR with

CGF-32” and “CZK with CGF-32” conditions.

CGF improves the recall of each method by more than

9 percentage points. With CGF-32, the CZK pipeline

achieves a recall of 72%, by far the highest reported on the

benchmark. Note that this is 6.9 percentage points higher

than the contemporaneous results of Zeng et al. [41].

Choi et al. [7] defined two evaluation measures: recall

and precision. Recall is the primary measure. The impor-

tance of recall is driven by two factors. First, the maximal

level of precision that can be achieved by pairwise registra-

tion methods is low due to symmetric structures and other

sources of geometric aliasing. Second, there are known

ways to raise precision. Given a set of pairwise alignments,

robust optimization of all fragments can prune false posi-

tives, retaining a given level of recall but increasing preci-

sion dramatically [7].

The effect of robust optimization is demonstrated in Ta-

ble 2. Given pairwise alignments produced by CZK with

CGF-32 features, robust optimization removes false posi-

tives and yields a set of pairwise alignments with 71.1%
recall and 95.1% precision. The accuracy of this final result

is limited not by the precision of the input set of pairwise

alignments – as the results demonstrate, the overall pipeline

is robust to low precision – but by the level of recall. Simi-

lar precision can be achieved by applying the framework of

Choi et al. [7] to any of the prior works in Table 1.

Before pruning After pruning

FGR with

CGF-32

CZK with

CGF-32

FGR with

CGF-32

CZK with

CGF-32

Recall (%) 60.7 72.0 60.7 71.1

Precision (%) 9.4 14.6 86.8 95.1

Table 2. After post-processing with robust global optimization [7],

CZK with CGF-32 achieves 71.1% recall and 95.1% precision on

the Redwood benchmark.

8. Conclusion

We presented an approach to obtaining discriminative

features for local geometry in unstructured point clouds. We

have shown that state-of-the-art accuracy can be achieved

with a low-dimensional feature space. The learned de-

scriptor is both more precise and more compact than hand-

crafted features. Due to its Euclidean structure, the learned

descriptor can be used as a drop-in replacement for exist-

ing features in robotics, 3D vision, and computer graph-

ics applications. We expect future work to further improve

precision, compactness, and robustness, possibly using new

approaches to optimizing feature embeddings [34].
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