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Abstract

Most natural videos contain numerous events. For exam-

ple, in a video of a “man playing a piano”, the video might

also contain “another man dancing” or “a crowd clap-

ping”. We introduce the task of dense-captioning events,

which involves both detecting and describing events in a

video. We propose a new model that is able to identify all

events in a single pass of the video while simultaneously

describing the detected events with natural language. Our

model introduces a variant of an existing proposal module

that is designed to capture both short as well as long events

that span minutes. To capture the dependencies between

the events in a video, our model introduces a new cap-

tioning module that uses contextual information from past

and future events to jointly describe all events. We also

introduce ActivityNet Captions, a large-scale benchmark

for dense-captioning events. ActivityNet Captions contains

20k videos amounting to 849 video hours with 100k total de-

scriptions, each with its unique start and end time. Finally,

we report performances of our model for dense-captioning

events, video retrieval and localization.

1. Introduction

With the introduction of large scale activity datasets [22,

19, 12, 4], it has become possible to categorize videos into

a discrete set of action categories [27, 10, 9, 40, 35]. For

example, in Figure 1, such models would output labels like

playing piano or dancing. While the success of these meth-

ods is encouraging, they all share one key limitation: detail.

To elevate the lack of detail from existing action detection

models, subsequent work has explored explaining video se-

mantics using sentence descriptions [29, 32, 28, 38, 37]. For

example, in Figure 1, such models would likely concentrate

on an elderly man playing the piano in front of a crowd.

While this caption provides us more details about who is

playing the piano and mentions an audience, it fails to rec-

ognize and articulate all the other events in the video. For

example, at some point in the video, a woman starts singing

along with the pianist and then later another man starts

An elderly man is playing the piano 
in front of a crowd.

Another man starts dancing to the 
music, gathering attention from the 
crowd. 

Eventually the elderly man finishes 
playing and hugs the woman, and 
the crowd applaud.

A woman walks to the piano and 
briefly talks to the the elderly man. 

tim
e

The woman starts singing along 
with the pianist.

Figure 1: Dense-captioning events in a video involves de-

tecting multiple events that occur in a video and describing

each event using natural language. These events are tempo-

rally localized in the video with independent start and end

times, resulting in some events that might also occur con-

currently and overlap in time.

dancing to the music. In order to identify all the events

in a video and describe them in natural language, we intro-

duce the task of dense-captioning events, which requires a

model to generate a set of descriptions for multiple events

occurring in the video and localize them in time.

Dense-captioning events is analogous to dense-image-

captioning [16]; it describes videos and localize events in

time whereas dense-image-captioning describes and local-

izes regions in space. However, we observe that dense-

captioning events comes with its own set of challenges dis-

tinct from the image case. One observation is that events in

videos can range across multiple time scales and can even

overlap. While piano recitals might last for the entire du-

ration of a long video, the applause takes place in a couple

of seconds. To capture all such events, we need to design

ways of encoding short as well as long sequences of video

frames to propose events. Past captioning works have cir-

cumvented this problem by encoding the entire video se-
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quence by mean-pooling [38] or by using a recurrent neu-

ral network (RNN) [37]. While this works well for short

clips, encoding long video sequences that span minutes

leads to vanishing gradients, preventing successful train-

ing. To overcome this limitation, we extend recent work

on generating action proposals [8] to multi-scale detection

of events. Also, our proposal module processes each video

in a forward pass, allowing us to detect events as they occur.

Another key observation is that the events in a given

video are usually related to one another. In Figure 1, the

crowd applauds because a a man was playing the piano.

Therefore, our model must be able to use context from sur-

rounding events to caption each event. A recent paper has

attempted to describe videos with multiple sentences [51].

However, their model generates sentences for instructional

“cooking” videos where the events occur sequentially and

highly correlated to the objects in the video [31]. We

show that their model does not generalize to “open” domain

videos where events are action oriented and can even over-

lap. We introduce a captioning module that utilizes the

context from all the events from our proposal module to

generate each sentence. In addition, we show a variant of

our captioning module that can operate on streaming videos

by attending over only the past events. Our full model at-

tends over both past as well as future events and demon-

strates the importance of using context.

To evaluate our model and benchmark progress in

dense-captioning events, we introduce the ActivityNet Cap-

tions dataset1. ActivityNet Captions contains 20k videos

taken from ActivityNet [4], where each video is annotated

with a series of temporally localized descriptions (Figure 1).

To showcase long term event detection, our dataset contains

videos as long as 10 minutes, with each video annotated

with on average 3.65 sentences. The descriptions refer to

events that might be simultaneously occurring, causing the

video segments to overlap. We ensure that each description

in a given video is unique and refers to only one segment.

While our videos are centered around human activities, the

descriptions may also refer to non-human events such as:

two hours later, the mixture becomes a delicious cake to

eat. We collect our descriptions using crowdsourcing and

find that there is high agreement in the temporal event seg-

ments, which is in line with research suggesting that brain

activity is naturally structured into semantically meaningful

events [2].

With ActivityNet Captions, we are able to provide the

first results for the task of dense-captioning events. To-

gether with our online proposal module and our online cap-

tioning module, we show that we can detect and describe

events in long or even streaming videos. We demonstrate

1The dataset is available at http://cs.stanford.edu/

people/ranjaykrishna/densevid/. For a detailed analysis of

our dataset, please see our supplementary material.

that we are able to detect events found in short clips as well

as in long video sequences. Furthermore, we show that

utilizing context from other events in the video improves

dense-captioning events. Finally, we demonstrate how Ac-

tivityNet Captions can be used to study video retrieval as

well as event localization.

2. Related work

Dense-captioning events bridges two separate bodies of

work: temporal action proposals and video captioning.

First, we review related work on action recognition, ac-

tion detection and temporal proposals. Next, we survey

how video captioning started from video retrieval and video

summarization, leading to single-sentence captioning work.

Finally, we contrast our work with recent work in caption-

ing images and videos with multiple sentences.

Early work in activity recognition involved using hid-

den Markov models to learn latent action states [45], fol-

lowed by discriminative SVM models that used key poses

and action grammars [26, 36, 30]. Similar works have used

hand-crafted features [33] or object-centric features [25] to

recognize actions in fixed camera settings. More recent

works have used dense trajectories [39] or deep learning

features [17] to study actions. While our work is similar

to these methods, we focus on describing such events with

natural language instead of a fixed label set.

To enable action localization, temporal action pro-

posal methods started from traditional sliding window ap-

proaches [7] and later started building models to propose

a handful of possible action segments [8, 5]. These pro-

posal methods have used dictionary learning [5] or RNN

architectures [8] to find possible segments of interest. How-

ever, such methods required each video frame to be pro-

cessed once for every sliding window. DAPs introduced a

framework to allow proposing overlapping segments using

a sliding window. We modify this framework by removing

the sliding windows and outputting proposals at every time

step in a single pass of the video. We further extend this

model and enable it to detect long events by implementing

a multi-scale version of DAPs, where we sample frames at

longer strides.

Orthogonal to work studying proposals, early ap-

proaches that connected video with language studied the

task of video retrieval with natural language. They

worked on generating a common embedding space between

language and videos [28, 44]. Similar to these, we evalu-

ate how well existing models perform on our dataset. Ad-

ditionally, we introduce the task of localizing a given sen-

tence given a video frame, allowing us to now also evaluate

whether our models are able to locate specified events.

In an effort to start describing videos, methods in video

summarization aimed to congregate segments of videos

that include important or interesting visual information [49,
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46, 13, 3]. These methods attempted to use low level fea-

tures such as color and motion or attempted to model ob-

jects [52] and their relationships [41, 11] to select key seg-

ments. Meanwhile, others have utilized text inputs from

user studies to guide the selection process [34, 23]. While

these summaries provide a means of finding important seg-

ments, these methods are limited by small vocabularies and

do not evaluate how well we can explain visual events [50].

After these summarization works, early attempts at

video captioning [38] simply mean-pooled video frame

features and used a pipeline inspired by the success of im-

age captioning [18]. However, this approach only works

for short video clips with only one major event. To avoid

this issue, others have proposed either a recurrent en-

coder [6, 37, 42] or an attention mechanism [48]. To cap-

ture more detail in videos, a new paper has recommended

describing videos with paragraphs (a list of sentences) using

a hierarchical RNN [24] where the top level network gen-

erates a series of hidden vectors that are used to initialize

low level RNNs that generate each individual sentence [51].

While our paper is most similar to this work, we address

two important missing factors. First, the sentences that their

model generates refer to different events in the video but

are not localized in time. Second, they use the TACoS-

MultiLevel [31], which contains less than 200 videos and

is constrained to “cooking” videos and only contain non-

overlapping sequential events. We address these issues by

introducing the ActivityNet Captions dataset which con-

tains overlapping events and by introducing our captioning

module that uses temporal context to capture the interde-

pendency between all the events in a video.

Finally, we build upon the recent work on dense-image-

captioning [16], which generates a set of localized descrip-

tions for an image. Further work for this task has used spa-

tial context to improve captioning [47, 43]. Inspired by this

work, and by recent literature on using spatial attention to

improve human tracking [1], we design our captioning mod-

ule to incorporate temporal context (analogous to spatial

context except in time) by attending over the other events

in the video.

3. Dense-captioning events model

Overview. Our goal is to design an architecture that

jointly localizes temporal proposals of interest and then de-

scribes each with natural language. The two main chal-

lenges we face are to develop a method that can (1) detect

multiple events in short as well as long video sequences

and (2) utilize the context from past, concurrent and fu-

ture events to generate descriptions of each one. Our pro-

posed architecture (Figure 2) draws on architectural ele-

ments present in recent work on action proposal [8] and

social human tracking [1] to tackle both these challenges.

Formally, the input to our system is a sequence of video

frames U = {ut} where t ∈ {0, ..., T − 1} indexes the

frames in temporal order. Our output is a set of sentences

si = (tstart, tend, {vj}) consists of the start and end times

for each sentence and is defined by a set of words vj ∈
V with differing lengths for each sentence where V is our

vocabulary set.

Our model first sends the video frames through a pro-

posal module that generates a set of proposals:

P = {(tstarti , tendi , scorei, hi)} (1)

All the proposals with a scorei higher than a threshold are

forwarded to our language model that uses context from the

other proposals while captioning each event. The hidden

representation hi of the event proposal module is used as

inputs to the captioning module, which then outputs de-

scriptions for each event, while utilizing the context from

the other events.

3.1. Event proposal module

Prior event detection work usually pools video features

globally into a fixed sized vector [6, 37, 42], which is suf-

ficient for representing short video clips but is unable to

detect multiple events in long videos. Previous work [14]

showed that actions can be modeled with steady feature

derivatives using the intuition that visual features of events

change at a fixed rate. We design an event proposal module

to be a variant of DAPs [8] that can detect longer events by

sampling at different rates, allowing the model to encode

events that occur over a wider range of feature changes, al-

lowing us to capture short events with faster changes as well

as longer events with slower changes.

Input. Our proposal module receives a series of fea-

tures capturing semantic information from the video frames.

Concretely, the input to our proposal module is a sequence

of features: {ft = F (ut : ut+δ)} where δ is the time res-

olution of each feature ft. In our paper, F extracts C3D

features [15] where δ = 16 frames. The output of F is a

tensor of size N×D where D = 500 dimensional features

and N = T/δ discretizes the video frames.

DAPs. Next, we feed these features into a variant of

DAPs [8] where we sample the videos features at differ-

ent strides (1, 2, 4 and 8 for our experiments) and feed

them into a proposal long short-term memory (LSTM) unit.

The longer strides are able to capture longer events. The

LSTM accumulates evidence across time as the video fea-

tures progress. We do not modify the training of DAPs and

only change the model at inference time by outputting K
proposals at every time step, each proposing an event with

temporal start and end times. So, the LSTM is capable of

generating proposals at different overlapping time intervals

and we only need to iterate over the video once, since all

the strides can be computed in parallel. Whenever the pro-

posal LSTM detects an event, we use the hidden state of the
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Figure 2: Complete pipeline for dense-captioning events in videos with descriptions. We first extract C3D features from the

input video. These features are fed into our proposal module at varying stride to predict both short as well as long events. Each

proposal, which consists of a unique start and end time and a hidden representation, is then used as input into the captioning

module. Finally, this captioning model leverages context from neighboring events to generate each event description.

LSTM at that time step as a feature representation of the

visual event. Note that the proposal model can output pro-

posals for events that can be overlapping. While traditional

DAPs uses non-maximum suppression to eliminate overlap-

ping outputs, we keep them separately and treat them as in-

dividual events.

3.2. Captioning module with context

Once we have the event proposals, the next stage of our

pipeline is responsible for describing each event. A naive

captioning approach could treat each description individu-

ally and use a captioning LSTM network to describe each

one. However, most events in a video are correlated and

can even cause one another. For example, we saw in Fig-

ure 1 that the man playing the piano caused the other person

to start dancing. We also saw that after the man finished

playing the piano, the audience applauded. To capture such

correlations, we design our captioning module to incorpo-

rate the “context” from its neighboring events. Inspired by

recent work [1] on human tracking that utilizes spatial con-

text between neighboring tracks, we develop an analogous

model that captures temporal context in videos by grouping

together events in time instead of tracks in space.

Incorporating context. To capture the context from all

other neighboring events, we categorize all events into two

buckets relative to a reference event. These two context

buckets capture events that have already occurred (past),

and events that take place after this event has finished (fu-

ture). Concurrent events are split into one of the two buck-

ets: past if it ends early and future otherwise. For a given

video event from the proposal module, with hidden repre-

sentation hi and start and end times of [tstarti , tendi ], we cal-

culate the past and future context representations as follows:

h
past
i =

1

Zpast

∑

j 6=i

✶[tendj < tendi ]aijhj (2)

hfuture
i =

1

Zfuture

∑

j 6=i

✶[tendj >= tendi ]aijhj (3)

where hj is the hidden representation of the other proposed

events in the video. aij is the attention used to determine

how relevant event j is to event i. Z is the normalization

that is calculated as Zpast =
∑

j 6=i ✶[t
end
j < tendi ]. We

calculate aij as follows:

wi = wahi + ba (4)

aij = wihj (5)

where wi is the annotation vector calculated from the learnt

weights wa and bias ba. We use the dot product of wi and

hj to calculate aij . The concatenation of (hpast
i , hi, hfuture

i )
is then fed as the input to the captioning LSTM that de-

scribes the event. With the help of the context, each LSTM

also has knowledge about events that have happened or will

happen and can tune its captions accordingly.

Language modeling. Each language LSTM is initialized to

have 2 layers with 512 dimensional hidden representation.
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We randomly initialize all the word vector embeddings from

a Gaussian with standard deviation of 0.01. We sample pre-

dictions from the model using beam search of size 5.

3.3. Implementation details.

Loss function. We use two separate losses to train both our

proposal model (Lprop) and our captioning model (Lcap).

Our proposal models predicts confidences ranging between

0 and 1 for varying proposal lengths. We use a weighted

cross-entropy term to evaluate each proposal confidence.

We only pass to the language model proposals that have

a high IoU with ground truth proposals. Similar to previous

work on language modeling [20, 18], we use a cross-entropy

loss across all words in every sentence. We normalize the

loss by the batch-size and sequence length in the language

model. We weight the contribution of the captioning loss

with λ1 = 1.0 and the proposal loss with λ2 = 0.1:

L = λ1Lcap + λ2Lprop (6)

Training and optimization. We train our full dense-

captioning model by alternating between training the lan-

guage model and the proposal module every 500 iterations.

We first train the captioning module without any context

features for 10 epochs before adding in the context features.

We initialize all weights using a Gaussian with standard de-

viation of 0.01. We use stochastic gradient descent with

momentum 0.9 to train. We use an initial learning rate of

1×10−2 for the language model and 1×10−3 for the pro-

posal module. For efficiency, we do not finetune the C3D

feature extraction.

Our training batch-size is set to 1. We cap all sentences

to be a maximum sentence length of 30 words and imple-

ment all our code in PyTorch 0.1.10. One mini-batch runs

in approximately 15.84 ms on a Titan X GPU and it takes 2

days for the model to converge.

4. ActivityNet Captions dataset

The ActivityNet Captions dataset connects videos to a

series of temporally annotated sentences. Each sentence

covers an unique segment of the video, describing an event

that occurs. These events may occur over very long or short

periods of time and are not limited in any capacity, allowing

them to co-occur. We will now present an overview of the

dataset and also provide a detailed analysis and comparison

with other datasets in our supplementary material.

4.1. Dataset statistics

On average, each of the 20k videos in ActivityNet Cap-

tions contains 3.65 temporally localized sentences, result-

ing in a total of 100k sentences. We find that the number of

sentences per video follows a normal distribution. Further-

more, as the video duration increases, the number of sen-

0.10 0.05 0.00 0.05
Difference (%)

noun, singular or mass
adjective

preposition or subordinating conjunction
determiner

proper noun, singular
adjective, superlative

proper noun, plural
adverb, superlative

list item marker
interjection

possessive wh-pronoun
modal

verb, past tense
predeterminer

adverb, comparative
wh-determiner

wh-pronoun
existential there

adjective, comparative
foreign word

cardinal number
wh-adverb

verb, past participle
particle

noun, plural
possessive pronoun

verb, gerund or present participle
verb, base form

to
verb, non-3rd person singular present

adverb
coordinating conjunction

personal pronoun
verb, 3rd person singular present
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rt 

of
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Figure 3: The parts of speech distribution of ActivityNet

Captions compared with Visual Genome, a dataset with

multiple sentence annotations per image. There are many

more verbs and pronouns represented in ActivityNet Cap-

tions, as the descriptions often focus on actions.

tences also increases. Each sentence has an average length

of 13.48 words, which is also normally distributed.

On average, each sentence describes 36 seconds and

31% of their respective videos. However, the entire para-

graph for each video on average describes 94.6% of the

entire video, demonstrating that each paragraph annotation

still covers all major actions within the video. Furthermore,

we found that 10% of the temporal descriptions overlap,

showing that the events cover simultaneous events.

Finally, our analysis on the sentences themselves indi-

cate that ActivityNet Captions focuses on verbs and ac-

tions. In Figure 3, we compare against Visual Genome [21],

the image dataset with most number of image descriptions

(∼ 4.5 million). With the percentage of verbs comprising

ActivityNet Captions being significantly more, we find that

ActivityNet Captions shifts sentence descriptions from be-

ing object-centric in images to action-centric in videos. Fur-

thermore, as there exists a greater percentage of pronouns in

ActivityNet Captions, we find that the sentence labels will

more often refer to entities found in prior sentences.

4.2. Temporal agreement amongst annotators

To verify that ActivityNet Captions ’s captions mark se-

mantically meaningful events [2], we collected two distinct,

temporally annotated paragraphs from different workers for

each of the 4926 validation and 5044 test videos. Each pair

of annotations was then tested to see how well they tempo-

rally corresponded to each other. We found that, on average,

each sentence description had a temporal intersection over

union (tIoU) of 70.2% with the maximal overlapping com-
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with GT proposals with learnt proposals

B@1 B@2 B@3 B@4 M C B@1 B@2 B@3 B@4 M C

LSTM-YT [37] 18.22 7.43 3.24 1.24 6.56 14.86 - - - - - -

S2VT [38] 20.35 8.99 4.60 2.62 7.85 20.97 - - - - - -

H-RNN [51] 19.46 8.78 4.34 2.53 8.02 20.18 - - - - - -

no context (ours) 20.35 8.99 4.60 2.62 7.85 20.97 12.23 3.48 2.10 0.88 3.76 12.34

online−attn (ours) 21.92 9.88 5.21 3.06 8.50 22.19 15.20 5.43 2.52 1.34 4.18 14.20

online (ours) 22.10 10.02 5.66 3.10 8.88 22.94 17.10 7.34 3.23 1.89 4.38 15.30

full−attn (ours) 26.34 13.12 6.78 3.87 9.36 24.24 15.43 5.63 2.74 1.72 4.42 15.29

full (ours) 26.45 13.48 7.12 3.98 9.46 24.56 17.95 7.69 3.86 2.20 4.82 17.29

Table 1: We report Bleu (B), METEOR (M) and CIDEr (C) captioning scores for the task of dense-captioning events. On the

left, we report performances of just our captioning module with ground truth proposals. On the right, we report the combined

performances of our complete model, with top 1000 proposals predicted from our proposal module. Since prior work has

focused only on describing entire videos and not also detecting a series of events, we only compare existing video captioning

models using ground truth proposals.

bination of sentences from the other paragraph. Since these

results agree with prior work [2], we found that workers

generally agree with each other when annotating temporal

boundaries of video events.

5. Experiments

We evaluate our model by detecting multiple events in

videos and describing them. We refer to this task as dense-

captioning events (Section 5.1). We test our model on Ac-

tivityNet Captions, which was built specifically for this task.

Next, we provide baseline results on two additional tasks

that are possible with our model. The first of these tasks is

localization (Section 5.2), which tests our proposal model’s

capability to adequately localize all the events for a given

video. The second task is retrieval (Section 5.3), which tests

a variant of our model’s ability to recover the correct set of

sentences given the video or vice versa. Both these tasks

are designed to test the event proposal module (localization)

and the captioning module (retrieval) individually.

5.1. Densecaptioning events

To dense-caption events, our model is given an input

video and is tasked with detecting individual events and de-

scribing each one with natural language.

Evaluation metrics. Inspired by the dense-image-

captioning [16] metric, we use a similar metric to measure

the joint ability of our model to both localize and caption

events. This metric computes the average precision across

tIoU thresholds of 0.3, 0.5, 0.7 when captioning the top

1000 proposals. We measure precision of our captions using

traditional evaluation metrics: Bleu, METEOR and CIDEr.

To isolate the performance of language in the predicted

captions without localization, we also use ground truth loca-

tions across each test image and evaluate predicted captions.

Baseline models. Since all the previous models proposed

B@1 B@2 B@3 B@4 M C

no context

1st sen. 23.60 12.19 7.11 4.51 9.34 31.56

2nd sen. 19.74 8.17 3.76 1.87 7.79 19.37

3rd sen. 18.89 7.51 3.43 1.87 7.31 19.36

online

1st sen. 24.93 12.38 7.45 4.77 8.10 30.92

2nd sen. 19.96 8.66 4.01 1.93 7.88 19.17

3rd sen. 19.22 7.72 3.56 1.89 7.41 19.36

full

1st sen. 26.33 13.98 8.45 5.52 10.03 29.92

2nd sen. 21.46 9.06 4.40 2.33 8.28 20.17

3rd sen. 19.82 7.93 3.63 1.83 7.81 20.01

Table 2: We report the effects of context on captioning the

1st, 2nd and 3rd events in a video. We see that performance

increases with the addition of past context in the online

model and with future context in full model.

so far have focused on the task of describing entire videos

and not detecting a series of events, we only compare ex-

isting video captioning models using ground truth propos-

als. Specifically, we compare our work with LSTM-YT [37],

S2VT [38] and H-RNN [51]. LSTM-YT pools together video

features to describe videos while S2VT [38] encodes a video

using an RNN. H-RNN [51] generates paragraphs by using

one RNN to caption individual sentences while the second

RNN is used to sequentially initialize the hidden state for

the next sentence generation. Our model can be though of as

a generalization of the H-RNN model as it uses context, not

just from the previous sentence but from surrounding events

in the video. Additionally, our method treats context, not as

features from object detectors but encodes it from unique

parts of the proposal module.

Variants of our model. Additionally, we compare different
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Ground Truth No Context Full Context

Women are dancing to
Arabian music and wearing
Arabian skirts on a stage
holding cloths and a fan.

The women continue to
dance around one another
and end by holding a pose
and looking away.

A woman is performing a
belly dancing routine in a
large gymnasium while
other people watch on.

Woman is in a room in
front of a mirror doing the
belly dance.

A woman is seen speaking
to the camera while
holding up a piece of
paper.

She then shows how to do
it with her hair down and
begins talking to the
camera.

Names of the performers
are on screen.

The credits of the video are
shown.

The credits of the clip are
shown.

(a) Adding context can generate consistent captions.

Ground Truth Online Context Full Context

A cesar salad is ready and
is served in a bowl.

The person puts a lemon
over a large plate and
mixes together with a.

A woman is in a kitchen
talking about how to make
a cake.

Croutons are in a bowl and
chopped ingredients are
separated.

The person then puts a
potato and in it and puts it
back

A person is seen cutting up
a pumpkin and laying them
up in a sink.

The man mix all the
ingredients in a bowl to
make the dressing, put
plastic wrap as a lid.

The person then puts a
lemon over it and puts
dressing in it.

The person then cuts up
some more ingredients
into a bowl and mixes
them together in the end.

Man cuts the lettuce and in
a pan put oil with garlic
and stir fry the croutons.

The person then puts a
lemon over it and puts an
<unk> it in.

The person then cuts up
the fruit and puts them
into a bowl.

The man puts the dressing
on the lettuces and adds
the croutons in the bowl
and mixes them all
together.

The person then puts a
potato in it and puts it
back.

The ingredients are mixed
into a bowl one at a time.

(b) Comparing online versus full model.

Ground Truth No Context Full Context

A male gymnast is on a
mat in front of judges
preparing to begin his
routine.

A gymnast is seen standing
ready and holding onto a
set of uneven bars and
begins performing.

He mounts the beam then
does several flips and
tricks.

The boy then jumps on the
beam grabbing the bars
and doing several spins
across the balance beam.

He does a gymnastics
routine on the balance
beam.

He does a gymnastics
routine on the balance
beam.

He then moves into a hand
stand and jumps off the bar
into the floor.

He dismounts and lands
on the mat.

He does a gymnastics
routine on the balance
beam.

(c) Context might add more noise to rare events.

Figure 4: Qualitative dense-captioning captions generated

using our model. We show captions with the highest overlap

with ground truth captions.

variants of our model. Our no context model is our imple-

mentation of S2VT. The full model is our complete model

described in Section 3. The online model is a version of

our full model that uses context only from past events and

not from future events. This version of our model can be

used to caption long streams of video in a single pass. The

full−attn and online−attn models use mean pooling instead

of attention to concatenate features, i.e. it sets aij = 1 in

Equation 5.

Captioning results. Since all the previous work has fo-

cused on captioning complete videos, We find that LSTM-

YT performs much worse than other models as it tries to en-

code long sequences of video by mean pooling their features

(Table 1). H-RNN performs slightly better but attends over

just the previous event to generate sentence, which causes

it to only slightly outperform LSTM-YT. S2VT and our no

context model performs better than the previous baselines

with a CIDEr score of 20.97 as it uses an RNN to encode
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Figure 5: Evaluating our proposal module, we find that sam-

pling videos at varying strides does in fact improve the mod-

ule’s ability to localize events, specially longer events.

the video features. We see an improvement in performance

to 22.19 and 22.94 when we incorporate context from past

events into our online−attn and online models. Finally,

we also considering events that will happen in the future,

we see further improvements to 24.24 and 24.56 for the

full−attn and full models. Note that while the improve-

ments from using attention is not too large, we see greater

improvements amongst videos with more events, suggest-

ing that attention is useful for longer videos.

Sentence order. To further benchmark the improvements

calculated from using context, we report results using

ground truth proposals for the first three sentences in each

video (Table 2). While there are videos with more sen-

tences, we report results only for the first three because al-

most all the videos in the dataset contains at least three sen-

tences. We notice that the online and full models see most

of their improvements from subsequent sentences, i.e. not

the first sentence. In fact, we notice that after adding con-

text, the CIDEr score for the online and full models tend to

decrease for the 1st sentence since these models know that

they are generating a description for the first event in the

video.

Results for dense-captioning events. When using propos-

als instead of ground truth events (Table 1), we see a sim-

ilar trend where adding more context improves captioning.

However, we also see that the improvements from attention

are more pronounced since there are many events that the

model has to caption. Attention allows the model to ade-

quately focus on other events that are relevant to the current

event. We show examples of qualitative results from the

variants of our models in Figure 4. In (a), we see that the

last caption in the no context model drifts off topic while

the full model utilizes context to generate more reasonable

context. In (b), we see that our full context model is able

to use the knowledge that the vegetables are later mixed in

the bowl to also mention the bowl in the third and fourth

sentences, propagating context back through to past events.

However, context is not always successful at generating bet-

ter captions. In (c), when the proposed segments have a

high overlap, our model fails to distinguish between the two
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Video retrieval Paragraph retrieval

R@1 R@5 R@50 Med. rank R@1 R@5 R@50 Med. rank

LSTM-YT [37] 0.00 0.04 0.24 102 0.00 0.07 0.38 98

no context [38] 0.05 0.14 0.32 78 0.07 0.18 0.45 56

online (ours) 0.10 0.32 0.60 36 0.17 0.34 0.70 33

full (ours) 0.14 0.32 0.65 34 0.18 0.36 0.74 32

Table 3: Results for video and paragraph retrieval. We see that the utilization of context to encode video events help us

improve retrieval. R@k measures the recall at varying thresholds k and med. rank measures the median rank the retrieval.

events, causing it to repeat captions.

5.2. Event localization

One of the main goals of this paper is to develop mod-

els that can locate any given event within a video. There-

fore, we test how well our model can predict the temporal

location of events within the corresponding video, in isola-

tion of the captioning module. Recall that our variant of the

proposal module uses proposes videos at different strides.

Specifically, we test with strides of 1, 2, 4 and 8. Each

stride can be computed in parallel, allowing the proposal to

run in a single pass.

Setup. We evaluate our proposal module using recall (like

previous work [8]) against (1) the number of proposals and

(2) the IoU with ground truth events. Specifically, we are

testing whether, the use of different strides does in fact im-

prove event localization.

Results. Figure 5 shows the recall of predicted localizations

that overlap with ground truth over a range of IoU’s from

0.0 to 1.0 and number of proposals ranging till 1000. We

find that using more strides improves recall across all val-

ues of IoU’s with diminishing returns . We also observe that

when proposing only a few proposals, the model with stride

1 performs better than any of the multi-stride versions. This

occurs because there are more training examples for smaller

strides as these models have more video frames to iterate

over, allowing them to be more accurate. So, when predict-

ing only a few proposals, the model with stride 1 localizes

the most correct events. However, as we increase the num-

ber of proposals, we find that the proposal network with

only a stride of 1 plateaus around a recall of 0.3, while our

multi-scale models perform better.

5.3. Video and paragraph retrieval

While we introduce dense-captioning events, a new task

to study video understanding, we also evaluate our intuition

to use context on a more traditional task: video retrieval.

Setup. In video retrieval, we are given a paragraph and

are asked to retrieve the correct video from the test set by

matching each sentence in the paragraph to the ground truth

proposals in the videos. Each sentence, along with its con-

text, is encoded using our captioning module while each

proposal is encoded with our proposal model. We train our

model using a max-margin loss that attempts to align the

correct sentence encoding to its corresponding video pro-

posal encoding. We also report how this model performs

if the task is reversed, where we are given a video as in-

put and are asked to retrieve the correct paragraph from the

complete set of paragraphs in the test set.

Results. We report our results in Table 3. We evaluate

retrieval using recall at various thresholds and the median

rank. We use the same baseline models as our previous

tasks. We find that models that use RNNs (no context) to

encode the video proposals perform better than max pool-

ing video features (LSTM-YT). We also see a direct in-

crease in performance when context is used. Unlike dense-

captioning, we do not see a marked increase in performance

when we include context from future events as well. We

find that our online models performs almost at par with our

full model.

6. Conclusion

We introduced the task of dense-captioning events and

identified two challenges: (1) events can occur within a sec-

ond or last up to minutes, and (2) events in a video are re-

lated to one another. To tackle both these challenges, we

proposed a model that combines a new variant of an exist-

ing proposal module with a new captioning module. The

proposal module samples video frames at different strides

and gathers evidence to propose events at different time

scales in one pass of the video. The captioning module

attends over the neighboring events, utilizing their context

to improve the generation of captions. We compare vari-

ants of our model and demonstrate that context does indeed

improve captioning. We further show how the captioning

model uses context to improve video retrieval and how our

proposal model uses the different strides to improve event

localization. Finally, this paper also releases a new dataset

for dense-captioning events: ActivityNet Captions.
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