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Abstract

We study unsupervised learning by developing a gener-

ative model built from progressively learned deep convo-

lutional neural networks. The resulting generator is ad-

ditionally a discriminator, capable of “introspection” in a

sense — being able to self-evaluate the difference between

its generated samples and the given training data. Through

repeated discriminative learning, desirable properties of

modern discriminative classifiers are directly inherited by

the generator. Specifically, our model learns a sequence

of CNN classifiers using a synthesis-by-classification algo-

rithm. In the experiments, we observe encouraging results

on a number of applications including texture modeling,

artistic style transferring, face modeling, and unsupervised

feature learning. 1

1. Introduction

Supervised learning techniques have made a substan-

tial impact on tasks that can be formulated as a classifica-

tion/regression problem [43, 11, 5, 27]. Unsupervised learn-

ing, where no task-specific labeling/feedback is provided on

top of the input data, still remains one of the most difficult

problems in machine learning but holds a bright future since

a large number of tasks have little to no supervision.

Popular unsupervised learning methods include mixture

models [9], principal component analysis (PCA) [24], spec-

tral clustering [38], topic modeling [4], and autoencoders

[3, 2]. In a nutshell, unsupervised learning techniques are

mostly guided by the minimum description length princi-

ple (MDL) [35] to best reconstruct the data whereas super-

vised learning methods are primarily driven by minimizing

error metrics to best fit the input labeling. Unsupervised

learning models are often generative and supervised clas-

sifiers are often discriminative; generative model learning

has been traditionally considered to be a much harder task

than discriminative learning [12] due to its intrinsic learn-

ing complexity, as well as many assumptions and simplifi-

cations made about the underlying models.

1∗ equal contribution.

Figure 1. The first row shows the development of two 64 × 64 pseudo-

negative samples (patches) over the course of the training process on the

“tree bark” texture at selected stages. We can see the initial “scaffold”

created and then refined by the networks in later stages. The input “tree

bark” texture and a synthesized image by our INNg algorithm are shown

in the second row. This texture was synthesized by INNg using 20 CNN

classifiers each with 4 layers.

Generative and discriminative models have traditionally

been considered distinct and complementary to each other.

In the past, connections have been built to combine the two

families [12, 28, 41, 22]. In the presence of supervised

information with a large amount of data, a discriminative

classifier [26] exhibits superior capability in making robust

classification by learning rich and informative representa-

tions; unsupervised generative models do not require super-

vision but at a price of relying on assumptions that are often

too ideal in dealing with problems of real-world complex-

ity. Attempts have previously been made to learn generative

models directly using discriminative classifiers for density

estimation [45] and image modeling [40]. There is also a

wave of recent development in generative adversarial net-

works (GAN) [14, 34, 37, 1] in which a discriminator helps

a generator try not to be fooled by “fake” samples. We will

discuss in detail the relations and connections of our model

with these existing literature in the later sections.

In [45], a self supervised boosting algorithm was pro-

posed to train a boosting algorithm by sequentially adding

features as weak classifiers on additionally self-generated

negative samples. Furthermore, the generative discrimi-
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native modeling work (GDL) in [40] generalizes the con-

cept that a generative model can be successfully modeled

by learning a sequence of discriminative classifiers via self-

generated pseudo-negatives.
Inspired by the prior work on generative modeling [51,

45, 40] and development of convolutional neural networks
[27, 26, 13], we develop an image modeling algorithm, in-
trospective neural networks for generative modeling (INNg)
that can be used simultaneously as a generator and a dis-
criminator, consisting of two critical stages during training:
(1) pseudo-negative sampling (synthesis) — a generation of
samples considered to be positive examples and (2) a CNN
classifier learning stage (classification) for self-evaluation
and model updating from the previous synthesis. There are
a number of interesting properties about INNg worth high-
lighting:

• CNN classifier as generator: No special conditions on the

CNN architecture are needed in INNg and existing CNN clas-

sifiers can be directly made into generators, if trained properly.

• End-to-end self-evaluation and learning: Perform end-to-

end “introspective learning” to self-classify between synthe-

sized samples (pseudo-negatives) and the training data, to ap-

proach the target distribution.

• All backpropagation: Our synthesis-by-classification algo-

rithm performs efficient training using backpropagation in both

stages: the sampling stage for the input images and the classi-

fication training stage for the CNN parameters.

• Model-based anysize-image-generation: Since we model the

input image, we can train on images of a given size and gen-

erate an image of a larger size while maintaining coherence of

the entire image.

• Agnostic to various vision applications: Due to its intrinsic

modeling power being at the same time generative and discrim-

inative, INNg can be adopted to many applications in computer

vision. In addition to the applications shown here, extension of

the objective (loss) function within INNg is expected to work

for other tasks such as “image-to-image translation” [21].

2. Significance and related work
Our introspective neural networks generative modeling

(INNg) algorithm has connections to many existing ap-

proaches including the MinMax entropy work for texture

modeling [51], and the self-supervised boosting algorithm

[45]. It builds on top of convolutional neural networks [27]

and we are particularly inspired by two lines of prior al-

gorithms: the generative modeling via discriminative ap-

proach method (GDL) [40], and the DeepDream code [31]

and the neural artistic style work [13]. Parallels can be

drawn to ideas elaborated in [16] where parameters of a

distribution are learned using a (single) classifier between

noise and training data. Additionally, the use of “negative”

examples to bridge the gap between an unsupervised task

into a supervised one is also seen in [18], although this fo-

cuses on the training of the weights of the network for clas-

sification rather than synthesis. The work of [31, 13], along

with the Hybrid Monte Carlo literature [44], motivates us to

significantly improve the time-consuming sampling process

in [40] by an efficient stochastic gradient descent (SGD)

process via backpropagation (the reason for us to say “all

backpropagation”). Next, we review some existing genera-

tive image modeling work, followed by detailed discussions

about GDL [40]; comparisons to generative adversarial net-

works (GAN) [14] will be provided in Section 3.7.

The history of generative modeling on image or non-

image domains is extremely rich, including the general im-

age pattern theory [15], deformable models [48], inducing

features [8], wake-sleep [19], the MiniMax entropy the-

ory [51], the field of experts [36], Bayesian models [49],

and deep belief nets [20]. Each of these pioneering works

points to some promising direction in unsupervised gen-

erative modeling. However the modeling power of these

existing frameworks is still somewhat limited in computa-

tional and/or representational aspects. In addition, not too

many of them sufficiently explore the power of discrimina-

tive modeling. Recent works that adopt convolutional neu-

ral networks for generative modeling [47] either use CNNs

as a feature extractor or create separate paths [46, 42]. The

neural artistic transferring work [13] has demonstrated im-

pressive results on the image transferring and texture syn-

thesis tasks but it is focused [13] on a careful study of chan-

nels attributed to artistic texture patterns, instead of aim-

ing to build a generic image modeling framework. The

self-supervised boosting work [45] sequentially learns weak

classifiers under boosting [11] for density estimation, but its

modeling power was not adequately demonstrated.
Relationship with GDL [40]

The generative via discriminative learning framework

(GDL) [40] learns a generator through a sequence of boost-

ing classifiers [11] using repeatedly self-generated samples,

called pseudo-negatives. Our INNg algorithm takes inspi-

ration from GDL, but we also observe a number of lim-

itations in GDL that will be overcome by INNg: GDL

uses manually specified feature types (histograms and Haar

filters), which are fairly limited; the sampling process in

GDL, based on Markov chain Monte Carlo (MCMC), is a

big computational bottleneck. Additional differences be-

tween GDL and INNg include: (1) the adoption of con-

volutional networks in INNg results in a significant boost

to feature learning. (2) introducing SGD based sampling

schemes to the synthesis process in INNg makes a funda-

mental improvement to the sampling process in GDL that

is otherwise slow and impractical. (3) two compromises to

the algorithm, namely INNg-single (see Fig. 4) and INNg-

compressed, are additionally proposed to maintain a single

classifier or subset of classifiers, respectively.

Introspective Discriminative Networks [23]

In the sister paper [23], the formulation is extended to

focus on the discriminative aspect — improvement of exist-

ing classifiers. Additional key differences are: a) the model
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in [23] is usually composed of a single classifier with a new

formulation for training a softmax multi-class classification

and b) it is less concerned with human perceivable quality

of its syntheses and instead focuses on their impact within

the classification task.

3. Method
We describe below the introspective neural networks

generative modeling (INNg) algorithm. We discuss the

main formulation first, which bears some level of similarity

to GDL [40] with the replacement of the boosting algorithm

[11] by convolutional neural networks [27]. As a result,

INNg demonstrates significant improvement over GDL in

terms of both modeling and computational power. Whereas

GDL relies on manually crafted features, the use of CNNs

within INNg provides for automatic feature learning and

tuning when backpropagating on the network parameters as

well as an increase in computational power. Both are moti-

vated by a formulation from the Bayes theory.

3.1. Motivation

We start the discussion by borrowing notation from [40].

Suppose we are given a set of training images (patches):

S = {xi | i = 1..n} where we assume each xi ∈ Rm e.g.

m = 64 × 64 for 64 × 64 patches. These will constitute

positive examples of the patterns/targets we wish to model.

To introduce the supervised formulation of studying these

patterns, we introduce class labels y ∈ {−1,+1} to indicate

negative and positive examples, respectively. With this, a

generative model computes p(y,x) = p(x|y)p(y), which

captures the underlying generation process of x for class y.

A discriminative classifier instead computes p(y|x). Under

Bayes rule, similar to [40]:

p(x|y = +1) =
p(y = +1|x)p(y = −1)

p(y = −1|x)p(y = +1)
p(x|y = −1),

(1)

which can be further simplified when assuming equal priors

p(y = +1) = p(y = −1):

p(x|y = +1) =
p(y = +1|x)

1− p(y = +1|x)
p(x|y = −1). (2)

Based on Eq. (2), a generative model for the posi-

tive samples (patterns of interest) p(x|y = +1) can be

fully represented by a generative model for the negatives

p(x|y = −1) and a discriminative classifier p(y = +1|x),
if both p(x|y = −1) and p(y = +1|x) can be accu-

rately obtained/learned. However, this seemingly intrigu-

ing property is circular. To faithfully learn the positive

patterns p(x|y = +1), we need to have a representative

p(x|y = −1), which is equally difficult, if not more. For

clarity, we now use p−(x) to represent p(x|y = −1). In

the GDL algorithm [40], a solution was given to learning

p(x|y = +1) by using an iterative process starting from an

initial reference distribution of the negatives p−0 (x), e.g. a

Gaussian distribution U(x) on the entire space of x ∈ Rm:

p−0 (x) = U(x),

p−t (x) =
1

Zt

qt(y = +1|x)

qt(y = −1|x)
· p−t−1(x), t = 1..T (3)

where Zt =
∫

qt(y=+1|x)
qt(y=−1|x)p

−
t−1(x)dx. Our hope is to grad-

ually learn p−t (x) by following this iterative process of Eq.

3:
p−t (x)

t=∞
→ p(x|y = +1), (4)

such that the samples drawn x ∼ p−t (x) become indistin-

guishable from the given training samples. The samples

drawn from x ∼ p−t (x) are called pseudo-negatives, fol-

lowing a definition in [40] to indicate examples considered

by the current iteration of the model to be positives but are,

in reality, negative examples. Next, we present the practical

realization of ideas from Eq. 3, namely INNg (consisting

of a sequence of CNN classifiers composed to produce the

process seen in Fig. 3) and, additionally, the extreme case of

INNg-single that maintains a sequence consisting of single

CNN classifier as seen in Fig. 4.

3.2. INNg Training

Algorithm 1 Outline of the INNg algorithm.

Input: Given a set of training data S+ = {(xi, yi =
+1), i = 1..n} with x ∈ ℜm.

Initialization: obtain an initial distribution e.g. Gaussian for

the pseudo-negative samples: p−0 (x) = U(x). Create S0
− =

{(xi,−1), i = 1, ..., l} with xi ∼ p−0 (x)
For t=1..T

1. Classification-step: Train CNN classifier Ct on S+ ∪ St−1
− ,

resulting in qt(y = +1|x).

2. Update the model: p−t (x) =
1
Zt

qt(y=+1|x)
qt(y=−1|x)

p−t−1(x).
3. Synthesis-step: sample l pseudo-negative samples xi ∼
p−t (x), i = 1, ..., l from the current model p−t (x) using a SGD-

based sampling procedure (backpropagation on the input) to ob-

tain St
− = {(xi,−1), i = 1, ..., l}.

4. t ← t + 1 and go back to step 1 until convergence (e.g.

indistinguishable to the given training samples).

End

As defined in the previous section, we are given an unla-

beled training set by S = {xi | i = 1..n} as our positive ex-

amples. Since pseudo-negatives will be added, we refer to

this initial positive set as S+ = {(xi, yi = +1) | i = 1..n}
within the discriminative formulation. Additionally, we

must consider the initial set of negatives bootstrapped from

noise (also referred to as the initial pseudo-negative set) de-

noted:

S0
− = {(xi,−1) | i = 1, ..., l}

where xi ∼ p−0 (x) = U(x) according to a Gaussian dis-

tribution. Since each stage of the algorithm will refine this

set, we define the working set for stage t = 1..T as

St−1
− = {(xi,−1) | i = 1, ..., l}.
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input                          Gatys et al.                    TextureNets Portilla & Simoncelli DCGAN                INNg-single (ours)      INNg (ours)        

Figure 2. Texture synthesis algorithm comparison. Gatys et al. [13], Texture Nets [42], Portilla & Simoncelli [33], and DCGAN [34] results are from [42].

Classification
(training samples vs. 
pseudo-negatives)  

Introspective Neural Networks for Generative Modeling 
INNg

Synthesis
(pseudo-negatives)

training samples

Learned Model

Figure 3. Schematic illustration of the pipeline of INNg. The top figure

shows the input training samples shown in red circles. The bottom figure

shows the pseudo-negative samples drawn by the learned final model. The

left panel displays pseudo-negative samples drawn at each time stamp t.

The right panel shows the classification by the CNN on the training sam-

ples and pseudo-negatives at each time stamp t.

to include the pseudo-negative samples (l of them) self-

generated by the model after stage t. We then train the

model at each stage t to obtain

qt(y = +1|x), qt(y = −1|x) (5)

over S+∪St
− resulting in the classifier Ct. Note that q is an

approximation to the true p due to limited samples drawn

from ℜm. At each time t, we then compute an approxima-

tion to (elaborated in Section 3.2.2)

p−t (x) =
1

Zt

qt(y = +1|x)

qt(y = −1|x)
p−t−1(x), (6)

where Zt =
∫

qt(y=+1|x)
qt(y=−1|x)p

−
t−1(x)dx. Then, we can draw

new samples

xi ∼ p−t (x)

to produce the stages’s pseudo-negative set:

St+1
− = {(xi,−1), i = 1, ..., l}. (7)

Algorithm 1 describes the learning process. The pipeline of

INNg is shown in Fig. 3, which consists of: (1) a synthesis

step and (2) a classification step. A sequence of CNN clas-

sifiers is progressively learned. With the pseudo-negatives

being gradually generated, the classification boundary gets

tightened and approaches the target distribution.

3.2.1 Classification-step

The classification-step can be viewed as training a classi-

fier on the training set S+ ∪ St
− where S+ = {(xi, yi =

+1), i = 1..n}. St
− = {(xi,−1), i = 1, ..., l} for t ≥ 1.

In practice, we also keep a subset of pseudo-negatives from

earlier stages to increase stability. We use a CNN as our

base classifier. When training a classifier Ct on S+ ∪ St
−,

we denote the parameters to be learned in Ct by a high-

dimensional vector Wt = (w
(0)
t ,w

(1)
t ) which might con-

sist of millions of parameters. w
(1)
t denotes the weights on

the top layer combining the features φ(x;w
(0)
t ) and w

(0)
t

carries all the internal representations. Without loss of gen-

erality, we assume a sigmoid function for the discriminative

probability

qt(y|x;Wt) = 1/(1 + exp{−y < w
(1)
t , φ(x;w

(0)
t ) >}).

(8)

Both w
(1)
t and w

(0)
t can be learned by the standard stochas-

tic gradient descent algorithm via backpropagation to min-
imize a cross-entropy loss with an additional term on the
pseudo-negatives:

L(Wt) = −
i=1..n∑

(xi,+1)∈S+

ln qt(+1|xi;Wt)−
i=1..l∑

(xi,−1)∈St

−

ln qt(−1|xi;Wt)

3.2.2 Synthesis-step

In the classification step, we obtain qt(y|x;Wt) which is

then used to update p−t (x) according to Eq. (6):

p−t (x) =

t∏

a=1

1

Za

qa(y = +1|x;Wa)

qa(y = −1|x;Wa)
p−0 (x). (9)
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In the synthesis-step, our goal is to draw fair samples from

p−t (x). By using SGD-based sampling, we carry out back-

propagation with respect to x (the image space) using the

CNN models making up Eq. 9. Note that the partition func-

tion (normalization) Za is a constant that is not dependent

on the sample x. Let

ga(x) =
qa(y = +1|x;Wa)

qa(y = −1|x;Wa)
= exp{< w

(1)
a , φ(x;w(0)

a ) >},

(10)

and take its ln, which is nicely turned into the logit of

qa(y = +1|x;Wa)

ln ga(x) =< w
(1)
a , φ(x;w(0)

a ) > . (11)

Starting from an initialization of x, the process allows us

to directly increase
∑t

a=1 < w
(1)
a , φ(x;w

(0)
a ) > using

gradient ascent on x via backpropagation to obtain fair

samples subject to Eq. (9). Injecting the noise to the

sampler results in a general family of stochastic gradient

Langevin dynamics [44]: ∆x = ∇(
∑t

a=1 ln ga(x)) + η
where η ∼ N(0, ǫ) is a Gaussian distribution. In prac-

tice, to reduce the time and memory complexity, we ini-

tialize x drawn from p−t−1(x), allowing us to primarily fo-

cus on the most recent model qt with SGD sampling for

ln gt(x) =< w
(1)
t , φ(x;w

(0)
t ) >. Therefore, generating

pseudo-negative samples does not need a large overhead.

To ensure this follows Langevin dynamics as elaborated

in [44], Gaussian noise with an annealed variance would be

added, however, we did not observe a big difference in the

quality of samples in practice. Additionally, recent work in

[7, 30] also show the connections and equivalence between

MCMC and SGD-based sampling schemes, where the sam-

pling bias and variance are worth further studying but pose

no particular disadvantages here. We have also recently ex-

perimented on using different SGD sampling schemes (eg.

early-stopping, long steps, perturbations) but did observe

significant differences. This is likely partially compensated

for by the inherent stochasticity introduced by the random

selection of the image patches (and to what extent due to

overlap) during synthesis.

3.2.3 Overall model

The overall INNg model after T stages of training becomes:

p−T (x) =
1

Z

T∏

a=1

qa(y = +1|x;Wa)

qt(y = −1|x;Wa)
p−0 (x)

=
1

Z

T∏

a=1

exp{< w
(1)
a , φ(x;w(0)

a ) >}p−0 (x),

(12)

where Z =
∫ ∏T

a=1 exp{< w
(1)
a , φ(x;w

(0)
a ) >}p−0 (x)dx.

INNg shares a similar cascade aspect with GDL [40] where

the convergence of this iterative learning process to the tar-

get distribution was shown by the following theorem in [40].

Theorem 1 KL[p(x|y = +1)||p−t+1(x)] ≤ KL[p(x|y =

+1)||p−t (x)] where KL denotes the Kullback-Leibler diver-

gences, and p(x|y = +1) ≡ p+(x).

This implies that after sufficiently many stages of INNg

training, the distribution of the positives should be well ap-

proximated by the resulting cascade of classifiers modeled

in Eq. 12.

3.3. INNg synthesis

While the previous section describes the training process

of an INNg model (which itself uses a synthesis step in it

to generate pseudo-negatives for the next stage), we con-

sider the synthesis of a new sample from the fully trained

model. Since a fully trained model consists of T saved clas-

sifiers, we attempt to sample through this sequence in a sim-

ilar fashion to the training. Starting with some x ∼ U(x),
we perform gradient ascent with respect to x until, based off

the current classifier Ct, x crosses the decision boundary of

Ct — to now be considered a positive example. Then, Ct+1

is loaded and the process is repeated again on the resulting

x until it has passed through all classifiers (through CT ) in

a similar manner to produce the sample. Note that we per-

form early stopping within each stage i.e. it was not seen to

be effective to produce a transformation of x that has near

1.0 probability of being considered a positive, only one that

is a narrow margin over this boundary. This additionally

allows for a more efficient runtime of the synthesis process.

3.4. An alternative: INNg-single

Classification
(training samples vs.
pseudo-negatives)  

Convolutional Neural Networks

Introspective Neural Networks for Generative Modeling 
INNg-single

Synthesis
(pseudo-negatives)

training samples

Learned Model

Figure 4. Schematic illustration of the pipeline of INNg-single.

We briefly present the INNg-single algorithm and show

the pipeline of INNg-single is in Fig. 4. Note that we main-

tain a single CNN classifier throughout the entire learning

process in INNg-single.

In the classification step, we obtain qt(y|x;Wt) (similar

as Eq. 8) which is then used to update p−t (x) according to
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Eq. (13):

p−t (x) =
1

Zt

qt(y = +1|x;Wt)

qt(y = −1|x;Wt)
p−0 (x). (13)

In the synthesis-step, we draw samples from p−t (x). The

overall INNg-single model after T stages of training be-

comes:

p−T (x) =
1

ZT

exp{< w
(1)
T , φ(x;w

(0)
T ) >}p−0 (x), (14)

where ZT =
∫
exp{< w

(1)
T , φ(x;w

(0)
T ) >}p−0 (x)dx.

3.5. Model-based anysize-image-generation

INNg
generator/discriminator

1

2

3

4

1 2

3

4

1 2

3

4

Figure 5. Illustration of model-based anysize-image-generation strategy.

Given a particularly sized image, anysize-image-

generation within INNg allows one to generate/synthesize

an image much larger than the given one. Patches extracted

from the training images are used in the training of the

discriminator. However, their position within the training

(or pseudo-negative) image is not lost. In particular, when

performing synthesis using backpropagation, updates to the

pixel values are made by considering the average loss of all

patches that overlap a given pixel. Thus, up to stage T , in

order to consider the updates to the patch of x(i, j) centered

at position (i, j) for image I of size m1 ×m2, we perform

backpropagation on the patches to increase the probability:

pT (I) ∝

T∏

a=1

m1∏

i=1

m2∏

j=1

ga(x(i, j))p
−
0 (x(i, j)) (15)

where ga(x(i, j)) (see Eq. 10) denotes the score of the

patch of size e.g. 64 × 64 for x(i, j) under the discrimi-

nator at stage a. Fig. 5 gives an illustration for one stage

of sampling. This allows us to synthesize much larger im-

ages by being able to enforce the coherence and interactions

surrounding a particular pixel. In practice, we add stochas-

ticity and efficiency to the synthesis process by randomly

sampling these set of patches.

3.6. Model size reduction
As mentioned in Section 3.2.2 and 3.3, the process of

INNg relies on keeping a snapshot of the classifier after

each stage t = 1 . . . T . This can pose a problem for both

space and time efficiency. However, it may not be all nec-

essary to keep each classifier around. Instead, one can pick

some factor b such that the classifier is only saved every b
stages. We accomplish this by: i) only saving the model

to disk every b stages ii) initializing the sampling process

at stage b × i + k (i ∈ N and k < b ) from those of

stage b × i. We still, however, keep the pseudo-negatives

around for training purposes to stabilize the process. We do

find that later stages within each “mini stage” should be al-

lowed more backpropagation steps during the synthesis step

in order to compensate for the more complex optimization

landscape. The image seen in Fig. 1 was generated from a

reduced model (b = 3 and T = 60), resulting in only 20

classifiers. One can view this as a cascade of multiple of

INNg-singles.

3.7. Comparison with GAN [14]

Next we compare INNg with a very interesting and pop-

ular line of work, generative adversarial neural networks

(GAN) [14]. We summarize the key differences between

INNg and GAN. Other recent algorithms alongside GAN

[14, 34, 50, 6, 39] share similar properties with it.

• Unified generator/discriminator vs. separate generator and

discriminator. INNg maintains a single model that is simul-

taneously a generator and a discriminator. The INNg genera-

tor therefore is able to self-evaluate the difference between its

generated samples (pseudo-negatives) against the training data.

This gives us an integrated framework to achieve competitive

results in unsupervised and fully supervised learning with the

generator and discriminator helping each other internally (not

externally). GAN instead creates two convolutional networks,

a generator and a discriminator.

• Training. Due to the internal competition between the genera-

tor and the discriminator, GAN is known to be hard to train [1].

INNg instead carries out a straightforward use of backpropaga-

tion in both the sampling and the classifier training stage, mak-

ing the learning process direct. For example, all the textures by

INNg shown in the experiments Fig. 2 and Fig. 6 are obtained

under the identical setting without hyper-parameter tuning.

• Speed. GAN performs a forward pass to reconstruct an image,

which is generally faster than INNg where synthesis is carried

out using backpropagation. INNg is still practically feasible

since it takes about 10 seconds to synthesize a batch of 50 im-

ages of 64× 64 and around 30 seconds to synthesize a texture

image of size 256×256, excluding the time to load the models.

• Model size. Since a sequence of CNN classifiers (10− 60) are

included in INNg, INNg has a much larger model complexity

than GAN. This is an advantage of GAN over INNg. Our al-

ternative INNg-single model maintains a single CNN classifier

but its generative power is worse than those of INNg and GAN.

4. Experiments

We evaluate both INNg and INNg-single. In each

method, we adopt the discriminator architecture of [34]
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Figure 6. More texture synthesis results. Gatys et al. [13] and Texture

Nets [42] results are from [42].

which takes an input size of 64 × 64 × 3 in the RGB col-

orspace by four convolutional layers using 5×5 kernel sizes

with the layers using 64, 128, 256 and 512 channels, respec-

tively. We include batch normalization after each convolu-

tional layer (excluding the first) and use leaky ReLU acti-

vations with leak slope 0.2. The classification layer flattens

the input and finally feeds it into a sigmoid activation. This

serves as the discriminator for the 64×64 patches we extract

from the training image(s). Note that it is a general purpose

architecture with no modifications made for a specific task

in mind.

In texture synthesis and artistic style, we make use of

the “anysize-image-generation” architecture by adding a

“head” to the network that, at each forward pass of the net-

work, randomly selects some number (equal to the desired

batch size) of 64 × 64 random patches (possibly overlap-

ping) from the full sized images and passes them to the

discriminator. This allows us to retain the whole space of

patches within a training image rather than select some sub-

set of them in advance to use during training.

4.1. Texture modeling

Texture modeling/rendering is a long standing problem

in computer vision and graphics [17, 51, 10, 33]. Here we

are interested in statistical texture modeling [51, 46], in-

stead of just texture rendering [10]. We train similar tex-

tures to [42]. Each source texture is resized to 256 × 256,

used as the “positive” image in the training set; a set of 200

negative images are initially sampled from a normal distri-

bution with σ = 0.3 of size 320× 320 after adding padding

of 32 pixels to each spatial dimension of the image to en-

sure each pixel of the 256 × 256 center has equal proba-

bility of being extracted in some patch. 1, 000 patches are

extracted randomly across the training images and fed to

the discriminator at each forward pass of the network (dur-

ing training and synthesis stages) from a batch size of 100

patches — 50 random positives and negatives when train-

ing and 100 pseudo-negatives during synthesis. At each

stage, our classifier is finetuned using stochastic gradient

descent with learning rate 0.01 from the previous stage’s

classifier. Pseudo-negatives from more recent stages are

chosen in mini-batches with higher probability than those

of earlier stages in order to ensure the discriminator learns

from its most recent mistakes as well as provide for more

efficient training when the set of accumulated negatives has

grown large in later stages. During the synthesis stage,

pseudo-negatives are synthesized using the previous stage’s

pseudo-negatives as their initialization. Adam is used with

a learning rate of 0.1 and β = 0.5 and stops early when

the average probability of the patches under the discrimina-

tor becomes positive (across some window of steps, usually

20). We find this sampling strategy to attain a good balance

in effectiveness and efficiency.

New textures are synthesized under INNg by: initializ-

ing from the normal distribution with σ = 0.3 followed by

SGD based sampling via backpropagation using the saved

networks for each stage, and feeding the resulting synthesis

to the next stage. The number of patches is decided based

on the image size to be synthesized, typically 10 patches

when synthesizing a 256 × 256 image since this matches

the average number of patches extracted per image during

training. For INNg-single which consists of a single CNN

classifier, SGD-based sampling is performed directly using

this CNN classifier to transform the initial normal distribu-

tion to a desired texture.

Considering the results in Fig. 2, we see that INNg (60

CNN classifiers each with 4 layers) generates images of

similar quality to [42], but of higher quality than those by

Gatys et al. [13], Portilla & Simoncelli [33], and DCGAN

[34]. In general, synthesis by INNg is usually more faithful

to the structure of the input images.

More texture modeling results are provided in Fig. 6. We

make an interesting observation that the “diamond” texture

(the fourth row) generated by INNg (same as that used in

Fig. 2) shows to preserve the near-regular patterns much

better than the other methods. In the bottom row of Fig. 6,

the “pebbles” synthesis of INNg captures the size variation

as well as the variation in color and shading, better than

TextureNets [42] and Gatys et al. [13].

4.2. Artistic style transfer
We also attempt to transfer artistic style as shown in [13].

However, our architecture makes no use of additional net-

works for content and texture transferring task uses a loss

functions during synthesis to minimize

− ln p(Istyle | I) ∝ γ·||Istyle−I||2−(1−γ)·ln p−style(Istyle),
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Figure 7. Artistic style transfer results using the “Starry Night” and

“Scream” style on the image from Amsterdam.

where I is an input image and Istyle is its stylized version,

and p−style(I) denotes the model learned from the training

style image. We include a L2 fidelity term during synthesis,

weighted by a parameter γ, making Istyle not too far away

from the input image I. We choose γ = 0.3 and average

the L2 difference between the original content image and

the current stylized image at each step of synthesis. Two

examples of the artistic style transfer are shown in Fig. 7.

4.3. Face modeling

Figure 8. Generated images learned on the CelebA dataset. The first, the

second, and the third column are respectively results by DCGAN [34] (us-

ing tensorflow implementation [25]), INNg-single (1 CNN classifier with

4 layers), and INNg (12 CNN classifiers each with 4 layers).

INNg is also demonstrated on a face modeling task. The

CelebA dataset [29] is used in our face modeling experi-

ment, which consists of 202, 599 face images. We crop the

center 64×64 patches in these images as our positive exam-

ples. For the classification step, we use stochastic gradient

descent with learning rate 0.01 and a batch size of 100 im-

ages, which contains 50 random positives and 50 random

negatives. For the synthesis step, we use the Adam opti-

mizer with learning rate 0.02 and β = 0.5 and stop early

when the pseudo-negatives cross the decision boundary. In

Fig. 8, we show some face examples generated by the DC-

GAN model [34], our INNg-single model (1 CNN classifier

with 4 conv layers), and our INNg model (12 CNN classi-

fiers each with 4 conv layers).

4.4. SVHN unsupervised learning

Figure 9. Generated images learned on the SVHN dataset. The first, the

second, and the third column are respectively results by DCGAN [34] (us-

ing tensorflow implementation [25]), INNg-single (1 CNN classifier with

4 layers), and INNg (10 CNN classifiers each with 4 layers).

The SVHN [32] dataset consists of color images of house

numbers collected by Google Street View. The training set

consists of 73, 257 images, the extra set consists of 531, 131
images, and the test set has 26, 032 images. The images are

of the size 32 × 32. We combine the training and extra set

as our positive examples for unsupervised learning. Fol-

lowing the same settings in the face modeling experiments,

we shown some examples generated by the DCGAN model

[34], INNg-single (1 CNN classifier with 4 conv layers),

and INNg (10 CNN classifiers each with 4 conv layers).

4.5. Unsupervised feature learning
We perform the unsupervised feature learning and semi-

supervised classification experiment by following the pro-

cedure outlined in [34]. We first train a model on the SVHN

training and extra set in an unsupervised way, as in Sec-

tion 4.4. Then, we train an L2-SVM on the learned repre-

sentations of this model. The features from the last three

convolutional layers are concatenated to form a 14336-

dimensional feature vector. A 10, 000 example held-out

validation set is taken from the training set and is used for

model selection. The SVM classifier is trained on 1000 ex-

amples taken at random from the remainder of the training

set. The test error rate is averaged over 100 different SVMs

trained on random 1000-example training sets. Within the

same setting, our INNg model achieves the test error rate of

32.81% and the DCGAN model achieves 33.13% (we ran

the DCGAN code [25] in an identical setting as INNg for a

fair comparison).

5. Conclusion
Generative modeling using introspective neural net-

works points to an encouraging direction for unsupervised

image modeling that capitalizes on the power of discrimina-

tive deep convolutional neural networks. It can be adopted

for a wide range of problems in computer vision. The

source code will be made available on GitHub.
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