
Adaptive RNN Tree for Large-Scale Human Action Recognition

Wenbo Li1 Longyin Wen2 Ming-Ching Chang1 Ser Nam Lim2,3 Siwei Lyu1

1University at Albany, SUNY

{wli20,mchang2,slyu}@albany.edu

2GE Global Research 3Avitas System, a GE Venture

{longyin.wen,limser}@ge.com

Abstract

In this work, we present the RNN Tree (RNN-T), an adap-

tive learning framework for skeleton based human action

recognition. Our method categorizes action classes and

uses multiple Recurrent Neural Networks (RNNs) in a tree-

like hierarchy. The RNNs in RNN-T are co-trained with the

action category hierarchy, which determines the structure of

RNN-T. Actions in skeletal representations are recognized

via a hierarchical inference process, during which individ-

ual RNNs differentiate finer-grained action classes with in-

creasing confidence. Inference in RNN-T ends when any

RNN in the tree recognizes the action with high confidence,

or a leaf node is reached. RNN-T effectively addresses

two main challenges of large-scale action recognition: (i)

able to distinguish fine-grained action classes that are in-

tractable using a single network, and (ii) adaptive to new

action classes by augmenting an existing model. We demon-

strate the effectiveness of RNN-T/ACH method and compare

it with the state-of-the-art methods on a large-scale dataset

and several existing benchmarks.

1. Introduction

Human action recognition is an important but challeng-

ing problem. With advances in low-cost sensors and real-

time joint coordinate estimation algorithms [24], reliable

3D skeleton-based action recognition (SAR) is now feasi-

ble [1]. Recent methods [5, 17, 23, 26, 37] use the RNN

models to advance the state-of-the-art performance of SAR.

Although much progress has been achieved, these meth-

ods are still facing two challenges. We term the first one

as the discriminative challenge. In SAR, a human action is

usually represented by the trajectories of approximately 20
key skeletal joints. This leads to a limited degree of freedom

of 3D joint coordinates. As more action classes are packed

into such a coordinate, the inter-class variations would be

subtler. This causes the ambiguity among action classes,

and makes decision boundaries between classes harder to

determine. We term the second challenge as adaptabil-

ity, i.e., a desirable method should be able to handle new

Figure 1: Method overview. (a) Visualization of action instances

from three action classes. (b) A three-level RNN Tree (RNN-T)

associated with the learned Action Category Hierarchy (ACH) in

(c). Each circle represents an action class. Grey circles represent

ambiguous classes, and black circles represent unambiguous ones.

Action classes in the same box form one action category.

classes incrementally. Most previous methods handle new

action classes by a time-consuming re-training of the whole

model. Two methods [19, 22] use non-parametric models

to handle new classes incrementally, but it is hard to adapt

these methods to a large number of new classes.

In this paper, we propose an adaptive learning frame-

work that aggregates multiple discriminative RNNs hier-

archically for large-scale SAR. We partition action classes

into several action categories, and organize the action cat-

egories using a tree structure. We train a RNN model for

each action category and co-train all individual RNN mod-

els, which are organized as a tree model (RNN-T) with the

same structure as the action categories (see Figure 1). At

run time, RNN-T recognizes actions via a hierarchical in-

ference process, during which individual RNNs differenti-

ate action classes with increasing confidence. Ambiguous

decisions are deferred to sub-trees of RNNs where actions

to be recognized can be effectively differentiated by finer-

grained RNN classifiers. The inference is finished when the

action is recognized with a high confidence or a leaf node of

11444

RNN-T is reached. To handle increasing number of action

classes, we further develop an incremental learning algo-

rithm, so that new classes can be inserted into existing ac-

tion categories in RNN-T, and the respective RNN sub-trees

can be updated.

Further, we create a large-scale SAR dataset that has 140
action classes, which we term as 3D-SAR-140, by aggre-

gating and processing 10 existing smaller-scale datasets [3,

6, 7, 16, 18, 19, 20, 29, 32, 34]. Our dataset has signifi-

cantly larger number of action classes than the existing SAR

datasets: it is more than twice of the class number of the ex-

isting largest HDM05 dataset [18]. Experimental results on

the 3D-SAR-140 dataset and the recently developed NTU

dataset [23] show that RNN-T/ACH outperforms the current

state-of-the-art SAR methods.

The main contribution of this work is four-fold. (i) We

propose a novel, adaptive and hierarchical framework for

fine-grained, large-scale SAR. Multiple RNNs are incor-

porated effectively in a tree-like hierarchy to mitigate the

discriminative challenge using a divide-and-conquer strat-

egy. (ii) We develop an effective learning procedure to

build RNN-T to achieve high recognition accuracy and run-

ning efficiency. (iii) We design an incremental learning al-

gorithm to make RNN-T adaptable to new classes and to

significantly reduce the re-training time. (iv) We create a

large-scale dataset, 3D-SAR-140, with the largest number

of action classes to-date, and produce a benchmark to eval-

uate existing SAR methods and RNN-T based method.

2. Related Works

SAR. Vemulapalli et al. [27, 28] modeled the 3D geo-

metric interactions between body parts using transforma-

tions, which are represented as elements in a Lie group.

Gowayyed et al. [8] represented 3D trajectories of body

joints using the histogram of oriented displacements de-

scriptor. Zanfir et al. [35] proposed a moving pose de-

scriptor that considers both pose information and the dif-

ferential quantities of body joints. Wang et al. [29] learned

a subset of skeleton joints for each action class. Wu et

al. [31] modeled transition dynamics of an action using the

Hidden Markov Model and developed a hierarchal dynamic

framework to learn high-level features to estimate emission

probability. Zhao et al. [36] extracted structured stream-

ing skeleton features to represent actions and constructed

classifiers based on sparse coding features. Performance of

these methods is bounded by their inability to model long-

term evolution of discrete human poses, which are crucial

for action recognition.

SAR using RNN. In recent years, RNN has become the

most successful model for SAR. RNN [9] is a class of neural

network whose neurons send feedback signals to each other.

Along the time axis at each step, RNN accepts the current

input together with the previous hidden state, and updates

the current state via a set of non-linear activation functions.

RNN is suitable for handling sequential data, because it can

represent complex relations in the sequence and is robust to

local distortions. One limitation of the original RNN is in-

capability in modeling long-term dependencies, due to the

vanishing and exploding gradients [9]. This problem is alle-

viated with the long short-term memory (LSTM) cells [11]

as a replacement of the traditional nonlinear units. A LSTM

block contains a self-connected memory cell to store infor-

mation across long duration. It also contains 3 gates (i.e.,

input, forget, and output gate) to adaptively adjust the “for-

getting rate” of the old state.

For the SAR task, RNN typically performs multi-

nominal classification and predicts an action class label at

the end of the sequence. Most existing works are based on

LSTM RNN . Existing RNN based methods fall into two

groups. The first group uses RNN to model coordinates

of body parts. Shahroudy et al. [23] proposed part-aware

LSTM which divides the memory cell to sub-cells such that

each sub-cell can learn long-term contextual representations

of a body part, and the concatenation of sub-cells yields the

final output. Zhu et al. [37] added a mixed-norm regular-

ization term to the cost function of a LSTM network, which

can learn the co-occurrence of discriminative joints. Du et

al. [5] designed a hierarchical RNN for SAR, where the

skeleton is divided into five parts and then fed into five sub-

nets. Their representation is learned by fusing the outputs

of higher layers. The second group focuses on developing

gating schemes for LSTM to determine which part of the

input is more important for recognition. Veeriah et al. [26]

designed a “differential” gate emphasizing the information

gain from salient motions. Liu et al. [17] proposed a “trust”

gate to analyze input reliability, which provides insight for

the modulation of memory cells in LSTM.

All these methods used a single RNN to model the whole

action space. In contrast, in order to better resolve the dis-

criminative challenge, our method exploits multiple RNNs

in a hierarchy, with each RNN recognizing actions within

one action category.

3. ACH and RNN-T for Action Recognition

We start with notations that will be used throughout the

paper. Let {xi, yi} be the labeled action instance, where

xi is a sequence of 3D skeletal poses collected from a video

sequence, and yi is the label of xi out of all N action classes.

An action category C is defined as a set of action classes

sharing similar characteristics. We use ℜ to represent the

RNN model.

The goal of a SAR algorithm is to infer the class label of

an action instance out of a large number of action classes.

As stated in § 1, there are the ambiguity and adaptivity chal-

lenges to this problem. In particular, there exist ambiguity

among action classes, and some actions are more difficult

1445

Algorithm 1 Learning of ACH and RNN-T

Input: C1 including all N action classes

Output: ACH, RNN-T

1: Initialize ACH by embedding C1, and marking C1 as unvisited

2: Train ℜ1 for C1

3: while ∃ Ci is unvisited and |Ci| > θl do

4: • Generate candidate partitions for Ci (§ 3.1.1)

5: • Pre-train RNNs for each candidate partition (§ 3.1.2)

6: • Evaluate candidate partitions (§ 3.1.3)

7: • Expand ACH and RNN-T based on the optimal partition

8: • Fine tune the newly-added RNNs in RNN-T jointly (§ 3.1.4)

9: Mark Ci as visited

10: end while

to distinguish the the others and require finer-grained classi-

fiers. To this end, we first construct an action category hier-

archy (ACH) to organize action categories based on the am-

biguities of fine-grained action classes. Action categories

at higher levels of ACH are more specific and difficult to

recognize. Then, we build a RNN Tree (RNN-T) using the

same structure of ACH (see Figure 1), with each individ-

ual RNN modeling a specific action category, and RNNs

at higher levels of RNN-T are classifiers of the more fine-

grained actions modeled by ACH.

This ambiguity-aware deferral strategy is implemented

with divide-and-conquer as the following: (i) The root cat-

egory C1 of ACH initially contains all N action classes.

The ambiguity of action classes in C1 is estimated by rec-

ognizing their respective action instances in the training

dataset. (ii) If the ambiguity between a specific class and

others is low, its classification results are output directly,

while the remaining classes with more inter-ambiguity are

further clustered to form new action categories at the next

level. This process repeats to produce a tree-like hierarchy

of ACH, and an ensemble of RNNs can be trained at the

same time. (iii) During the run time, ambiguous decisions

are deferred to sub-trees of RNNs where the action instance

to be recognized can be effectively differentiated by higher

level individual RNN classifiers in the RNN-T model. In

the following, we define the children of the i-th action cate-

gory Ci in ACH as Cj
i with Cj

i ⊆ Ci. We use ℜi to denote

the RNN that corresponds to Ci. Similarly, the children of

ℜi is denoted as ℜj
i .

RNN-T/ACH is similar to a decision tree (DT) with

RNNs as the base classifiers but with two important distinc-

tions. (i) The base classifiers in a DT are learned separately,

but the RNN classifiers in RNN-T/ACH are co-trained fol-

lowing the tree structure. (ii) Action classes contained in

different action categories of ACH can overlap, e.g., both

C2 and C3 in Figure 1(c) contain action class 06. There-

fore, unlike a DT where a classification error is irrecover-

able once a branch is reached, RNN-T/ACH allows multiple

sub-trees to output the same class label. In the following,

we describe in detail the learning of RNN-T/ACH (§ 3.1),

and how this model can be applied to SAR (§ 3.2).

3.1. Learning of ACH and RNNT

As ACH and RNN-T have the same tree structure, they

are learned jointly from the labeled training data with a

level-by-level scheme. The learning algorithm for RNN-

T and ACH is as summarized in Algorithm 1. Starting with

the root action category C1, each action category is succes-

sively divided into finer categories at the next level, where

a RNN is trained for each newly created action category.

The partition of an action category is performed in four

steps, which are summarized here and described in detail

in the subsequent sessions. First, we identify all ambigu-

ous classes in an action category, which are the classes

whose labels cannot be confidently determined with the

RNN model of the current level. These classes are con-

sidered difficult to distinguish and are further divided into

sub-categories to form new action categories of the next

level. Instead of using a fixed partition, we generate multi-

ple candidate partition hypotheses of the ambiguous classes

by repeatedly running a spectral clustering algorithm [2]

(§ 3.1.1). For each candidate partition, a set of RNNs are

pre-trained independently (§ 3.1.2). The optimal partition is

then determined based on a performance evaluation metric,

which is used to generate new action categories at the next-

level (§ 3.1.3). RNNs corresponding to the newly generated

action categories are fine tuned jointly (§ 3.1.4). After one

level of ACH is created, the same process is repeated for the

next level if necessary. The process completes when all ac-

tion classes are classified by the RNNs in RNN-T with high

confidence, or the number of action classes in all leaf action

categories is below a preset threshold.

3.1.1 Generation of Candidate Partitions

For each action category, if it contains any ambiguous ac-

tion class, it needs to be further divided into children action

categories at the next level of the ACH. Specifically, if we

are to process action category Ci, we first identify ambigu-

ous classes within Ci using its corresponding RNN model

ℜi. For each action class cs ∈ Ci, we compute the F-scores

of the training and validation datasets, respectively, based

on the recognition results generated by ℜi. If these two F-

scores are greater than a pre-determined threshold θc, then

cs is marked as an ambiguous class.

After all action classes in Ci are processed, all ambigu-

ous classes are put together as Ĉi. If |Ĉi| ≤ θl, Ci is not

further partitioned, where θl is the target size of a leaf ac-

tion category in the ACH. Otherwise, we generate at most

n = ⌊N/θl⌋ different partitions of Ĉi in two steps. First,

we calculate the confusion matrix based on recognition re-

sults of RNN ℜi on the validation dataset. Then, we use

spectral clustering [2] to generate partitions of the action

category using the confusion matrix as their affinities. We

run the clustering algorithm n times, each time split the ac-

1446

tion category into k disjoint clusters, each cluster is denoted

as C̃k,j
i ⊆ Ĉi for 1 ≤ k ≤ n and 1 ≤ j ≤ k. Note that we

have C̃1,1
i = Ĉi.

This disjoint partition scheme does not allow error re-

covery when misclassification occurs during the partition of

the ACH. To improve the fault tolerance of RNN-T/ACH,

we allow ambiguous action classes to be associated with

more than clusters. Specifically, for each cluster C̃k,j
i , we

compute a misclassification likelihood pji (s) for each class

cs /∈ C̃k,j
i . We use Xs to denote the set of action instances

in cs. 1(c) is an indicator function that outputs 1 if c is

true, and 0 otherwise, then pji (s) is defined as:

pji (s) =

∑
x∈Xs,cs /∈C̃k,j

i

1(y′ ∈ C̃k,j
i)

|Xs|
. (1)

In other words, pji (s) is the fraction of action instances in cs
that are misclassified into C̃k,j

i . If pji (s) > θo, where θo is a

pre-determined threshold, the action instance of cs is likely

to be misclassified by RNN ℜi into C̃k,j
i , then it is added to

the child action category of Ck,j
i , as Ck,j

i = C̃k,j
i ∪ {cs}.

3.1.2 Pre-training RNNs Using Candidate Partitions

To maximize the recognition performance of RNN-T, it will

be ideal if all individual RNNs in the RNN-T model can

be trained jointly. However, the time complexity of train-

ing RNNs jointly grows with the number of RNNs. More-

over, the candidate partitions described in §3.1.1 must be

followed by the training of RNNs, such that each candi-

date partition can be evaluated using respective RNNs to

find the optimal partition. Thus, for n candidate parti-

tions, total RNN training time increases quadratically, i.e.,

O(n(n+1)
2). To reduce the training complexity, we use a

trade-off method that starts with independently pre-train the

individual RNNs and then fine-tunes them jointly.

For each candidate partition Ck,j
i , we train a set of RNNs

ℜk,j
i , i.e., to obtain its parameters W using training data.

We initialize W using weights of its parent model ℜi, ex-

cept those on the output layer (which takes random val-

ues). We use xr to represent the r-th action instance in

the training set and yr to represent the ground truth label

of xr. ℜk,j
i is trained by minimizing the log likelihood loss

function −
∑

r ln p(yr|xr), where p(yr|xr) is the output of

the softmax function of ℜj
i which represents the probabil-

ity of xr being labeled as yr, using the stochastic gradient

descent (SGD) method with gradient computed using the

back-propagation through time (BPTT) algorithm [9].

3.1.3 Evaluate Candidate Partitions

We use the individually trained RNNs to choose an opti-

mal partition for category Ci. To this end, we first build

a two-level temporary ACH CHk, with Ci as the root at

the first level and the k-th candidate partition {Ck,j
i }kj=1

at the second level as the children of Ci. RNN ℜi corre-

sponding to Ci, and a set of RNNs {ℜk,j
i }kj=1 correspond-

ing to the j-th candidate partition are organized in a two

level RNN-tree (RNN-STk) with the same structure as CHk.

Note that within CHk, an ambiguous class cs (∈ Ci) may

belong to multiple sub-categories {Ck,j
i }. Thus we main-

tain a lookup table to effectively defer cs to the desired sub-

category. Specifically, for candidate partition {Ck,j
i }kj=1,

the lookup table fi,k(·) of Ci is built upon {Ck,j
i }kj=1 and

its corresponding disjoint partition {C̃j
i }

k
j=1 (see § 3.1.1),

where C̃j
i ⊆ Ck,j

i . As a result, for a predicted label y′, if

y′ ∈ C̃j
i , we have fi,k(y

′) = Ck,j
i .

Next, we introduce a metric R to evaluate the reliability

of each candidate partition inspired by the splitting of nodes

in a decision tree [21], which is defined as:

S = At +Av +min

(
At

Av
,
Av

At

)

︸ ︷︷ ︸
accuracy

−λ exp

(
H

N
logNl

)

︸ ︷︷ ︸
inefficiency

,

(2)
where Nl is the number of leaf nodes, H is tree depth, N is

the number of all classes, and λ balances accuracy and in-

efficiency terms. The accuracy term consists of three parts,

i.e., At and Av are the training and validation classification

accuracy of each candidate partition, computed by feed-

ing the training and validation data back to RNN-STk, and

min(A
t

Av ,
Av

At) measures the stability between At and Av ,

which ensures that RNN-T will not yield recognition accu-

racy with large variations when applied to training and val-

idation datasets. The inefficiency term penalizes trees that

are deep but with only a few leaves. Note that the usage of

the inefficiency term potentially reduces the risk to select an

over-fitted tree structure of RNN-T/ACH.

Thus, for the current category Ci, we calculate the score

Sk for each candidate partition. Note that S1 corresponds

to the case when no partition of Ci is performed. After

that, we determine the optimal partition by maximizing the

reliability values from both (i) all candidate partitions and

(ii) no partition cases, i.e., m = argmaxk Sk. If m = 1, we

do not divide the current category Ci. Otherwise, we divide

Ci into finer categories based on the m-th partition strategy

at the next level. Correspondingly, RNNs {ℜk,j
i }mj=1 are

organized into RNN-T and the cross level lookup table fi(·)
is updated accordingly.

3.1.4 Joint Fine-tuning of RNNs

We fine tune the new RNNs {ℜj
i}

m
j=1 and their parent ℜi

jointly to achieve higher classification accuracy. Specifi-

cally, we add a new term in the RNN objective function to

reduce the risk of deferring ambiguous label prediction to a

wrong action category, i.e.,

1447

LΦ(W) = −{

|Φ|∑

r=1

ln{1(fi(yr ′) = ∅)p(yr|xr)+

m∑

j=1

[1(fi(yr
′) = Cj

i)

|Cj

i
|∑

s=1

1(cs = yr)pj(cs|xr)]}+

α

|Φ|

|Φ|∑

r=1

1(fi(yr
′) ̸= fi(yr) ∧ fi(yr) ̸= ∅ ∧ fi(yr

′) ̸= ∅),

(3)
where W is the learnable weights of {ℜj

i}
m
j=1 and their

parent ℜi, Φ is the training set corresponding to Ci, yr is

the ground truth label of xr, and yr
′ is the label of xr that is

predicted by ℜi. The children of Ci are denoted as {Cj
i }

m
j=1

that corresponds to {ℜj
i}

m
j=1. If yr

′ refers to an ambiguous

class, yr
′ will be deferred via fi(·) to a specific child of Ci;

otherwise, there will be no deferral and fi(yr
′) will be set

to ∅. p(yr|xr) and pj(cs|xr) are the outputs of the softmax

function in ℜi and ℜj
i , respectively. Parameter α balances

the terms in the objective function and is set to 10 in our

current implementation. Similar to the RNN pre-training

(§ 3.1.2), LΦ(W) is optimized by SGD, where the gradients

are computed by BPTT.

3.2. Recognition using RNNT/ACH

Applying RNN-T/ACH to SAR leads to an iterative algo-

rithm that traverses the RNN-T model. For an input skele-

ton sequence x, the recognition starts at the root level, where

the root RNN ℜ1 (corresponding to C1) generates its clas-

sification result y1
′. If y1

′ refers to an unambiguous class,

y1
′ is output directly and the recognition process is com-

pleted. Otherwise, y1
′ is deferred via the lookup table f1(·)

to a specific child Cj of C1 for finer classification using

ℜj . This process continues until x is recognized with high

confidence (i.e., the predicted label of x refers to an unam-

biguous class), or a leaf node of RNN-T produces the final

classification result.

4. Incremental Learning

When RNN-T/ACH encounters action classes that are

not presented in training, we augment it to include the new

classes using an incremental learning algorithm to avoid a

time-consuming re-training of the entire model. The key

is to transfer information from the existing RNN-T/ACH

model to handle the limited training data of the new classes.

Specifically, the topology of the existing ACH, which is rep-

resented by the inter-category relations encoded by the am-

biguous class deferral lookup tables (§ 3.1.3), is preserved

in the augmented model, and the network structure shared

by individual RNNs in RNN-T (§ 3.1.2) is also inherited by

the new RNN-T model. Our incremental learning algorithm

updates ACH and RNN-T level-by-level from the root level

using two main procedures: (a) insert new classes into the

action categories with similar actions; (b) update ACH and

RNN-T to reflect the change in structure. Figure 2 illus-

trates a update example.

We insert new classes into action categories where sim-

ilar classes exist in ACH. All new classes are initially in-

serted into the root action category C1. We then traverse

the tree structure of ACH to find appropriate action cate-

gories for the new classes. Specifically, when the process

reaches an action category Ci (with children {Cj
i }), we es-

timate the likelihood p̃ji (s) that an action instance in new

class cs is classified by RNN ℜi into each child of Ci:

p̃ji (s) =

∑
x∈Xs,cs∈Ci

1(y′ ∈ Cj
i)

|Xs|
, (4)

where the numerator counts how many action instances of

cs are classified into Cj
i . Xs represents the action instance

set of cs. If p̃ji (s) > θo, cs is inserted into Cj
i , where θo

is a threshold defined in § 3.1.1. As such, possibly multiple

children of Ci will process cs in parallel subsequently. The

process continues until a leaf node is reached.

After new action classes are inserted into ACH, action

categories {Ci}, lookup tables {fi(·)} and the RNN mod-

ules {ℜi} in RNN-T are then updated in a similar level-by-

level fashion. We traverse the tree structure of ACH and

RNN-T. When the process reaches an action category Ci,

we update ℜi to recognize new classes in Ci. Then, we

use the updated ℜi to identify the ambiguity of these new

classes as in § 3.1.1. If there exists any new action class in

Ci being identified as unambiguous, we remove such unam-

biguous classes from the offsprings of Ci in ACH. Finally,

we update the lookup table fi(·), by incrementally updat-

ing the lookup table for minor changes, but reconstruct it

when significant changes occur in the overall structure. We

measure the degree of change occurring in Ci using the in-

crement ratio of ambiguous classes in it, which is defined

as τ = nnew

nold

1. nnew and nold represent the number of new

ambiguous classes and old ambiguous classes, respectively.

We define θr = h · exp(1 − h) as a threshold for τ , with

h indicating the depth of the level that Ci resides. τ < θr
means that the change in Ci is minor, so we just update fi(·)
by enabling the deferral for each new ambiguous class cs to

a specific child Cj
i with the highest likelihood defined in (4).

When τ ≥ θr, it means significant changes have occurred

to the composition of Ci due to the new classes, thus, we re-

build the entire sub-tree structure of RNN-T/ACH starting

from Ci as described in § 3.1, and update the lookup table

accordingly.

5. Experiments

We evaluate RNN-T/ACH model for SAR problem with

two test settings: (i) using a fixed number of action classes

1If nnew > 0 and nold = 0, it means a drastic change. If nnew = 0

and nold = 0, we set τ as 0.

1448

Figure 2: An example of ACH after each incremental learning procedure. Red circles represent new action classes. (a) Insert new classes:

All action categories accommodate new classes except C5, which does not contain similar classes to the new ones. (b) Update ACH and

RNN-T: Minor changes occur in C1, C2, and C4, and their corresponding RNNs are incrementally updated. The sub-tree starting from

C3 is rebuilt due to drastic changes.

(§ 5.2), and (ii) using increasing number of classes over

time (§ 5.3). For scenario (i), we only consider the clas-

sification accuracy for evaluation. Test scenario (ii) is used

to evaluate our incremental learning algorithm, so we con-

sider both accuracy and the re-training time for evaluation.

All results are reported based on the implementation using

a single CPU core (3.4GHz) on an Intel Xeon E5-2687W

v2 machine with 128GB RAM. The four parameters λ, θc,

θo, θl described in § 3.1.1 are chosen as follows. Since in-

efficiency grows exponentially with ACH levels, we set the

balancing parameter λ in (2) to be a small value λ = 0.03.

The threshold θc is empirically set to be 0.85 to determine

whether a class is ambiguous.

We construct 6 variants of RNN-T using different in-

dividual RNN modules, namely, uni-directional vanilla

RNN (URNN), bi-directional vanilla RNN (BRNN), uni-

directional RNN with LSTM (URNN-L), bi-directional RNN

with LSTM (BRNN-L), hierarchically bidirectional RNN

(HBRNN-L) [5], uni-directional RNN with 2 layers of

LSTM (URNN-2L). The code of HBRNN-L [5] is avail-

able, while the other RNNs are re-implemented using

RNNLIB [10].

Concerning the input to the RNNs, similar to [5], skele-

tal joints are divided into five parts (i.e., four limbs and

one trunk) as the input to HBRNN-L. For the rest of RNN

models, we follow [26] to extract four features (positions,

angles, offsets, pairwise joint distances) from the skele-

tal joints, and concatenate them to create a 310 dimen-

sional feature vector per frame. The network architec-

ture and other configurations of RNN are set according

to [5] and [26]. See supplemental materials for more de-

tails. Among these RNN modules, URNN-2L is the largest

model, producing the best recognition accuracy, however,

it requires the longest training time. We made a trade-off

between the recognition accuracy and training efficiency,

and chose HBRNN-L as the major RNN module in RNN-

T/ACH for the extensive parameter selection experiments

and the validation experiments for incremental learning

with new classes.

5.1. Datasets

We create a new dataset with 140 diverse action

classes by aggregating all distinct classes from 10 exist-

ing datasets, which we name 3D-SAR-140. The 10

existing datasets are CMU Mocap [3] (23), ChaLearn

Italian [6] (20), MSRC-12 Gesture [7] (12), MSR Ac-

tion3D [16] (20), HDM05 [18] (65), Kintense [19] (10),

Berkeley MHAD [20] (12), MSR Daily Activity 3D [29]

(13), UTKinect-Action [32] (10), and ORGBD [34] (7),

where the number of classes are shown in the parentheses.

The class list is presented in the supplemental materials.

We re-organize and standardize all attributes across 10

datasets to form 3D-SAR-140, such that the number of

sequences per class is 28 on average, and the frame rate

is normalized to 20 frames-per-second (FPS), and the hu-

man skeleton is represented by 20 skeletal joints (see sup-

plemental material for details). We partition 60% of the

3D-SAR-140 as the training set, 20% as the validation set,

and the remaining 20% as the testing set. 3D-SAR-140

is a challenging benchmark due to two factors: (i) a

large variety of movements and dynamics in various con-

texts are included, where fine-grained recognition is re-

quired; (ii) video length for individual actions varies sig-

nificantly (ranging from 5 to 800 frames) within or across

classes. 3D-SAR-140 dataset. The dataset is available

for download from http://www.cs.albany.edu/

cvml/downloads.html or http://www.albany.

edu/∼WL523363/main.html.

We also evaluate our method on NTU RGB+D Dataset

[23], a new dataset which contains both single-person ac-

tions and mutual actions. This dataset is collected by Kincet

v2 and contains more than 56 thousand sequences and 4

million frames. A total of 60 different action classes includ-

ing 40 daily actions (e.g., drinking, eating, reading, etc.), 11

mutual actions (e.g., punching, kicking, hugging, etc.), and

9 health-related actions (e.g., sneezing, staggering, falling

down, etc.) are performed by 40 subjects aged between 10

and 35. The 3D coordinates of 25 joints are provided in

this dataset. The large intra-class and view point variations

make this dataset challenging.

5.2. Fixed Action Classes

To evaluate RNN-T/ACH in multiple aspects, we switch

key features (i.e., EJR, IP, and FT) on and off to demonstrate

the effectiveness of the individual components of RNN-

T/ACH. We further compare RNN-T/ACH with DT with

1449

http://www.cs.albany.edu/cvml/downloads.html
http://www.cs.albany.edu/cvml/downloads.html
http://www.albany.edu/~WL523363/main.html
http://www.albany.edu/~WL523363/main.html

Figure 3: Classification accuracy against θo and θl.

RNN base classifiers and several variants of RNN-T/ACH

with 5 baselines (URNN, URNN-L, BRNN, BRNN-L,

URNN-2L) and 8 state-of-the-art methods (Table 1) in solv-

ing SAR.. Whenever possible, we use codes provided by the

original authors of the corresponding work, with parame-

ters chosen using a grid search around default parameters.

All methods based on RNN-T/ACH are denoted with suffix

“-T”. We select the parameters of all methods on the valida-

tion set of the 3D-SAR-140 dataset.

Comparison with baselines and state-of-arts. As shown

in Table 1, our method achieves significant performance

gain over 5 baselines and 8 state-of-the-art methods. This

maybe due to the ambiguity-aware deferral and divide-

and-conquer approach used in RNN-T/ACH. In particular,

URNN-2L-T yields the best performance, and the accuracy

is improved by 13.6% compared to HBRNN-L-T. The main

reason is that the base classifier URNN-2L is much larger

and complicated than HBRNN-L, with 14 times more pa-

rameters than HBRNN-L.

Action category division vs. RNN decision tree. Parame-

ters θl and θo control the category division in § 3.1. We vary

θl among {5, 10, 15} and θo among {0, 0.2, 0.4, 0.6, 0.8, 1},

while keeping other parameters fixed, to investigate their

impacts on the accuracy. Setting θo = 1 disables the

overlapping between action categories, which makes RNN-

T/ACH degenerate to a RNN based decision tree. The best

results are obtained with θl = 5 and θo = 0.2 as shown in

Figure 3, which are used in the subsequent experiments.

Early jump-out of recognized action classes (EJR). To

study the effect of EJR in ordinary RNN-T, we build a stan-

dalone HBRNN-L-T with θc = ∞ which essentially im-

plements EJR by treating all classes to be ambiguous —

and hence all classes need to be deferred to subtrees as dis-

cussed in § 3.1.1. The resulting accuracy decreases from

0.756 to 0.700, which shows that the early output of confi-

dently recognized classes is advantageous for efficiency and

recognition performance.

Inefficiency penalization (IP). To verify the inefficiency

penalization term in (2) designed to prevent over-fitting, we

build a standalone HBRNN-L-T without inefficiency penal-

ization. Consequently, a 6-level, 26-category ACH is gener-

ated, which is more complex than the 4-level, 22-category

one generated by using the inefficiency penalization. As

shown in Table 1, if we remove IP, accuracy drops from

0.756 to 0.697 but running time is 1.32 times faster, which

Methods Accur.

URNN 0.296

URNN-L 0.665

BRNN 0.643

BRNN-L 0.672

URNN-2L 0.866

RR [28] 0.723

HBRNN-L [5] 0.604

CHARM [14] 0.618

DBN-HMM [31] 0.601

Lie-group [27] 0.745

HOD [8] 0.657

MP [35] 0.203

SSS [36] 0.253

Our Methods Accur.

URNN-T 0.539

URNN-L-T 0.743

BRNN-T 0.705

BRNN-L-T 0.751

URNN-2L-T 0.892

HBRNN-L-T (4 levels) 0.756

HBRNN-L-T (3 levels) 0.750

HBRNN-L-T (2 levels) 0.735

HBRNN-L-T (1 level) 0.604

HBRNN-L-T w/o EJR 0.700

HBRNN-L-T w/o IP 0.697

HBRNN-L-T w/o FT 0.733

Table 1: Recognition results on 3D-SAR-140 dataset. See text

that “-L” stands for LSTM, “-T” stands for RNN-T.

may be due to over-fitting caused by the complex structure.

Fine-tuning (FT). The joint fine-tuning in § 3.1.4 is another

factor that RNN-T/ACH is superior than the RNN-based de-

cision tree (where RNNs are trained separately). As shown

in Table 1, such fine-tuning increases performance from

0.733 to 0.756, demonstrating that fine-tuning in RNN co-

training is important to improve the performance.

Increasing levels of RNN-T. Table 1 shows that as the level

of RNN-T/ACH increases, accuracy increases monotoni-

cally until saturation close to 4 levels. This demonstrates

that a single RNN is not sufficient for large-scale action

recognition, and for the module HBRNN-L, a 4-level RNN

tree is a good trade-off between performance and efficiency.

Comparison on existing datasets. To provide broader con-

texts of RNN-T/ACH, we compare it with the state-of-the-

art methods on the 10 existing datasets that are used to

create 3D-SAR-140 dataset. We follow existing methods

to setup experiments (see the supplementary for more de-

tails). Figure 4 summarizes the results. As the number of

classes decreases, our URNN-2L-T outperforms the com-

pared methods, though the advantage is less obvious than

the large-scale case. The performance of RNN-T/ACH is

restricted by insufficient training data in the cases of MSR

Daily and ORGBD. Furthermore, as shown in Table 2, we

compare RNN-T/ACH with the most recent state-of-the-

art LSTM based methods on the recently proposed NTU

dataset (including 60 action classes), following a common

protocol in [23]. The results of others’ methods in Table 2

are directly taken from their original papers. The results

show that RNN-T/ACH performs slightly better than the

others based on URNN-2L without the sophisticated net-

work structure design.

5.3. Including New Action Classes

To create an incremental learning process, we start from

the data with 70 classes from 3D-SAR-140 dataset and in-

crementally add 14 random new classes at a step, until 140

classes are reached. To create a realistic simulation, we as-

1450

Figure 4: Recognition results on existing datasets. The number of action classes of each dataset is shown behind its name. On average,

our URNN-2L-T outperforms URNN-2L by 3.2%, and outperforms RR [28] by 8.64%.

Methods CS Accur. CV Accur.

HBRNN-L [5] 0.591 0.640

Part-aware LSTM [23] 0.629 0.703

Deep RNN [23] 0.563 0.641

Deep LSTM [23] 0.607 0.673

ST-LSTM [17] 0.692 0.777

STA-LSTM [25] 0.734 0.812

URNN-2L 0.730 0.809

URNN-2L-T 0.746 0.832

Table 2: Comparison on the NTU dataset with Cross-Subject (CS)

and Cross-View (CV) settings.

sume that the first 70 classes were trained from scratch us-

ing 100% of the training data. Then, we vary the percentage

of the training data used for new classes as 100% and 80%,

to see the impact of training data on the re-training time

and accuracy. We compare two incremental learning meth-

ods I-HBRNN-L-T and I-HBRNN-L, and two from-scratch

learning methods HBRNN-L-T and HBRNN-L, where I-

HBRNN-L is initialized with weights from HBRNN-L.

Figure 5 shows that I-HBRNN-L-T achieves higher ac-

curacy and less re-training time than I-HBRNN-L and

HBRNN-L. I-HBRNN-L-T achieves similar accuracy com-

pared to HBRNN-L-T, but with significantly less re-training

time. We highlight two observations as the number of class

increases: (i) both I-HBRNN-L-T and HBRNN-L-T yield

stable accuracy, while the performances of I-HBRNN-L and

HBRNN-L fluctuate, which demonstrates the advantage of

RNN-T; (ii) the re-training time of I-HBRNN-L-T is rela-

tively short, which demonstrates the effectiveness of our in-

cremental learning algorithm. Furthermore, the fewer train-

ing data, I-HBRNN-L-T still outperforms three baselines in

both performance and running efficiency.

6. Conclusion

We describe a new method for skeleton-based action

recognition (SAR) using the RNN tree (RNN-T) model

and its associated action category hierarchy (ACH). We

show that organizing multiple RNNs into a tree structure to-

gether with the learned ACH leads to an effective and adap-

tive framework for large-scale and fine-grained SAR task.

The RNN-T/ACH method addresses two main challenges

in large-scale action recognition: (i) ability to distinguish

fine-grained action classes that are intractable using a single

network, and (ii) adaptability to new action classes by aug-

menting an existing model. We demonstrate the noticeable

Figure 5: Incremental learning comparison results. “I-” stands

for incremental.

performance improvement against state-of-the-art methods

on 3D-SAR-140 and several public benchmarks.

There are a few research directions that we would like to

further improve the current work. First, our current method

uses fixed structure for each action category, but it will be

beneficial to differentiate the RNN structures adaptively in

each action category, to capture richer space-time charac-

teristics. As such, we will explore methods to optimize the

structure of individual RNNs for each. Second, we plan

to extend our dataset to include more diverse and challeng-

ing action classes for comprehensive evaluation. Third, the

RNN-T/ACH model suggests that we can combine the re-

current neural network model with the recursive structure

defined by the tree, thus a recursive recurrent neural net-

work model may be more suitable to SAR and other re-

lated tasks. We plan to further pursue this direction in the

future. Last, with the assistance of recent tracking algo-

rithms [4, 15, 30, 33] and the mobile computing techniques

[12, 13], we hope to apply our method to more complex

action recognition in real life.

7. Acknowledgement

This material is based upon work partially supported (Si-

wei Lyu and Wenbo Li) by the National Science Foundation

under National Robotics Initiative Grant No. IIS-1537257.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Sci-

ence Foundation. We thank the three anonymous reviewers

for their constructive comments.

1451

References

[1] J. K. Aggarwal and L. Xia. Human activity recognition from

3D data: A review. PR Letters, 48:70–80, 2014.

[2] W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Par-

allel spectral clustering in distributed systems. TPAMI,

33(3):568–586, 2011.

[3] CMU. CMU graphics lab motion capture database. http:

//mocap.cs.cmu.edu/, 2013.

[4] D. Du, H. Qi, W. Li, L. Wen, Q. Huang, and S. Lyu. Online

deformable object tracking based on structure-aware hyper-

graph. TIP, 25(8):3572–3584, 2016.

[5] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neu-

ral network for skeleton based action recognition. In CVPR,

pages 1110–1118, 2015.

[6] S. Escalera, J. Gonzàlez, X. Baró, M. Reyes, O. Lopes,

I. Guyon, V. Athitsos, and H. J. Escalante. Multi-modal

gesture recognition challenge 2013: Dataset and results. In

ICMI, pages 445–452, 2013.

[7] S. Fothergill, H. M. Mentis, P. Kohli, and S. Nowozin. In-

structing people for training gestural interactive systems. In

CHI, pages 1737–1746, 2012.

[8] M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban.

Histogram of oriented displacements (HOD): describing tra-

jectories of human joints for action recognition. In IJCAI,

pages 1351–1357, 2013.

[9] A. Graves. Supervised sequence labelling with recurrent

neural networks, volume 385 of Studies in Computational

Intelligence. 2012.

[10] A. Graves. RNNLIB: A recurrent neural network library for

sequence learning problems. http://sourceforge.

net/projects/rnnl/, 2013.

[11] S. Hochreiter and J. Schmidhuber. LSTM can solve hard

long time lag problems. In ACCV, pages 473–479, 1996.

[12] D. Li and M. C. Chuah. EMOD: an efficient on-device mo-

bile visual search system. In ACM MMSys, pages 25–36,

2015.

[13] D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah.

Deepcham: Collaborative edge-mediated adaptive deep

learning for mobile object recognition. In SEC, pages 64–

76, 2016.

[14] W. Li, L. Wen, M. C. Chuah, and S. Lyu. Category-blind

human action recognition: A practical recognition system.

In ICCV, pages 4444–4452, 2015.

[15] W. Li, L. Wen, M. C. Chuah, Y. Zhang, Z. Lei, and S. Z. Li.

Online visual tracking using temporally coherent part cluster.

In WACV, pages 9–16, 2015.

[16] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a

bag of 3D points. In CVPRW, pages 9–14, 2010.

[17] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal

lstm with trust gates for 3D human action recognition. In

ECCV, pages 1–8, 2016.

[18] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger,

and A. Weber. Documentation mocap database HDM05.

Technical Report CG-2007-2, Universität Bonn, 2007.

[19] S. M. S. Nirjon, C. Greenwood, C. Torres, S. Zhou, J. A.

Stankovic, H. Yoon, H. Ra, C. Basaran, T. Park, and S. H.

Son. Kintense: A robust, accurate, real-time and evolving

system for detecting aggressive actions from streaming 3D

skeleton data. In PerCom, pages 2–10, 2014.

[20] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy.

Berkeley MHAD: a comprehensive multimodal human ac-

tion database. In WACV, pages 53–60, 2013.

[21] J. R. Quinlan. Induction of decision trees. Machine Learn-

ing, 1(1):81–106, 1986.

[22] K. K. Reddy, J. Liu, and M. Shah. Incremental action recog-

nition using feature-tree. In ICCV, pages 1010–1017, 2009.

[23] A. Shahroudy, J. Liu, T. Ng, and G. Wang. NTU RGB+D: a

large scale dataset for 3D human activity analysis. In CVPR,

pages 1010–1019, 2016.

[24] J. Shotton, T. Sharp, A. Kipman, A. W. Fitzgibbon,

M. Finocchio, A. Blake, M. Cook, and R. Moore. Real-time

human pose recognition in parts from single depth images.

CACM, 56(1):116–124, 2013.

[25] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An end-to-end

spatio-temporal attention model for human action recogni-

tion from skeleton data. In AAAI, pages 4263–4270, 2017.

[26] V. Veeriah, N. Zhuang, and G. Qi. Differential recurrent neu-

ral networks for action recognition. In ICCV, pages 4041–

4049, 2015.

[27] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action

recognition by representing 3D skeletons as points in a Lie

group. In CVPR, pages 588–595, 2014.

[28] R. Vemulapalli and R. Chellappa. Rolling rotations for rec-

ognizing human actions from 3D skeletal data. In CVPR,

pages 4471–4479, 2016.

[29] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet en-

semble for action recognition with depth cameras. In CVPR,

pages 1290–1297, 2012.

[30] L. Wen, W. Li, J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-

ple target tracking based on undirected hierarchical relation

hypergraph. In CVPR, pages 1282–1289, 2014.

[31] D. Wu and L. Shao. Leveraging hierarchical parametric

networks for skeletal joints based action segmentation and

recognition. In CVPR, pages 724–731, 2014.

[32] L. Xia, C. Chen, and J. K. Aggarwal. View invariant human

action recognition using histograms of 3D joints. In CVPRW,

pages 20–27, 2012.

[33] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan. POI: multiple

object tracking with high performance detection and appear-

ance feature. In ECCVW, pages 36–42, 2016.

[34] G. Yu, Z. Liu, and J. Yuan. Discriminative orderlet min-

ing for real-time recognition of human-object interaction. In

ACCV, pages 50–65, 2014.

[35] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving

pose: An efficient 3D kinematics descriptor for low-latency

action recognition and detection. In ICCV, pages 2752–2759,

2013.

[36] X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng. Online hu-

man gesture recognition from motion data streams. In ACM

MM, pages 23–32, 2013.

[37] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and

X. Xie. Co-occurrence feature learning for skeleton based

action recognition using regularized deep LSTM networks.

In AAAI, pages 3697–3704, 2016.

1452

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://sourceforge.net/projects/rnnl/
http://sourceforge.net/projects/rnnl/

