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Abstract

In this work, we jointly address the problem of text de-

tection and recognition in natural scene images based on

convolutional recurrent neural networks. We propose a

unified network that simultaneously localizes and recog-

nizes text with a single forward pass, avoiding intermediate

processes, such as image cropping, feature re-calculation,

word separation, and character grouping. In contrast to ex-

isting approaches that consider text detection and recogni-

tion as two distinct tasks and tackle them one by one, the

proposed framework settles these two tasks concurrently.

The whole framework can be trained end-to-end, requir-

ing only images, ground-truth bounding boxes and text la-

bels. The convolutional features are calculated only once

and shared by both detection and recognition, which saves

processing time. Through multi-task training, the learned

features become more informative and improves the overall

performance. Our proposed method has achieved competi-

tive performance on several benchmark datasets.

1. Introduction

Text in natural scene images contains rich semantic in-

formation and is of great value for image understanding.

As an important task in image analysis, scene text spotting,

including both text region detection and word recognition,

attracts much attention in computer vision field.

Due to the large variation in text patterns and back-

ground, spotting text in natural scene is much more chal-

lenging than in scanned documents. Although significant

progress has been made recently based on Deep Neural Net-

work (DNN) techniques, it is still an open problem [36].

Previous works [28, 2, 12, 11] usually divide text spot-

ting into a sequence of distinct sub-tasks. Text detection

is performed firstly with a high recall to get candidate text

∗The first two authors equally contributed to this work. C. Shen is the

corresponding author.

regions. Then word recognition is performed on cropped

bounding boxes using different approaches, followed by

word separation or character grouping. A number of tech-

niques are also developed which solely focus on text detec-

tion or word recognition. However, the tasks of word detec-

tion and recognition are highly correlated. Firstly, the fea-

ture information can be shared between them. In addition,

these two tasks can complement each other: detecting text

regions accurately helps improve recognition performance,

and recognition outputs can be used to refine detection re-

sults.

To this end, we propose an end-to-end trainable text spot-

ter, which jointly detects and recognizes words in natural

scene images. An overview of the network architecture is

presented in Figure 1. It consists of several convolutional

layers, a region proposal network tailored specifically for

text (refer to as Text Proposal Network, TPN), a Recurrent

Neural Network (RNN) encoder for embedding proposals

of varying sizes to fixed-length vectors, multi-layer percep-

trons for detection and bounding box regression, and an

attention-based RNN decoder for word recognition. Via this

framework, both text bounding boxes and word labels are

provided with a single forward evaluation of the network.

We do not need to process the intermediate issues such as

character grouping [35, 26] or text line separation [32], and

thus avoid potential error accumulation. The main contri-

butions are thus three-fold:

(1) An end-to-end trainable DNN is designed to opti-

mize the overall accuracy and share computations. The

network integrates both text detection and word recogni-

tion. With the simultaneous training on multiple tasks, the

learned features are more informative, which can promote

the detection results as well as the overall performance.

The convolutional features are shared by both detection

and recognition, which saves processing time. To our best

knowledge, this is the first attempt to integrate text detection

and recognition into a single end-to-end trainable network.

(2) We propose a new method for region feature extrac-

tion. In previous works [4, 21], Region-of-Interest (RoI)
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Figure 1. Model overview. The network takes an image as input, and outputs both text bounding boxes and text labels in one forward pass.

The whole network is trained end-to-end.

pooling layer converts regions of different sizes and aspect

ratios into feature maps with a fixed size. Considering the

significant diversity of aspect ratios in text bounding boxes,

it is sub-optimal to fix the size after pooling. To accom-

modate the original aspect ratios and avoid distortion, RoI

pooling is tailored to generate feature maps with varying

lengths. An RNN encoder is then employed to encode fea-

ture maps of different lengths into the same size.

(3) A curriculum learning strategy is designed to train

the system with gradually more complex training data.

Starting from synthetic images with simple appearance and

a large word lexicon, the system learns a character-level lan-

guage model and finds a good initialization of appearance

model. By employing real-world images with a small lex-

icon later, the system gradually learns how to handle com-

plex appearance patterns. We conduct a set of experiments

to explore the capabilities of different model structures. The

best model outperforms state-of-the-art results on several

standard benchmarks, including ICDAR2011 [22] and IC-

DAR2015 [14].

2. Related Work

Text spotting essentially includes two tasks: text detec-

tion and word recognition. In this section, we present a brief

introduction to related works on text detection, word recog-

nition, and text spotting systems that combine both. There

are comprehensive surveys for text detection and recogni-

tion in [30, 36].

Text Detection Text detection aims to localize text in im-

ages and generate bounding boxes for words. Existing ap-

proaches can be roughly classified into three categories:

character based, text-line based and word based methods.

Character based methods firstly find characters in im-

ages, and then group them into words. They can be further

divided into sliding window based [12, 29, 35, 26] and Con-

nected Components (CC) based [9, 20, 3] methods. Sliding

window based approaches use a trained classifier to detect

characters across the image in a multi-scale sliding window

fashion. CC based methods segment pixels with consistent

region properties (i.e., color, stroke width, density, etc.) into

characters. The detected characters are further grouped into

text regions by morphological operations, conditional ran-

dom fields or other graph models.

Text-line based methods detect text lines firstly and then

separate each line into multiple words. The motivation is

that people usually distinguish text regions initially even if

characters are not recognized. Based on the observation that

a text region usually exhibits high self-similarity to itself

and strong contrast to its local background, Zhang et al. [32]

propose to extract text lines by exploiting symmetry prop-

erty. Zhang et al. [33] localize text lines via salient maps

that are calculated by fully convolutional networks. Post-

processing techniques are also proposed in [33] to extract

text lines in multiple orientations.

More recently, a number of approaches are proposed to

detect words directly using DNN based techniques, such as

Faster R-CNN [21], YOLO [13], SSD [18]. By extending

Faster R-CNN, Zhong et al. [34] design a text detector with

a multi-scale Region Proposal Network (RPN) and a multi-

level RoI pooling layer. Tian et al. [27] develop a verti-

cal anchor mechanism, and propose a Connectionist Text

Proposal Network (CTPN) to accurately localize text lines

in images. Gupta et al. [6] use a Fully-Convolutional Re-

gression Network (FCRN) for efficient text detection and

bounding box regression, motivated by YOLO. Similar to

SSD, Liao et al. [17] propose “TextBoxes” by combining

predictions from multiple feature maps with different reso-

lutions, and achieve the best-reported text detection perfor-

mance on datasets in [14, 28].

Text Recognition Traditional approaches to text recog-

nition usually perform in a bottom-up fashion, which rec-

ognize individual characters firstly and then integrate them
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into words by means of beam search [2], dynamic program-

ming [12], etc. In contrast, Jaderberg et al. [10] consider

word recognition as a multi-class classification problem,

and categorize each word over a large dictionary (about 90K

words) using a deep convolutional neural network (CNN).

With the success of RNNs on handwriting recogni-

tion [5], He et al. [7] and Shi et al. [23] treat word recog-

nition as a sequence labeling problem. RNNs are employed

to generate sequential labels of arbitrary length without

character segmentation, and Connectionist Temporal Clas-

sification (CTC) is adopted to decode the sequence. Lee

and Osindero [16] and Shi et al. [24] propose to recognize

text using an attention-based sequence-to-sequence learn-

ing structure. In this manner, RNNs automatically learn the

character-level language model presented in word strings

from the training data. The soft-attention mechanism al-

lows the model to selectively exploit local image features.

These networks can be trained end-to-end with cropped

word patches as inputs. Moreover, Shi et al. [24] insert a

Spatial Transformer Network (STN) to handle words with

irregular shapes.

Text Spotting Systems Text spotting needs to handle both

text detection and word recognition. Wang et al. [28] take

the locations and scores of detected characters as input and

try to find an optimal configuration of a particular word in

a given lexicon, based on a pictorial structures formulation.

Neumann and Matas [20] use a CC based method for char-

acter detection. These characters are then agglomerated into

text lines based on heuristic rules. Optimal sequences are fi-

nally found in each text line using dynamic programming,

which are the recognized words. These recognition-based

pipelines lack explicit word detection.

Some text spotting systems firstly generate text propos-

als with a high recall and a low precision, and then refine

them using a separate recognition model. It is expected

that a strong recognizer can reject false positives, especially

when a lexicon is given. Jaderberg et al. [11] use an en-

semble model to generate text proposals, and then adopt the

word classifier in [10] for recognition. Gupta et al. [6] em-

ploy FCRN for text detection and the word classifier in [10]

for recognition. Liao et al. [17] combine “TextBoxes” and

“CRNN” [23], which yield state-of-the-art text spotting per-

formance on datasets in [14, 28].

3. Model

Our goal is to design an end-to-end trainable network,

which simultaneously detects and recognizes all words in

images. Our model is motivated by recent progresses in

DNN models such as Faster R-CNN [21] and sequence-to-

sequence learning [24, 16], but we take the special char-

acteristics of text into consideration. In this section, we

present a detailed description of the whole system.
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Figure 2. Text Proposal Net-

work (TPN). We apply mul-

tiple scale sliding windows

over the convolutional fea-

ture maps. Both local and

contextual information are

retained in order to propose

high quality text bounding

boxes. The concatenated lo-

cal and contextual features

are further fed into the cls

layer for computing textness

scores and the reg layer to

calculate coordinate offsets,

with respect to k anchors at

each position.

Notation All bold capital letters represent matrices and all

bold lower-case letters denote column vectors. [a;b] con-

catenates the vectors a and b vertically, while [a,b] stacks

a and b horizontally (column wise). In the following, the

bias terms in neural networks are omitted.

3.1. Overall Architecture

The whole system architecture is illustrated in Figure 1.

Firstly, the input image is fed into a CNN that is modified

from the VGG-16 net [25]. The original VGG-16 net con-

sists of 13 layers of 3 × 3 convolutions followed by Rec-

tified Linear Unit (ReLU), 5 layers of 2 × 2 max-pooling,

and Fully-Connected (FC) layers. Here we remove FC lay-

ers. As long as text in images can be relatively small, we

only keep the 1st, 2nd and 4th max-pooling layers, so that

the down-sampling ratio is increased from 1/32 to 1/8.

Given the computed convolutional features, TPN pro-

vides a list of text region proposals (bounding boxes).

Then, Region Feature Encoder (RFE) converts the convo-

lutional features of proposals into fixed-length representa-

tions. These representations are further fed into Text Detec-

tion Network (TDN) to calculate their textness scores and

bounding box offsets. Next, RFE is applied again to com-

pute fixed-length representations of text bounding boxes

provided by TDN (see purple paths in Figure 1). Finally,

Text Recognition Network (TRN) recognizes words in the

detected bounding boxes based on their encoded represen-

tations.

3.2. Text Proposal Network

Text proposal network (TPN) is inspired from RPN [21,

34], which can be regarded as a fully convolutional network.

As presented in Figures 2, it takes convolutional features

as input, and outputs a set of bounding boxes accompanied

with “textness” scores and coordinate offsets, which indi-

cate scale-invariant translations and log-space height/width

shifts relative to pre-defined anchors as in [21].
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Considering that word bounding boxes usually have

larger aspect ratios (W/H) and varying scales, we designed

k = 24 anchors with 4 scales (with box areas of 162, 322,

642, 802) and 6 aspect ratios (W/H = 1, 2, 3, 5, 7, 10).

Inspired by [34], we apply two 256-d rectangle con-

volutional filters of different sizes (W = 5, H = 3 and

W = 3, H = 1) on feature maps to extract both local and

contextual information. The rectangle filters lead to wider

receptive fields, which is more suitable for word bounding

boxes with large aspect ratios. The resulting features are

further concatenated to 512-d vectors and fed into two sib-

ling layers for text/non-text classification and bounding box

regression.

3.3. Region Feature Encoder

To process RoIs of different scales and aspect ratios in

a unified way, most existing works re-sample regions into

fixed-size feature maps via pooling [4]. However, for text,

this approach may lead to significant distortion due to the

large variation of word lengths. For example, it may be un-

reasonable to encode short words like “Dr” and long words

like “congratulations” into feature maps of the same size.

In this work, we propose to re-sample regions according to

their respective aspect ratios, and then use RNNs to encode

the resulting feature maps of different lengths into fixed

length vectors. The whole region feature encoding process

is illustrated in Figure 3.

For an RoI of size h×w, we perform spatial max-pooling

with a resulting size of

H ×min(Wmax, 2Hw/h), (1)

where the expected height H is fixed and the width is ad-

justed to keep the aspect ratio as 2w/h (twice the original

aspect ratio) unless it exceeds the maximum length Wmax.

Note that here we employ a pooling window with an as-

pect ratio of 1 : 2, which benefits the recognition of narrow

shaped characters, like ‘i’, ‘l’, etc., as stated in [23].

Next, the re-sampled feature maps are considered as a

sequence and fed into RNNs for encoding. Here we use

Long-Short Term Memory (LSTM) [8] instead of vanilla

RNN to overcome the shortcoming of gradient vanishing or

exploding. The feature maps after the above varying-size

RoI pooling are denoted as Q ∈ R
C×H×W , where W =

min(Wmax, 2Hw/h) is the number of columns and C is

the channel size. We flatten the features in each column,

and obtain a sequence q1, . . . ,qW ∈ R
C×H which are fed

into LSTMs one by one. Each time LSTM units receive one

column of feature qt, and update their hidden state ht by

a non-linear function: ht = f(qt,ht−1). In this recurrent

fashion, the final hidden state hW (with size R = 1024)

captures the holistic information of Q and is used as an RoI

representation with fixed dimension.
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Figure 3. Region Features Encoder (RFE). Region features after

RoI pooling are not required to be of the same size. In contrast,

they are calculated according to the specific aspect ratios of bound-

ing boxes, with height normalized. LSTM is then employed to

encode region features of varying length into fixed-size represen-

tations.

3.4. Text Detection and Recognition

Text Detection Network (TDN) aims to judge whether the

proposed RoIs are text or not and refine the coordinates of

bounding boxes once again, based on the extracted region

features hW . Two fully-connected layers with 2048 neu-

rons are applied on hW , followed by two parallel layers for

classification and bounding box regression respectively.

The classification and regression layers used in TDN are

similar to those used in TPN. Note that the whole system re-

fines the coordinates of text bounding boxes twice: once in

TPN and then in TDN. Although RFE is employed twice to

calculate features for proposals produced by TPN and later

the detected bounding boxes provided by TDN, the convo-

lutional features only need to be computed once.

Text Recognition Network (TRN) aims to predict the text

in the detected bounding boxes based on the extracted re-

gion features. As shown in Figure 4, we adopt LSTMs with

attention mechanism [19, 24] to decode the sequential fea-

tures into words.

Firstly, hidden states at all steps h1, . . . ,hW from RFE

are fed into an additional layer of LSTM encoder with 1024
units. We record the hidden state at each time step and form

a sequence of V = [v1, . . . ,vW ] ∈ R
R×W . It includes

local information at each time step and works as the context

for the attention model.

As for decoder LSTMs, the ground-truth word label is

adopted as input during training. It can be regarded as a

sequence of tokens s = {s0, s1, . . . , sT+1} where s0 and

sT+1 represent the special tokens START and END respec-

tively. We feed decoder LSTMs with T + 2 vectors: x0,

x1, . . . , xT+1, where x0 = [vW ; Atten(V,0)] is the con-

catenation of the encoder’s last hidden state vW and the at-

tention output with the guidance signal equals to zero; and

xi = [ψ(si−1); Atten(V,h
′

i−1)], for i = 1, . . . , T + 1,

is made up of the embedding ψ() of the (i − 1)-th token

si−1 and the attention output guided by the hidden state of

decoder LSTMs in the previous time-step h′

i−1. The em-

bedding function ψ() is defined as a linear layer followed
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by a tanh non-linearity.

The attention function c = Atten(V,h) is defined as

follows:











gj = tanh(Wvvj +Whh), j = 1, . . . ,W,

α = softmax(w⊤
g · [g1,g2, . . . ,gW ]),

c =
∑W

j=1 αjvj ,

(2)

where V = [v1, . . . ,vW ] is the varying-length sequence of

features to be attended (context), h is the guidance signal,

Wv and Wh are linear embedding weights to be learned, α

is the attention weights of size W , and the attended feature

c is a weighted sum of input features.

At each time-step t = 0, 1, . . . , T + 1, the decoder

LSTMs compute their hidden state h′
t and output vector yt

as follows:

{

h′
t = f(xt,h

′
t−1),

yt = ϕ(h′
t) = softmax(Woh

′
t)

(3)

where the LSTM [8] is used for the recurrence formula

f(), and Wo linearly transforms hidden states to the output

space of size 38, including 26 case-insensitive characters,

10 digits, a token representing all punctuations like “!” and

“?”, and a special END token.

At test time, the token with the highest probability in

previous output yt is selected as the input token at step t+1,

instead of the ground-truth tokens s1, . . . , sT . The process

is started with the START token, and repeated until we get

the special END token.

3.5. Loss Functions and Training

Loss Functions As we demonstrate above, our system takes

as input an image, word bounding boxes and their labels

during training. Both TPN and TDN employ the binary

logistic loss Lcls for classification, and smooth L1 loss

Lreg [21] for regression. So the loss for training TPN is

LTPN =
1

N

N
∑

i=1

Lcls(pi, p
⋆
i ) +

1

N+

N+
∑

i=1

Lreg(di,d
⋆
i ), (4)

where N is the number of randomly sampled anchors in

a mini-batch and N+ is the number of positive anchors in

this batch (the range of positive anchor indices is from 1 to

N+). The mini-batch sampling and training process of TPN

are similar to that used in [21]. An anchor is considered as

positive if its Intersection-over-Union (IoU) ratio with any

ground-truth is greater than 0.7 and considered as negative

if its IoUs with all ground-truth are smaller than 0.3. In this

paper, N is set to 256 and N+ is at most 128. pi denotes

the predicted probability of anchor i being text and p⋆i is the

corresponding ground-truth label (1 for text, 0 for non-text).

di is the predicted coordinate offsets (dxi, dyi, dwi, dhi)
for anchor i, and d⋆

i is the associated offsets for anchor i
relative to the ground-truth. Bounding box regression only

applies to positive anchors.

For the final outputs of the whole system, we apply a

multi-task loss for both detection and recognition:

LDRN =
1

N̂

N̂
∑

i=1

Lcls(p̂i, p̂
⋆
i ) +

1

N̂+

N̂+
∑

i=1

Lreg(d̂i, d̂
⋆
i )

+
1

N̂+

N̂+
∑

i=1

Lrec(Y
(i), s(i)) (5)

where N̂ = 128 is the number of text proposals sampled

from the output of TPN, and N̂+ ≤ 64 is the number of

positive ones. The IoU ratio thresholds for positive and neg-

ative anchors are set to 0.6 and 0.4 respectively, which are

less strict than those used for training TPN. In order to mine

hard negatives, we first apply TDN on 1000 randomly sam-

pled negatives and select those with higher textness scores.

p̂i and d̂i are the outputs of TDN. s(i) is the ground-truth

tokens for sample i and Y(i) = {y
(i)
0 ,y

(i)
1 , . . . ,y

(i)
T+1}

is the corresponding output sequence of decoder LSTMs.

Lrec(Y, s) = −
∑T+1

t=1 logyt(st) denotes the cross en-

tropy loss on y1, . . . ,yT+1, where yt(st) represents the

predicted probability of the output being st at time-step t
and the loss on y0 is ignored.

Following [21], we use an approximate joint train-

ing process to minimize the above two losses together

(ADAM [15] is adopted), ignoring the derivatives with re-

spect to the proposed boxes’ coordinates.
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Data Augmentation We sample one image per iteration in

the training phase. Training images are resized to shorter

side of 600 pixels and longer side of at most 1200 pixels.

Data augmentation is also implemented to improve the ro-

bustness of our model, which includes:

1) randomly rescaling the width of the image by ratio

1 or 0.8 without changing its height, so that the bounding

boxes have more variable aspect ratios;

2) randomly cropping a sub-image which includes all

text in the original image, padding with 100 pixels on each

side, and resizing to 600 pixels on shorter side.

Curriculum Learning In order to improve generalization

and accelerate the convergence speed, we design a curricu-

lum learning [1] paradigm to train the model from gradually

more complex data.

1) We generate 48k images containing words in the

“Generic” lexicon [11] of size 90k by using the synthetic

engine proposed in [6]. The words are randomly placed on

simple pure color backgrounds (10 words per image on av-

erage). We lock TRN initially, and train the rest parts of

our proposed model on these synthetic images in the first

30k iterations, with convolutional layers initialized from the

trained VGG-16 model and other parameters randomly ini-

tialized according to Gaussian distribution. For efficiency,

the first four convolutional layers are fixed during the en-

tire training process. The learning rate is set to 10−5 for

parameters in the rest of convolutional layers and 10−3 for

randomly initialized parameters.

2) In the next 30k iterations, TRN is added and trained

with a learning rate of 10−3, together with other parts in

which the learning rate for randomly initialized parameters

is halved to 5× 10−4. We still use the 48k synthetic images

as they contain a comprehensive 90k word vocabulary. With

this synthetic dataset, a character-level language model can

be learned by TRN.

3) In the next 50k iterations, the training examples are

randomly selected from the “Synth800k” [6] dataset, which

consists of 800k images with averagely 10 synthetic words

placed on each real scene background. The learning rate for

convolutional layers remains at 10−5, but that for others is

halved to 10−4.

4) Totally 2044 real-world training images from IC-

DAR2015 [14], SVT [28] and AddF2k [34] datasets are

employed for another 20k iterations. In this stage, all the

convolutional layers are fixed and the learning rate for oth-

ers is further halved to 10−5. These real images contain

much less words than synthetic ones, but their appearance

patterns are much more complex.

4. Experiments

In this section, we perform experiments to verify the ef-

fectiveness of the proposed method. All experiments are

implemented on an NVIDIA Tesla M40 GPU with 24GB

memory. We rescale the input image into multiple sizes

during test phase in order to cover the large range of bound-

ing box scales, and sample 300 proposals with the high-

est textness scores produced by TPN. The detected bound-

ing boxes are then merged via Non-Maximum Suppression

(NMS) according to their textness scores and fed into TRN

for recognition.

Criteria We follow the evaluation protocols used in

ICDAR2015 Robust Reading Competition [14]: a bound-

ing box is considered as correct if its IoU ratio with any

ground-truth is greater than 0.5 and the recognized word

also matches, ignoring case. The words that contain al-

phanumeric characters and no longer than three characters

are ignored. There are two evaluation protocols used in the

task of scene text spotting: “End-to-End” and “Word Spot-

ting”. “End-to-End” protocol requires that all words in the

image are to be recognized, with independence of whether

the string exists or not in the provided contextualized lexi-

con, while “Word Spotting” on the other hand, only looks

at the words that actually exist in the lexicon provided, ig-

noring all the rest that do not appear in the lexicon.

Datasets The commonly used datasets for scene text spot-

ting include ICDAR2015 [14], ICDAR2011 [22] and Street

View Text (SVT) [28]. The dataset for the task of “Focused

Scene Text” in ICDAR2015 Robust Reading Competition,

consists of 229 images for training and 233 images for test.

In addition, it provides 3 specific lists of words as lexi-

cons for reference in the test phase, i.e., “Strong”, “Weak”

and “Generic”. “Strong” lexicon provides 100 words per-

image including all words appeared in the image. “Weak”

lexicon contains all words appeared in the entire dataset,

and “Generic” lexicon is a 90k word vocabulary proposed

by [11]. ICDAR2011 does not provide any lexicon, so we

only use the 90k vocabulary. SVT dataset consists of 100
images for training and 249 images for test. These images

are harvested from Google Street View and often have a

low resolution. It also provides a “Strong” lexicon with 50
words per-image. As there are unlabeled words in SVT,

we only evaluate the “Word-Spotting” performance on this

dataset.

4.1. Evaluation under Different Model Settings

In order to show the effectiveness of our proposed

varying-size RoI pooling (see Section 3.3) and the attention

mechanism (see Section 3.4), we examine the performance

of our model with different settings in this subsection. With

the fixed RoI pooling size of 4 × 20, we denote the mod-

els with and without the attention mechanism as “Ours At-

ten+Fixed” and “Ours NoAtten+Fixed” respectively. The

model with both attention and varying-size RoI pooling is

denoted as “Ours Atten+Vary”, in which the size of feature

maps after pooling is calculated by Equ. (1) with H = 4
and Wmax = 35.
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Table 1. Text spotting results on different benchmarks. We present the F-measure here in percentage. “Ours Two-stage” uses separate

models for detection and recognition, while other “Ours” models are end-to-end trained. “Ours Atten+Vary” achieves the best performance

on almost all datasets.

Method
ICDAR2015

Word-Spotting

ICDAR2015
End-to-End

ICDAR2011
Word-Spotting

SVT

Word-Spotting

Strong Weak Generic Strong Weak Generic Generic Strong Generic

Deep2Text II+ [31] 84.84 83.43 78.90 81.81 79.47 76.99 − − −
Jaderberg et al. [11] 90.49 − 76 86.35 − − 76 76 53
FCRNall+multi-filt [6] − − 84.7 − − − 84.3 67.7 55.7
TextBoxes [17] 93.90 91.95 85.92 91.57 89.65 83.89 87 84 64
YunosRobot1.0 86.78 − 86.78 84.20 − 84.20 − − −

Ours Two-stage 92.94 90.54 84.24 88.20 86.06 81.97 82.86 82.19 62.35
Ours NoAtten+Fixed 92.70 90.37 83.83 87.73 85.53 79.18 81.70 79.49 58.70
Ours Atten+Fixed 93.33 91.66 87.73 90.72 87.86 83.98 83.81 81.80 64.50
Ours Atten+Vary 94.16 92.42 88.20 91.08 89.81 84.59 87.70 84.91 66.18

Figure 5. The sequence decoding process performed by “Ours

Atten+Vary” and “Ours Atten+Fixed”. The heat maps show that

at each time step, the position of the character being decoded has

a higher attention weight, so that the corresponding local features

will be extracted and assist text recognition. However, if we use

the fixed size RoI pooling (“Ours Atten+Fixed”), information may

be lost during pooling, especially for a long word, which can lead

to an incorrect recognition result. In contrast, the varying-size

RoI pooling (“Ours Atten+Vary”) preserves more information and

leads to a correct result.

Although the last hidden state of LSTMs encodes the

holistic information of RoI image patch, it still lacks de-

tails. Particularly for a long word image patch, the initial

information may be lost during the recurrent encoding pro-

cess. Thus, we keep the hidden states of encoder LSTMs at

each time step as context. The attention model can choose

the corresponding local features for each character during

decoding process, as illustrated in Figure 5. From Ta-

ble 1, we can see that the model with attention mechanism,

namely “Ours Atten+Fixed”, achieves higher F-measures

on all evaluated data than “Ours NoAtten+Fixed” which

does not use attention.

One contribution of this work is a new region feature

encoder, which is composed of a varying-size RoI pooling

mechanism and an LSTM sequence encoder. To validate

its effectiveness, we compare the performance of models

“Ours Atten+Vary” and “Ours Atten+Fixed”. Experiments

shows that varying-size RoI pooling performs significantly

better for long words. For example, “Informatikforschung”

can be recognized correctly by “Ours Atten+Vary”, but not

by “Ours Atten+Fixed” (as shown in Figure 5), because

a large amount of information for long words is lost by

fixed-size RoI pooling. As illustrated in Table 1, adopt-

ing varying-size RoI pooling (“Ours Atten+Vary”) instead

of fixed-size pooling (“Ours Atten+Fixed”) improves F-

measure by around 1 percentage point for ICDAR2015, 4
points for ICDAR2011 and 3 points for SVT with strong

lexicon used.

4.2. Joint Training vs. Separate Training

Previous works [11, 6, 17] on text spotting typically per-

form in a two-stage manner, where detection and recogni-

tion are trained and processed separately. The text bound-

ing boxes detected by a model need to be cropped from the

image and then recognized by another model. In contrast,

our proposed model is trained jointly for both detection and

recognition. By sharing convolutional features and RoI en-

coder, the knowledge learned from the correlated detection

and recognition tasks can be transferred between each other

and results in better performance for both tasks.

To compare with the model “Ours Atten+Vary” which

is jointly trained, we build a two-stage system (denoted as

“Ours Two-stage”) in which detection and recognition mod-

els are trained separately. For fair comparison, the detec-

tor in “Ours Two-stage” is built by removing the recogni-

tion part from model “Ours Atten+Vary” and trained only

with the detection loss (denoted as “Ours DetOnly”). As to

recognition, we employ CRNN [23] that produces state-of-

the-art performance on text recognition. Model “Ours Two-

stage” firstly adopts “Ours DetOnly” to detect text with the

same multi-scale inputs. CRNN is then applied to recog-

nize the detected bounding boxes. We can see from Table 1

that model “Ours Two-stage” performs worse than “Ours

Atten+Vary” on all the evaluated datasets.
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Figure 6. Examples of text

spotting results by “Ours

Atten+Vary”. The first two

columns are images from

ICDAR2015, and the rest

are images from SVT. Red

bounding boxes are both

detected and recognized

correctly. Green bounding

boxes are missed words, and

yellow bounding boxes are

false positives. The results

show that our model is able to

detect and recognize words of

different aspect ratios. Most

missed words have small

bounding boxes.

Table 2. Text detection results on different datasets. Precision (P)

and Recall (R) at maximum F-measure (F) are reported in per-

centage. The jointly trained model (“Ours Atten+Vary”) gives bet-

ter detection results than the one trained with detection loss only

(“Ours DetOnly”).

Method
ICDAR2015 ICDAR2011

R P F R P F

Jaderberg et al. [11] 68.0 86.7 76.2 69.2 87.5 77.2
FCRNall+multi-filt [6] 76.4 93.8 84.2 76.9 94.3 84.7
Ours DetOnly 78.5 88.9 83.4 80.0 87.5 83.5
Ours Atten+Vary 80.5 91.4 85.6 81.7 89.2 85.1

Furthermore, we also compare the detection-only perfor-

mance of these two systems. Note that “Ours DetOnly”

and the detection part of “Ours Atten+Vary” share the

same architecture, but they are trained with different strate-

gies: “Ours DetOnly” is optimized with only the detec-

tion loss, while “Ours Atten+Vary” is trained with a multi-

task loss for both detection and recognition. In consis-

tent with the “End-to-End” evaluation criterion, a detected

bounding box is considered to be correct if its IoU ra-

tio with any ground-truth is greater than 0.5. The detec-

tion results are presented in Table 2. Without any lexicon

used, “Ours Atten+Vary” produces a detection performance

with F-measures of 85.6% on ICDAR2015 and 85.1% on

ICDAR2011, which are higher than “Ours DetOnly” by 2
percentage points in average. This result illustrates that de-

tector performance can be improved via joint training.

4.3. Comparison with Other Methods

In this part, we compare the text spotting performance

of “Ours Atten+Vary” with state-of-the-art approaches. As

shown in Table 1, “Ours Atten+Vary” outperforms the com-

pared methods on most of the evaluated datasets. In particu-

lar, our method shows an significant superiority when using

a generic lexicon. It leads to an averagely 1.5 percentage

point higher recall than the state-of-the-art TextBoxes [17],

using only 3 input scales compared with 5 scales used by

TextBoxes. Several text spotting examples are presented in

Figure 6.

4.4. Speed

Using an M40 GPU, model “Ours Atten+Vary” takes ap-

proximately 0.9s to process an input image of 600 × 800
pixels. It takes nearly 0.45s to compute the convolutional

features, 0.02s for text proposal calculation, 0.25s for RoI

encoding, 0.01s for text detection and 0.15s for word recog-

nition. On the other hand, model “Ours Two-stage” spends

around 0.45s for word recognition on the same detected

bounding boxes, as it needs to crop the word patches, and

re-calculate the convolutional features during recognition.

5. Conclusion

In this paper we have presented an unified end-to-end

trainable DNN for simultaneous text detection and recogni-

tion in natural scene images. A novel RoI encoding method

has been proposed, considering the large diversity of aspect

ratios of word bounding boxes. With this framework, scene

text spotting can be performed efficiently and accurately in

a single forward pass.

For future works, one potential direction is extending the

proposed model using 2D RNNs and 2D attention mecha-

nisms to handle oriented texts. Furthermore, small texts can

be better spotted using features from multiple convolutional

layers, as in [18, 17].
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