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Abstract

A natural image usually conveys rich semantic content

and can be viewed from different angles. Existing im-

age description methods are largely restricted by small

sets of biased visual paragraph annotations, and fail to

cover rich underlying semantics. In this paper, we inves-

tigate a semi-supervised paragraph generative framework

that is able to synthesize diverse and semantically coher-

ent paragraph descriptions by reasoning over local seman-

tic regions and exploiting linguistic knowledge. The pro-

posed Recurrent Topic-Transition Generative Adversarial

Network (RTT-GAN) builds an adversarial framework be-

tween a structured paragraph generator and multi-level

paragraph discriminators. The paragraph generator gen-

erates sentences recurrently by incorporating region-based

visual and language attention mechanisms at each step.

The quality of generated paragraph sentences is assessed

by multi-level adversarial discriminators from two aspects,

namely, plausibility at sentence level and topic-transition

coherence at paragraph level. The joint adversarial train-

ing of RTT-GAN drives the model to generate realistic para-

graphs with smooth logical transition between sentence top-

ics. Extensive quantitative experiments on image and video

paragraph datasets demonstrate the effectiveness of our

RTT-GAN in both supervised and semi-supervised settings.

Qualitative results on telling diverse stories for an image

verify the interpretability of RTT-GAN.

1. Introduction

Describing visual content with natural language is an

emerging interdisciplinary problem at the intersection of

computer vision, natural language processing, and artificial

intelligence. Recently, great advances [18, 3, 4, 31, 24, 33,

22, 21, 36] have been achieved in describing images and

videos using a single high-level sentence, owing to the ad-

vent of large datasets [23, 17] pairing images with natural

language descriptions. Despite the encouraging progress

in image captioning [30, 33, 24, 31], most current systems

tend to capture the scene-level gist rather than fine-grained

A group of people are sitting around a living 

room together. One of the men is wearing black 

sleeve shirt and blue pants. A man is sitting 

next to the wooden table. A man and woman 

are sitting on a couch. There is a brown 
wooden table in the room.

There is a man sitting on a wooden chair. 

The man with a white remote with white 

buttons is wearing a black and white 

shirt and jean pants. A woman next to 

him has red shirts and red skirts. There 

are a man and woman sitting on the floor 

next to a wooden table. 

A smiling woman is sitting on a couch. 

She has yellow short hair and is wearing a 

short sleeve shirt. She is holding a white 

plate. There is a brown couch in the living 

room. In front of her is a wooden table. 
There are papers and glasses on the table.

a) Generic description:

b) Personalized descriptions:

Figure 1. Our RTT-GAN is able to automatically produce generic

paragraph descriptions shown in (a), and personalized descriptions

by manipulating first sentences (highlighted in red), shown in (b).

entities, which largely undermines their applications in real-

world scenarios such as blind navigation, video retrieval,

and automatic video subtitling. One of the recent alterna-

tives to sentence-level captioning is visual paragraph gen-

eration [11, 16, 34], which aims to provide a coherent and

detailed description, like telling stories for images/videos.

Generating a full paragraph description for an im-

age/video is challenging. First, paragraph descriptions tend

to be diverse, just like different individuals can tell stories

from personalized perspectives. As illustrated in Figure 1,

users may describe the image starting from different view-

points and objects. Existing methods [16, 34, 19] determin-

istically optimizing over single annotated paragraph thus

suffer from losing massive information expressed in the im-

age. It is desirable to enable diverse generation through

simple manipulations. Second, annotating images/videos

with long paragraphs is labor-expensive, leading to only

small scale image-paragraph pairs which limits the model

generalization. Finally, different from single-sentence cap-

tioning, visual paragraphing requires to capture more de-

tailed and richer semantic content. It is necessary to per-

form long-term visual and language reasoning to incorpo-

rate fine-grained cues while ensuring coherent paragraphs.

To overcome the above challenges, we propose a semi-

supervised visual paragraph generative model, Recurrent

Topic-Transition GAN (RTT-GAN), which generates di-

verse and semantically coherent paragraphs by reasoning

over both local semantic regions and global paragraph
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context. Inspired by Generative Adversarial Networks

(GANs) [7], we establish an adversarial training mechanism

between a structured paragraph generator and multi-level

paragraph discriminators, where the discriminators learn to

distinguish between real and synthesized paragraphs while

the generator aims to fool the discriminators by generating

diverse and realistic paragraphs.

The paragraph generator is built upon dense semantic re-

gions of the image, and selectively attends over the regional

content details to construct meaningful and coherent para-

graphs. To enable long-term visual and language reason-

ing spanning multiple sentences, the generator recurrently

maintains context states of different granularities, ranging

from paragraph to sentences and words. Conditioned on

current state, a spatial visual attention mechanism selec-

tively incorporates visual cues of local semantic regions to

manifest a topic vector for next sentence, and a language

attention mechanism incorporates linguistic information of

regional phrases to generate precise text descriptions. We

pair the generator with rival discriminators which assess

synthesized paragraphs in terms of plausibility at sentence

level as well as topic-transition coherence at paragraph

level. Our model allows diverse descriptions from a sin-

gle image by manipulating the first sentence which guides

the topic of the whole paragraph. Semi-supervised learn-

ing is enabled in the sense that only single-sentence caption

annotation is required for model training, while the linguis-

tic knowledge for constructing long paragraphs is transfered

from standalone text paragraphs without paired images.

We compare RTT-GAN with state-of-the-art methods on

both image-paragraph and video-paragraph datasets, and

verify the superiority of our method in both supervised and

semi-supervised settings. Using only the single-sentence

COCO captioning dataset, our model generates highly plau-

sible multi-sentence paragraphs. Given these synthesized

paragraphs for COCO image, we can considerably enlarge

the existing small paragraph datasets to further improve the

paragraph generation capability of our RTT-GAN. Qual-

itative results on personalized paragraph generation also

shows the flexibility and applicability of our model.

2. Related Work

Visual Captioning. Image captioning is posed as a

longstanding and holy-grail goal in computer vision, tar-

geting at bridging visual and linguistic domain. Early

works that posed the problem as a ranking and template

retrieval task [5] performed poorly as it is hard to enu-

merate all possibilities in one collected dataset due to

the compositional nature of language. Therefore, recent

works [18, 3, 4, 31, 24, 33, 20] focus on directly generat-

ing captions by modeling the semantic mapping from visual

cues to language descriptions. These approaches are typi-

cally based on deep generative models [10], among which

training recurrent network language models conditioned on

image features [3, 4, 31, 6] achieves great success by tak-

ing advantages of large-scale image captioning datasets.

Similar success has been already seen in video caption-

ing fields [4, 32]. Though generating high-level sentences

for images is encouraging, massive underlying information,

such as relationships between objects, attributes, and entan-

gled geometric structures conveyed in the image, would be

missed if only summarizing them with a coarse sentence.

Visual Paragraph Generation. Paragraph generation

overcomes shortcomings of standard captioning and dense

captioning by producing a coherent and fine-grained natu-

ral language description. To reason about long-term linguis-

tic structures with multiple sentences, hierarchical recurrent

network [19, 34, 16] has been widely used to directly sim-

ulate the hierarchy of language. For example, Krause et

al. [16] combine semantics of all regions of interest to pro-

duce a generic paragraph for an image. However, all these

methods suffer from the overfitting problem due to the lack

of sufficient paragraph descriptions. In contrast, we pro-

pose a generative model to automatically synthesize a large

amount of diverse and reasonable paragraph descriptions by

learning the implicit linguistic interplay between sentences.

Our RTT-GAN has better interpretability by imposing the

sentence plausibility and topic-transition coherence on the

generator with two adversarial discriminators. The genera-

tor selectively incorporates visual and language cues of se-

mantic regions to produce each sentence.

3. Recurrent Topic-Transition GAN

The proposed Recurrent Topic-Transition GAN (RTT-

GAN) aims to describe the rich content of a given im-

age/video by generating a natural language paragraph. Fig-

ure 2 provides an overview of the framework. Given an

input image, we first detect a set of semantic regions using

dense captioning method [13]. Each semantic region is rep-

resented with a visual feature vector and a short text phrase

(e.g. person riding a horse). The paragraph generator then

sequentially generates meaningful sentences by incorporat-

ing the fine-grained visual and textual cues in a selective

way. To ensure high-quality individual sentences and coher-

ent whole paragraph, we apply a sentence discriminator and

a topic-transition discriminator on each generated sentence,

respectively, to measure the plausibility and smoothness of

semantic transition with preceding sentences. The genera-

tor and multi-level discriminators are learned jointly within

an adversarial framework. RTT-GAN supports not only su-

pervised setting with annotated image-paragraph pairs, but

also semi-supervised setting where only a single sentence

caption is provided for each image and the knowledge of

long paragraph construction is learned from a standalone

paragraph corpus.

In next sections, we first derive the adversarial frame-
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Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design

of the paragraph generator and the multi-level discrimina-

tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-

tor and discriminators to drive the model learning. Specifi-

cally, the sentence and topic-transition discriminators learn

a critic between real and generated samples, while the gen-

erator attempts to confuse the discriminators by generat-

ing realistic paragraphs that satisfy linguistic characteristics

(i.e., sentence plausibility and topic-transition coherence).

The generative neural architecture ensures the paragraph

captures adequate semantic content of the image, which we

describe in detail in the next sections. Formally, let G de-

note the paragraph generator, and let Ds and Dr denote the

sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences

s1:t−1 and local semantic regions V of the image, the gen-

erator G recurrently produces a single sentence st, where

each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =

Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ

within a true paragraph P̂ from the synthesized ones st. The

generator G tries to generate realistic visual paragraph by

minimizing against the discriminators’ chance of correctly

telling apart the sample source. As the original GAN [7]

that optimizes over binary probability distance suffers from

mode collapse and instable convergence, we follow the new

Wasserstein GAN [1] method that theoretically remedies

this by minimizing an approximated Wasserstein distance.

The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼p

data(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and p
data(P̂) denote the true data distributions

of sentences and paragraphs, respectively, which are empir-

ically constructed from a paragraph description corpus. The

second line of the equation is the objective of the sentence

discriminator Ds that optimizes a critic between real/fake

sentences, while the third line is the objective of the topic-

transition discriminator Dr. Here pG(s1:t|V) indicates the

distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the

supervised setting, or image captioning dataset in the semi-

supervised setting, we also incorporate the traditional word

reconstruction loss for generator optimization, which is de-

fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised

examples with paragraph annotations, and semi-supervised

examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-

erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our

implementation. The optimization of the generator and dis-

criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-

formed in an alternating min-max manner. We describe the

training details in section 3.4.

The discrete nature of text samples hinders gradient

back-propagation from the discriminators to the genera-

tor [9]. We address this issue following SeqGAN [35]. The

state is the current produced words and sentences, and the

action is the next word to select. we apply Monte Carlo

search with a roll-out policy to sample the remaining words

until it sees an END token for each sentence and maximal

number of sentences. The roll-out policy is the same with

the generator, elaborated in Section 3.2. The discriminator

is trained by providing true paragraphs from the text corpus
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Figure 3. Illustration of our paragraph generator. Given visual features and local phrases of semantic regions, the paragraph generator is

performed for most T steps to sequentially generate each sentence. At t-th step, the paragraph states hP
t is first updated with the embedding

of preceding sentences by paragraph RNN. Then, the visual attention takes features of semantic regions, current paragraph states hP
t and

previous hidden states hS
t−1 as input to manifest a visual context vector fvt . fvt is then fed into sentence RNN to obtain the encoded topic

vector hS
t and determine whether to generate next sentence. The word RNN with language attention then generates each word.

and synthetic ones from the generator. The generator is up-

dated by employing a policy gradient based on the expected

reward received from the discriminator and the reconstruc-

tion loss for fully-supervised and semi-supervised settings,

defined in Eq. 4. To reduce the variance of the action values,

we run the roll-out policy starting from current state till the

end of the paragraph for five times to get a batch of output

samples. The signals that come from the word prediction

for labeled sentences (defined in Eq. 3)) can be regarded as

the intermediate reward. The gradients are passed back to

the intermediate action value via Monte Carlo search [35].

3.2. Paragraph Generator

Figure 3 shows the architecture of the generator G,

which recurrently retains different levels of context states

with a hierarchy constructed by a paragraph RNN, a sen-

tence RNN, and a word RNN, and two attention modules.

First, the paragraph RNN encodes the current paragraph

state based on all preceding sentences. Second, the spa-

tial visual attention module selectively focuses on semantic

regions with the guidance of current paragraph state to pro-

duce the visual representation of the sentence. The sentence

RNN is thus able to encode a topic vector for the new sen-

tence. Third, the language attention module learns to incor-

porate linguistic knowledge embedded in local phrases of

focused semantic regions to facilitate word generation by

the word RNN.

Region Representation. Given an input image, we

adopt the dense captioning model [13, 16] to detect seman-

tic regions of the image and generate their local phrases.

Each region Rj (j ∈ 1, . . . ,M) has a visual feature vec-

tor vj and a local text phrase (i.e., region captioning) srj =
{wr

j,i} consisting of Nj words. In practice, we use the top

M = 50 regions.

Paragraph RNN. The paragraph RNN keeps track of

the paragraph state by summarizing preceding sentences.

At each t-th step (t = 1, . . . , T ), the paragraph RNN takes

the embedding of generated sentence in previous step as in-

put, and in turn produces the paragraph hidden state h
P
t .

The sentence embedding is obtained by simply averaging

over the embedding vectors of the words in the sentence.

This strategy enables our model to support the manipula-

tion of the first sentence to initialize the paragraph RNN

and generate personalized follow-up descriptions.

Sentence RNN with Spatial Visual Attention. The

visual attentive sentence RNN controls the topic of the next

sentence st by selectively focusing on relevant regions of

the image. Specifically, given the paragraph states hP
t from

the paragraph RNN and previous hidden states hS
t−1 of the

sentence RNN, we apply an attention mechanism on the vi-

sual features V = {v1, . . . ,vM} of all semantic regions,

and construct a visual context vector fvt that represents the

next sentence at t-th step:

f
v
t = attv(V,hP

t ,h
S
t−1)

=

M
∑

j=1

α(vj , β(h
P
t ,h

S
t−1))

∑M

j′=1 α(vj′ , β(hP
t ,h

S
t−1))

vj

:=
M
∑

j=1

ajvj ,

(5)

where β(hP
t ,h

S
t−1) is a linear layer that transforms the con-

catenation of hP
t and h

S
t−1 into a compact vector with the

same dimension as vj ; the function α(·) is to compute the

weight of each region and is implemented with a single lin-

ear layer. For notational simplicity, we use aj to denote the
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Table 1. The performance comparisons with four state-of-the-arts and the variants of our RTT-GAN on paragraph generation in terms of

six language metrics. The human performance is included for providing a better understanding of all metrics.

Method METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4

Sentence-Concat 12.05 6.82 31.11 15.10 7.56 3.98

Template 14.31 12.15 37.47 21.02 12.03 7.38

Image-Flat [14] 12.82 11.06 34.04 19.95 12.20 7.71

Regions-Hierarchical [16] 15.95 13.52 41.90 24.11 14.23 8.69

RTT-GAN (Semi- w/o discriminator) 12.35 8.96 33.82 17.40 9.01 5.88

RTT-GAN (Semi- w/o sentence D) 11.22 10.04 35.29 19.13 11.55 6.02

RTT-GAN (Semi- w/o topic-transition D) 12.68 12.77 37.20 20.51 12.08 6.91

RTT-GAN (Semi-) 14.08 13.07 39.22 22.50 13.34 7.75

RTT-GAN (Fully- w/o discriminator) 16.57 15.07 41.86 24.33 14.56 8.99

RTT-GAN (Fully-) 17.12 16.87 41.99 24.86 14.89 9.03

RTT-GAN (Semi + Fully) 18.39 20.36 42.06 25.35 14.92 9.21

Human 19.22 28.55 42.88 25.68 15.55 9.66

normalized attentive weight of each region Rj .

Given the visual representation f
v
t , the sentence RNN is

responsible for determining the number of sentences that

should be in the paragraph and producing a topic vector

of each sentence. Specifically, each hidden state h
S
t is

first passed into a linear layer to produce a probability over

the two states {CONTINUE=0, STOP=1} which determine

whether t-th sentence is the last sentence. The updated h
S
t

is treated as the topic vector of the sentence.

Word RNN with Language Attention. To generate

meaningful paragraphs relevant to the image, the model is

desired to recognize and describe substantial details such

as objects, attributes, and relationships. The text phrases

of semantic regions that express such local semantics are

leveraged by a language attention module to help with the

recurrent word generation. For example, the word RNN

can conveniently copy precise concepts (e.g., baseball, hel-

met) from the local phrases. Following the copy mecha-

nism [8] firstly proposed in natural language processing,

we selectively incorporate the embeddings of local phrases

based on the topic vector h
S
t and preceding word state

h
w
t,i−1, i ∈ {1, . . . ,Nt} by the word RNN to generate the

next word representation f
l
t,i. Since each local phrase srj se-

mantically relates to respective visual feature vj , we thus

reuse the visual attentive weights {aj}
M
j=1 to enhance the

language attention. Representing each word with an embed-

ding vector wr
i,j , the language representation f

l
t,i for each

word prediction at i-th step is formulated as

f
l
t,i = att

l(Sr
,h

S
t ,h

w
t,i−1)

=

M∑

j=1

Nj∑

i′=1

α(wr
i′,j , β(h

S
t ,h

w
t,i−1))

∑M

j′=1

∑Nj′

i′′=1
α(wr

i′′,j′
, β(hS

t ,h
w
t,i′′−1

))
ajw

r
i′,j .

(6)

Given the language representation f
l
t,i as the input at i-th

step, the word RNN computes a hidden states hw
t,i which is

then used to predict a distribution over the words in the vo-

cabulary. After obtaining all words of each sentence, these

sentences are finally concatenated to form the generated

paragraph.

3.3. Paragraph Discriminators

The paragraph discriminators {Ds, Dr} aim to distin-

guish between real paragraphs and synthesized ones based

on the linguistic characteristics of a natural paragraph de-

scription. In particular, the sentence discriminator Ds eval-

uates the plausibility of individual sentences, while the

topic-transition discriminator Dr evaluates the topic coher-

ence of all sentences generated so far. With such multi-level

assessment, the model is able to generate long yet realistic

descriptions. Specifically, the sentence discriminator Ds is

an LSTM RNN that recurrently takes each word embed-

ding within a sentence as the input, and produces a real-

value plausibility score of the synthesized sentence. The

topic-transition discriminator Dr is another LSTM RNN

which recurrently takes the sentence embeddings of all pre-

ceding sentences as inputs and computes the topic smooth-

ness value of the current constructed paragraph description

at each recurrent step.

3.4. Implementation Details

The discriminators Ds and Dr are both implemented as

a single-layer LSTM with hidden dimension of 512. For the

generator, the paragraph RNN is a single-layer LSTM with

hidden size of 512 and the initial hidden and memory cells

set to zero. Similarly, the sentence RNN and word RNN

are single-layer LSTMs with hidden dimension of 1024 and

512, respectively. Each input word is encoded as a embed-

ding vector of 512 dimension. The visual feature vector vj

of each semantic region has dimension of 4096.
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Table 2. Ablation studies on the effectiveness of key components

in the region-based attention mechanism of our RTT-GAN.

Method METEOR CIDEr

RTT-GAN (Fully- w/o phrase att) 16.08 15.13

RTT-GAN (Fully- w/o att) 15.63 14.47

RTT-GAN (Fully- 10 regions) 14.13 13.26

RTT-GAN (Fully- 20 regions) 16.92 16.15

RTT-GAN (Fully-) 17.12 16.87

The adversarial framework is trained following the

Wasserstein GAN (WGAN) [1] in which we alternate be-

tween the optimization of {Ds, Dr} with Eq.(2) and the op-

timization of G with Eq.(4). In particular, we perform one

gradient descent step on G every time after 5 gradient steps

on {Ds, Dr}. We use minibatch SGD and apply the RM-

Sprop solver [28] with the initial learning rate set to 0.0001.

For stable training, we apply batch normalization [12] and

set the batch size to 1 (i.e., “instance normalization”). In or-

der to make the parameters of Ds and Dr lie in a compact

space, we clamp the weights to a fixed box [−0.01, 0.01]
after each gradient update. In the semi-supervised setting

where only single-sentence captioning for images and stan-

dalone paragraph corpus are available, we set the maximal

number of sentences in the generated paragraph to 6 for all

images. In the fully-supervised setting, the groundtruth sen-

tence number in each visual paragraph is used to train the

sentence-RNN for learning how many sentences are needed.

We train the models to converge for 40 epochs. The imple-

mentations are based on the public Torch7 platform on a

single NVIDIA GeForce GTX 1080.

4. Experiments

4.1. Experimental Settings

To generate a paragraph for an image, we run the para-

graph generator forward until the STOP sentence state is

predicted or after Smax = 6 sentences, whichever comes

first. The word RNN is recurrently forwarded to sam-

ple the most likely word at each time step, and stops af-

ter choosing the STOP token or after Nmax = 30 words.

We use beam search with beam size 2 for generating para-

graph descriptions. Training details are presented in Sec-

tion 3.4, and all models are implemented in Torch plat-

form. In terms of the fully-supervised setting, to make a fair

comparison with the state-of-the-art methods [14, 16], the

experiments are conducted on the public image paragraph

dataset [16], where 14,575 image-paragraph pairs are used

for training, 2,487 for validation and 2,489 for testing. In

terms of semi-supervised setting, our RTT-GAN is trained

with the single sentence annotations provided in MSCOCO

image captioning dataset [2] which contains 123,000 im-

ages. The image-paragraph validation set is used for vali-

dating the semi-supervised paragraph generation. The para-

2) a bicycle parked on the sidewalk

3) man wearing a black shirt

4) a woman wearing a yellow shirt

5) a red and black bike

1) people riding a bike

6) a woman wearing a shirt

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
jeans. A woman is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

Figure 4. Visualization of our region-based attention mechanism.

For each sentence generation, RTT-GAN selectively focuses on se-

mantic regions of interest in the spatial visual attention, and atten-

tively leverage the word embeddings of their local phrases to en-

hance the word prediction. In the top row, we illustrate the regions

with highest attention confidences during the spatial visual atten-

tion and its corresponding words (highlighted in red) with highest

attention confidences during the language attention in each step.

graph generation performance is also evaluated on 2,489

paragraph testing samples. For both fully-supervised and

semi-supervised settings, we use the word vocabulary of

image-paragraph dataset as [16] does and the 14,575 para-

graph descriptions on public image paragraph dataset [16]

are adopted as the standalone paragraph corpus for train-

ing discriminators. We report six widely used automatic

evaluation metrics, BLEU-1, BLEU-2, BLEU-3, BLEU-4,

METEOR, and CIDEr. The model checkpoint selection is

based on the best combined METEOR and CIDEr score on

the validation set. Table 1 reports the performance of all

baselines and our models.

4.2. Comparison with the Stateofthearts

We obtain the results of all four baselines from [16].

Specifically, Sentence-Concat samples and concatenates

five sentence captions from the model trained on MS COCO

captions, in which the first sentence uses beam search and

the rest are samples. Image-Flat [14] directly decodes an

image into a paragraph token by token. Template pre-

dicts the text via a handful of manually specified tem-

plates. And Region-Hierarchical [16] uses a hierarchical

recurrent neural network to decompose the paragraphs into

the corresponding sentences. Same with all baselines, we

adopt VGG-16 net [27] to encode the visual representa-

tion of an image. Note that our RTT-GAN and Region-

Hierarchical [16] use the same dense captioning model [13]

to extract semantic regions. Human shows the results by

collecting an additional paragraph for 500 randomly chosen

images as [16]. As expected, humans produce superior de-

scriptions over any automatic method and the large gaps on

CIDEr and METEOR verify that CIDEr and METEOR met-

rics align better with human judgment than BLEU scores.

Fully-supervised Setting. We can see that our RTT-

GAN (Fully-) model significantly outperforms all base-
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lines on all metrics; particularly, 3.35% over Region-

Hierarchical and 5.81% over Image-Flat in terms of CIDEr.

It clearly demonstrates the effectiveness of our region-based

attention mechanism that selectively incorporate visual and

language cues, and the adversarial multi-level discrimina-

tors that provide a better holistic, semantic regularization of

the generated sentences in a paragraph. The inferiority of

Image-Flat compared to the hierarchical networks of RTT-

GAN and Region-Hierarchical demonstrates the advantage

of performing hierarchical sentence predictions for a long

paragraph description.

Semi-supervised Setting. The main advantage of our

RTT-GAN compared to prior works is the capability of gen-

erating realistic paragraph descriptions coordinating with

the natural linguistic properties, given only singe sentence

annotations. It is demonstrated by the effectiveness of

our semi-supervised model RTT-GAN (Semi-) that only

uses the single sentence annotations of MSCOCO captions,

and imposes the linguistic characteristics on the rest sen-

tence predictions using adversarial discriminators that are

trained with the standalone paragraph corpus. Specifi-

cally, RTT-GAN (Semi-) achieves comparable performance

with the fully-supervised Regions-Hierarchical without us-

ing any groundtruth image-paragraph pairs. After aug-

menting the image paragraph dataset with the synthesized

paragraph descriptions by RTT-GAN (Semi-), RTT-GAN

(Semi+Fully) dramatically outperforms RTT-GAN (Fully-

) and other baselines, e.g. 6.84% increase over Regions-

Hierarchical on CIDEr. We also show some qualitative re-

sults of generated paragraphs by our RTT-GAN (Semi-) in

Figure 5. These promising results further verify the ca-

pability of our RTT-GAN on reasoning a long description

that has coherent topics and plausible sentences without the

presence of ground-truth image paragraph pairs.

4.3. The Importance of Adversarial Training

After eliminating the discriminators during the model

optimization in both fully- and semi-supervised settings

(i.e. RTT-GAN (Fully- w/o discriminator) and RTT-GAN

(Semi- w/o discriminator)), we observe consistent perfor-

mance drops on all metrics compared to the full models,

i.e. 1.80% and 4.11% on CIDEr, respectively. RTT-GAN

(Semi- w/o discriminator) can be regarded as a image cap-

tioning model due to the lack of adversarial loss, similar to

Sentence-Concat. It justifies that the sentence plausibility

and topic coherences with preceding sentences are very crit-

ical for generating long, convincing stories. Moreover, the

pure word prediction loss largely hinders the model’s exten-

sion to unsupervised or semi-supervised generative model-

ing. Training adversarial discriminators that explicitly en-

force the linguistic characteristics of a good description can

effectively impose high-level and semantic constraints on

sentence predictions by the generator.

Table 3. Human voting results for the plausibility of generated per-

sonalized paragraphs by the variants of our RTT-GAN.

Semi- w/o discriminator Semi- Semi + Fully

12.6% 40.5 % 46.9%

Furthermore, we break down our design of discrimina-

tors in order to compare the effect of the sentence discrimi-

nator and recurrent topic-transition discriminator, as RTT-

GAN (Semi- w/o sentence D) and RTT-GAN (Semi- w/o

topic-transition D), respectively. It can be observed that

although both discriminators help bring the significant im-

provement, the sentence discriminator seems to play a more

critical role by addressing the plausibility of each sentence.

4.4. The Importance of Regionbased Attention

We also evaluate the effectiveness of the spatial visual

attention and language attention mechanisms to facilitate

the paragraph prediction, as reported in Table 2. RTT-GAN

(Fully- w/o att) directly pools the visual features of all re-

gions into a compact representation for sequential sentence

prediction, like Region-Hierarchical. RTT-GAN (Fully- w/o

phrase att) represents the variant that removes the lan-

guage attention module. It can be observed that the at-

tention mechanism effectively facilitates the prediction of

RTT-GAN by selectively incorporating appropriate visual

and language cues. Particularly, the advantages of explic-

itly leveraging words from local phrases suggest that trans-

ferring visual-language knowledges from more fundamen-

tal tasks (e.g. detection) is beneficial for generating high-

level and holistic descriptions.

As an exploratory experiment, we investigate generat-

ing paragraphs from a smaller number of regions (10 and

20) than 50 used in previous models, denoted as RTT-GAN

(Fully- 10 regions) and RTT-GAN (Fully- 20 regions). Al-

though these results are worse than our full model, the

performance of using only top 10 regions is still reason-

ably good. Figure 4 gives some visualization results of our

region-based attention mechanism. For generating the sen-

tence at each step, our model selectively focuses on dis-

tinct regions and their distinct corresponding words in local

phrases to facilitate the sentence prediction.

4.5. Personalized Paragraph Generation

Different from prior works, our model supports the per-

sonalized paragraph generation which produces diverse de-

scriptions by manipulating first sentences. It can be conve-

niently achieved by initializing the paragraph RNN with the

sentence embedding of a predefined first sentence. The gen-

erator can sequentially output diverse and topic-coherent

sentences to form a personalized paragraph for an image.

We present qualitative results of our model in Figure 6.

Some interesting properties of our predictions include its

usage of coreference in the first sentence and its ability to

capture topic relationships with preceding sentences. Given
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This picture is taken for three baseball players

on a field. The man on the left is wearing a

blue baseball cap. The man has a red shirt and

white pants. The man in the middle is in a

wheelchair and holding a baseball bat. Two

men are bending down behind a fence. There

are words band on the fence.

There are several bears standing in the snow.

A little bear is sitting on a large rock. One bear

with its arms straight up is in the middle of the

photo. Two smaller bears are standing on the

side of a wooden fence. A smaller bear is in

the rear view. There is a cage near to one

standing bear.

A tennis player is attempting to hit the tennis

ball with his left foot hand. He is holding a

tennis racket. He is wearing a white shirt and

white shorts. He has his right arm extended

up. There is a crowd of people watching the

game. A man is sitting on the chair.

A man is walking down a street next to a tall

building with several traffic on the side of the

building. He is carrying on a backpack. Some

people are walking past the buildings. The

buildings are made of brick and the windows

are made up of the glasses. There is a person

riding a bicycle in the street. There are cars on

the road.

A couple of zebra are standing next to each

other on dirt ground near rocks. There are trees

behind the zebras. There is a large log on the

ground in front of the zebra. There is a large

rock formation to the left of the zebra. There is a

small hill near a small pond and a wooden log.

There are green leaves on the tree.

The kitchen is very clean for guests to see it

often. There are only the lights. There are

white cabinets on the wall with shelves and

appliances on it. There are three lights hanging

on the wall above the sink. There is two white

microwaves on the wall next to the sink. There

is a couch next to the glass windows.

Figure 5. Example paragraph generation results of our model in the semi-supervised setting (RTT-GAN (Semi-)). For each image, a

paragraph description with all six sentences is generated.

A man is sitting on a bench outside.

He is wearing a short sleeve shirt and blue jean pants. He

is wearing a white t-shirt and black shoes. There is a

large building in the background with many trees in the

distance. A woman with a jacket is walking to him.

There are three people in the picture.

A man and a woman are sitting in front of a table with food

on. A man is wearing eyeglasses on his face while a

woman with blonde hair is sitting in front of a large plate of

pizza. They are all smiling. The woman on the right is

wearing a blue shirt and a necklace.

A woman is walking on a sidewalk.

She is wearing a gray jacket and blue jeans. She is

staring at the phone in the hand. She is passing a tall

building with some potted plants hanging on. There are

some shadows of trees on the road.

There are four plates on the table.

There are hamburgers in the plates and bear glasses. A

girl with blue sleeve shirt is sitting next to the table. Next

to her is the other man with white shirt with red words on

in the front. An older man with eyeglasses is sitting in

front of table.

Figure 6. Personalized paragraph generations of our model (i.e. RTT-GAN (Semi + Fully)) by manipulating the first sentence. With two

different first sentences for each image, our model can effectively generate two distinct paragraphs with different topics.

the first sentences, subsequent sentences give some details

about scene elements mentioned earlier in the description

and also connect to other related content. We also report

the human evaluation results in Table 3 on randomly chosen

100 testing images, where three model variants are com-

pared, i.e. RTT-GAN (Semi- w/o discriminator), RTT-GAN

(Semi-), RTT-GAN (Semi + Fully). For each image, given

two first sentences with distinct topics, each model pro-

duces two personalized paragraphs accordingly. Regarding

to each first sentence of the image, we present three para-

graphs by three models in a random order to judges, and ask

them to select the most convincing ones. The results in Ta-

ble 3 indicate that 87.4% of the judges think the paragraphs

generated by the models (i.e. RTT-GAN (Semi-), RTT-GAN

(Semi + Fully)) that incorporate two adversarial discrimina-

tors, look more convincing than those by RTT-GAN (Semi-

w/o discriminator).

4.6. Extension to Video Domain

As in Table 4, we also extend our RTT-GAN to the task

of video paragraph generation and evaluate it on TACoS-

MultiLevel dataset [25] that contains 185 long videos filmed

in an indoor environment, following [34]. To model spa-

tial appearance, we also extract 50 semantic regions for the

frames in every second. To capture the motion patterns,

we enhance the feature representation with motion features.

Similar to [34], we use the pre-trained C3D [29] model on

the Sport1M dataset [15], which outputs a fixed-length fea-

Table 4. Results of video paragraph generation on TACoS-

MultiLevel in terms of BLEU-4, METEOR, CIDEr metrics.

Method BLEU-4 METEOR CIDEr

CRF-T [26] 25.3 26.0 124.8

CRF-M [25] 27.3 27.2 134.7

LRCN [4] 29.2 28.2 153.4

h-RNN [34] 30.5 28.7 160.2

RTT-GAN (ours) 33.8 30.9 165.3

ture vector every 16 frames. We then perform a mean pool-

ing over all features to generate a compact motion repre-

sentation, which are used as additional inputs in every vi-

sual attention step. Our model significantly outperforms all

state-of-the-arts, demonstrating its good generalization ca-

pability in video domain.

5. Conclusion and Future Work

In this paper, we proposed a Recurrent Topic-Transition

GAN (RTT-GAN) for visual paragraph generation. Thanks

to the adversarial generative modeling, our RTT-GAN is

capable of generating diverse paragraphs when only first

sentence annotations are given for training. The generator

incorporates visual attention and language attention mech-

anisms to recurrently reason about fine-grained semantic

regions. In future, we will extend our generative model

into other vision tasks that require joint visual and language

modeling.
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