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Abstract

We address the problem of synthesizing new video frames

in an existing video, either in-between existing frames

(interpolation), or subsequent to them (extrapolation). This

problem is challenging because video appearance and mo-

tion can be highly complex. Traditional optical-flow-based

solutions often fail where flow estimation is challenging,

while newer neural-network-based methods that halluci-

nate pixel values directly often produce blurry results. We

combine the advantages of these two methods by training

a deep network that learns to synthesize video frames by

flowing pixel values from existing ones, which we call deep

voxel flow. Our method requires no human supervision, and

any video can be used as training data by dropping, and

then learning to predict, existing frames. The technique

is efficient, and can be applied at any video resolution.

We demonstrate that our method produces results that both

quantitatively and qualitatively improve upon the state-of-

the-art.

1. Introduction

Videos of natural scenes observe a complicated set of

phenomena; objects deform and move quickly, occlude and

dis-occlude each other, scene lighting changes, and cameras

move. Parametric models of video appearance are often

too simple to accurately model, interpolate, or extrapolate

video. None the less, video interpolation, i.e., synthesizing

video frames between existing ones, is a common process in

video and film production. The popular commercial plug-in

Twixtor1 is used both to resample video into new frame-

rates, and to produce a slow-motion effect from regular-

speed video. A related problem is video extrapolation;

predicting the future by synthesizing future video frames.

∗Most of the work was done when Yiming was with Google.
1http://revisionfx.com/products/twixtor/

The traditional solution to these problems estimates

optical flow between frames, and then interpolates or

extrapolates along optical flow vectors. This approach is

“optical-flow-complete”; it works well when optical flow is

accurate, but generates significant artifacts when it is not.

A new approach [24, 21, 28] uses generative convolutional

neural networks (CNNs) to directly hallucinate RGB pixel

values of synthesized video frames. While these techniques

are promising, directly synthesizing RGB values is not yet

as successful as flow-based methods, and the results are

often blurry.

In this paper we aim to combine the strengths of these

two approaches. Most of the pixel patches in video are near-

copies of patches in nearby existing frames, and copying

pixels is much easier than hallucinating them from scratch.

On the other hand, an end-to-end trained deep network is an

incredibly powerful tool. This is especially true for video

interpolation and extrapolation, since training data is nearly

infinite; any video can be used to train an unsupervised deep

network.

We therefore use existing videos to train a CNN in an

unsupervised fashion. We drop frames from the training

videos, and employ a loss function that measures similarity

between generated pixels and the ground-truth dropped

frames. However, like optical-flow approaches our network

generates pixels by interpolating pixel values from nearby

frames. The network includes a voxel flow layer — a per-

pixel, 3D optical flow vector across space and time in the

input video. The final pixel is generated by trilinear inter-

polation across the input video volume (which is typically

just two frames). Thus, for video interpolation, the final

output pixel can be a blend of pixels from the previous and

next frames. This voxel flow layer is similar to an optical

flow field. However, it is only an intermediate layer, and its

correctness is never directly evaluated. Thus, our method

requires no optical flow supervision, which is challenging

to produce at scale.
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We train our method on the public UCF-101 dataset, but

test it on a wide variety of videos. Our method can be

applied at any resolution, since it is fully convolutional,

and produces remarkably high-quality results which are

significantly better than both optical flow and CNN-based

methods. While our results are quantitatively better than

existing methods, this improvement is especially noticeable

qualitatively when viewing output videos, since existing

quantitative measures are poor at measuring perceptual

quality.

2. Related Work

Video interpolation is commonly used for video re-

timing, novel-view rendering, and motion-based video

compression [29, 18]. Optical flow is the most common

approach to video interpolation, and frame prediction is

often used to evaluate optical flow accuracy [1]. As such,

the quality of flow-based interpolation depends entirely on

the accuracy of flow, which is often challenged by large

and fast motions. Mahajan et al. [20] explore a variation

on optical flow that computes paths in the source images

and copies pixel gradients along them to the interpolated

images, followed by a Poisson reconstruction. Meyer et

al. [22] employ a Eulerian, phase-based approach to inter-

polation, but the method is limited to smaller motions.

Convolutional neural networks have been used to make

recent and dramatic improvements in image and video

recognition [17]. They can also be used to predict optical

flow [4], which suggests that CNNs can understand tempo-

ral motion. However, these techniques require supervision,

i.e., optical flow ground-truth. A related unsupervised

approach [19] uses a CNN to predict optical flow by

synthesizing interpolated frames, and then inverting the

CNN. However, they do not use an optical flow layer in

the network, and their end-goal is to generate optical flow.

They do not numerically evaluate the interpolated frames,

themselves, and qualitatively the frames appear blurry.

There are a number of papers that use CNNs to directly

generate images [10] and videos [31, 36]. Blur is often

a problem for these generative techniques, since natural

images follow a multimodal distribution, while the loss

functions used often assume a Gaussian distribution. Our

approach can avoid this blurring problem by copying co-

herent regions of pixels from existing frames. Generative

CNNs can also be used to generate new views of a scene

from existing photos taken at nearby viewpoints [7, 35].

These methods reconstruct images by separately computing

depth and color layers at each hypothesized depth. This

approach cannot account for scene motion, however.

Our technical approach is inspired by recent techniques

for including differentiable motion layers in CNNs [13].

Optical flow layers have also been used to render novel

views of objects [38, 14] and change eye gaze direction

while videoconferencing [8]. We apply this approach to

video interpolation and extrapolation. LSTMs have been

used to extrapolate video [28], but the results can be blurry.

Mathieu et al. [21] reduce blurriness by using adversarial

training [10] and unique loss functions, but the results

still contain artifacts (we compare our results against this

method). Finally, Finn et al. [6] use LSTMs and differ-

entiable motion models to better sample the multimodal

distribution of video future predictions. However, their

results are still blurry, and are trained to videos in very

constrained scenarios (e.g., a robot arm, or human motion

within a room from a fixed camera). Our method is able

to produce sharp results for widely diverse videos. Also,

we do not pre-align our input videos; other video prediction

papers either assume a fixed camera, or pre-align the input.

3. Our Approach

3.1. Deep Voxel Flow

We propose Deep Voxel Flow (DVF) — an end-to-

end fully differentiable network for video frame synthesis.

The only training data we need are triplets of consecutive

video frames. During the training process, two frames are

provided as inputs and the remaining frame is used as a

reconstruction target. Our approach is self-supervised and

learns to reconstruct a frame by borrowing voxels from

nearby frames, which leads to more realistic and sharper

results (Fig. 4) than techniques that hallucinate pixels from

scratch. Furthermore, due to the flexible motion modeling

of our approach, no pre-processing (e.g., pre-alignment or

lighting adjustment) is needed for the input videos, which is

a necessary component for most existing systems [32, 36].

Fig. 1 illustrates the pipeline of DVF, where a convo-

lutional encoder-decoder predicts the 3D voxel flow, and

then a volume sampling layer synthesizes the desired frame,

accordingly. DVF learns to synthesize target frame Y ∈
R

H×W from the input video X ∈ R
H×W×L, where

H, W, L are the height, width and frame number of the

input video. The target frame Y can be the in-between

frame (interpolation) or the next frame (extrapolation) of

the input video. For ease of exposition we focus here on

interpolation between two frames, where L = 2. We denote

the convolutional encoder-decoder as H(X; Θ), where Θ
are the network parameters. The output of H is a 3D voxel

flow field F on a 2D grid of integer target pixel locations:

F = (∆x,∆y,∆t) = H(X; Θ) . (1)

The spatial component of voxel flow F represents optical

flow from the target frame to the next frame; the negative

of this optical flow is used to identify the corresponding

location in the previous frame. That is, we we assume

optical flow is locally linear and temporally symmetric

around the in-between frame. Specifically, we can define
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Figure 1: Pipeline of Deep Voxel Flow (DVF). DVF learns to synthesize a target frame from the input video. The target frame can either be

in-between (interpolation) or subsequent to (extrapolation) the input video. DVF adopts a fully-convolutional encoder-decoder architecture

containing three convolution layers, three deconvolution layers and one bottleneck layer. The only supervision DVF needs is the target

frame which is to be synthesized.

the absolute coordinates of the corresponding locations in

the earlier and later frames as L
0 = (x − ∆x, y − ∆y)

and L
1 = (x + ∆x, y + ∆y), respectively. The temporal

component of voxel flow F is a linear blend weight between

the previous and next frames to form a color in the target

frame. We use this voxel flow to sample the original input

video X with a volume sampling function Tx,y,t to form the

final synthesized frame Ŷ:

Ŷ = Tx,y,t(X,F) = Tx,y,t(X,H(X; Θ)) . (2)

The volume sampling function samples colors by interpolat-

ing within an optical-flow-aligned video volume computed

from X. Given the corresponding locations (L0,L1), we

construct a virtual voxel of this volume and use trilinear

interpolation from the colors at the voxel’s corners to

compute an output video color Ŷ(x, y). We compute the

integer locations of the eight vertices of the virtual voxel in

the input video X as:

V
000 = (⌊L0

x⌋, ⌊L
0
y⌋, 0)

V
100 = (⌈L0

x⌉, ⌊L
0
y⌋, 0)

...

V
011 = (⌊L1

x⌋, ⌈L
1
y⌉, 1)

V
111 = (⌈L1

x⌉, ⌈L
1
y⌉, 1) ,

(3)

where ⌊·⌋ is the floor function, and we define the temporal

range for interpolation such that t = 0 for the first input

frame and t = 1 for the second. Given this virtual voxel, the

3D voxel flow generates each target voxel Ŷ(x, y) through

trilinear interpolation:

Ŷ(x, y) = Tx,y,t(X,F) =
∑

i,j,k∈[0,1]

W
ijk

X(Vijk) , (4)

Frame 1

Frame 2

Motion Color Key

(a) Ground Truth (b) Voxel Flow (c) Multi-scale Voxel Flow

(d) Difference Image (e) Projected Motion Field (f) Projected Selection Mask

Figure 2: Step-by-step comparisons and visualization of DVF.

(a) ground truth frame, synthesized frame by (b) voxel flow, (c)

multi-scale voxel flow, (d) difference image between our result

and ground truth, (e) projected motion field Fmotion, (f) projected

selection mask Fmask. Arrows draw attention to errors in the

different interpolations. (Best viewed by zooming in.)

W
000 = (1− (L0

x − ⌊L0
x⌋))(1− (L0

y − ⌊L0
y⌋))(1−∆t)

W
100 = (L0

x − ⌊L0
x⌋)(1− (L0

y − ⌊L0
y⌋))(1−∆t)

...

W
011 = (1− (L1

x − ⌊L1
x⌋))(L

1
y − ⌊L1

y⌋)∆t

W
111 = (L1

x − ⌊L1
x⌋)(L

1
y − ⌊L1

y⌋)∆t ,

(5)

where W
ijk is the trilinear resampling weight. This 3D

voxel flow can be understood as the joint modeling of a 2D

motion field and a mask selecting between the earlier and

later frame. Specifically, we can separate F into Fmotion =
(∆x,∆y) and Fmask = (∆t), as illustrated in Fig. 2 (e-f).

(These definitions are later used in Eqn. 6 to allow different

weights for spatial and temporal regularization.)
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Network Architecture. DVF adopts a fully-convolutional

encoder-decoder architecture, containing three convolution

layers, three deconvolution layers and one bottleneck layer.

Therefore, arbitrary-sized videos can be used as inputs for

DVF. The network hyperparamters (e.g., the size of feature

maps, the number of channels and activation functions) are

specified in Fig. 1.

For the encoder section of the network, each processing

unit contains both convolution and max-pooling. The

convolution kernel sizes here are 5 × 5, 5 × 5 and 3 ×
3, respectively. The bottleneck layer is also connected

by convolution with kernel size 3 × 3. For the decoder

section, each processing unit contains bilinear upsampling

and convolution. The convolution kernel sizes here are 3×3,

5×5 and 5×5, respectively. To better maintain spatial infor-

mation we add skip connections between the corresponding

convolution and deconvolution layers. Specifically, the

corresponding deconvolution layers and convolution layers

are concatenated together before being fed forward.

3.2. Learning

For our DVF training, we exploit the l1 reconstruction

loss with spatial and temporal coherence regularizations to

reduce visual artifacts. Total variation (TV) regularizations

are used here to enforce coherence. Since these regularizers

are imposed on the output of the network it can be easily

incorporated into the back-propagation scheme. Our overall

objective function that we minimize is:

L =
1

N

∑

〈X,Y〉∈D

(

‖Y − Tx,y,t(X,F)‖1

+ λ1‖∇Fmotion‖1

+ λ2‖∇Fmask‖1
)

,

(6)

where D is the training set of all frame triplets, N is its

cardinality and Y is the target frame to be reconstructed.

‖∇Fmotion‖1 is the total variation term on the (x, y)
components of voxel flow, and λ1 is the corresponding reg-

ularization weight; similarly, ‖∇Fmask‖1 is the regularizer

on the temporal component of voxel flow, and λ2 its weight.

(We experimentally found it useful to weight the coherence

of the spatial component of the flow more strongly than

the temporal selection.) To optimize the l1 norm, we use

the Charbonnier penalty function Φ(x) = (x2 + ǫ2)1/2

for approximation. Here we empirically set λ1 = 0.01,

λ2 = 0.005 and ǫ = 0.001.

We initialize the weights in DVF using Gaussian dis-

tribution with standard deviation of 0.01. Learning the

network is achieved via ADAM solver [16] with learning

rate of 0.0001, β1 = 0.9, β2 = 0.999 and batch size of 32.

Batch normalization [12] is adopted for faster convergence.

Differentiable Volume Sampling. To make our DVF

an end-to-end fully differentiable system, we define the

Input Video 

(scale 0)

Convolutional Encoder-Decoder

(scale 0)

�0
Max Pooling DeconvolutionConvolution Skip Connection
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���,�
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963232 32 64 3
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Figure 3: Pipeline of multi-scale Deep Voxel Flow. A series

of convolutional encoder-decoder networks work on video frames

from a coarse to fine scale. The spatial components of the 3D

voxel flow computed at lower resolutions (here, 128 × 128 and

64 × 64) are upsampled to 256 × 256 and then convolved to 32

channels. The three different resolutions are then concatenated to

form a 256 × 256 × 96 layer, and finally passed through several

convolutional layers to form a final 256×256×3 voxel flow field.

gradients with respect to 3D voxel flow F = (∆x,∆y,∆t)
so that the reconstruction error can be backpropagated

through a volume sampling layer. Similar to [13], the partial

derivative of the synthesized voxel color Ŷ(x, y) w.r.t. ∆x
is

∂Ŷ(x, y)

∂(∆x)
=

∑

i,j,k∈[0,1]

E
ijk

X(Vijk) , (7)

E
000 = (1− (L0

y − ⌊L0
y⌋))(1−∆t)

E
100 = − (1− (L0

y − ⌊L0
y⌋))(1−∆t)

...

E
011 = − (L1

y − ⌊L1
y⌋)∆t

E
111 = (L1

y − ⌊L1
y⌋)∆t ,

(8)

where E
ijk is the error reassignment weight w.r.t.

∆x. Similarly, we can compute ∂Ŷ(x, y)/∂(∆y) and

∂Ŷ(x, y)/∂(∆t). This gives us a sub-differentiable sam-

pling mechanism, allowing loss gradients to flow back to

the 3D voxel flow F. This sampling mechanism can be

implemented very efficiently by just looking at the kernel

support region for each output voxel.

3.3. Multi-scale Flow Fusion

As stated in Sec. 3.2, the gradients of reconstruction

error are obtained by only looking at the kernel support

region for each output voxel, which makes it hard to find

large motions that fall outside the kernel. Therefore, we

propose a multi-scale Deep Voxel Flow (multi-scale DVF)

to better encode both large and small motions.

Specifically, we have a series of convolutional encoder-

decoder HN ,HN−1, · · · ,H0 working on video frames

from coarse scale sN to fine scale s0, respectively. Typical-

ly, in our experiments, we set s2 = 64×64, s1 = 128×128
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Frame 1 Frame 2Interpolated Frames (Ours)

(b)Ground Truth OursBeyond MSE

Frame 1 Frame 2Interpolated Frame

(a)

(d)

Frame 1 Frame 2 Extrapolated Frames (Ours)Frame 1 Frame 2 Extrapolated Frame

Ground Truth OursBeyond MSE(c)

Figure 4: Qualitative comparisons between ground truth, Beyond MSE [21] and DVF (ours) of (a) single-step video interpolation, (b)

multi-step video interpolation, (c) single-step video extrapolation, (d) multi-step video extrapolation on UCF-101 dataset.

and s0 = 256 × 256. In each scale k, the sub-network Hk

predicts 3D voxel flow Fk at that resolution. Intuitively,

large motions will have a relatively small offset vector Fk

in coarse scale sN . Thus, the sub-networks HN , · · · ,H1

in coarser scales sN , · · · , s1 are capable of producing the

correct multi-scale voxel flows FN , · · · ,F1 even for large

motions.

We fuse these multi-scale voxel flows to the finest net-

work H0 to get our final result. The fusion is conducted by

upsampling and concatenating the multi-scale voxel flow

F
x,y
k (only the spatial components (∆x,∆y) are retained)

to the final decoder layer of H0, which has the desired

spatial resolution s0. Then, the fine-scale voxel flow F0

is obtained by further convolution on the fused flow fields.

The network architecture of multi-scale DVF is illustrated

in Fig. 3. And it can be formulated as

Ŷ0 = T (X,F0) = T (X,H(X; Θ,FN , · · · ,F1)) . (9)

Since each sub-network Hk is fully differentiable, the

multi-scale DVF can also be trained end-to-end with recon-

struction loss ‖Yk − T (Xk,Fk)‖1 for each scale sk.

3.4. Multi-step Prediction

Our framework can be naturally extended to multi-step

prediction in either interpolation or extrapolation. For

example, the goal is to predict the next D frames given

the current L frames. In this case, the target Y becomes

a 3D volume (Y ∈ R
H×W×D) instead of a 2D frame (Y ∈

R
H×W ). Similar to Eqn. 4, each output voxel Ŷ(x, y, t)

can be obtained by performing trilinear interpolation on the

input video X, according to its projected virtual voxel. We

have observed that spatiotemporal coherence is preserved

in our output volume because convolutions across the

temporal layers allow local correlations to be maintained.

Since multi-step prediction is more challenging, we reduce

the learning rate to 0.00005 to maintain stability when

training.

4. Experiments

We trained Deep Voxel Flow (DVF) on videos from the

UCF-101 training set [27]. We sampled frame triplets with

obvious motion, creating a training set of approximately

240, 000 triplets. Following [21] and [32], both UCF-

101 [27] and THUMOS-15 [11] test sets are used as

benchmarks. The pixel values are normalized into the

range of [−1, 1]. We use both PSNR and SSIM [34] (on

motion regions2) to evaluate the image quality of video

frame synthesis; higher values of PSNR and SSIM indicate

better results. However, our goal is to synthesize pixels

that look realistic and artifact-free to human viewers. It

is well-known that existing numerical measures of visual

quality are not good facsimiles of human perception, and

temporal coherence cannot be evaluated in paper figures.

We find that the visual difference in quality of our method

and competing techniques is much more significant than

the numerical difference, and we include a user study in

Section 4.4 that supports this conclusion.

Competing Methods. We compare our approach against

several methods, including the state-of-the-art optical flow

technique EpicFlow [25]. To synthesize the in-between

images given the computed flow fields we apply the in-

terpolation algorithm used in the Middlebury interpolation

benchmark [1]. For the CNN-based methods, we compare

DVF to Beyond MSE [21], which achieved the best-

performing results in video prediction. However, their

method is trained using 4 input frames, whereas ours uses

only 2. We therefore try both numbers of input frames. The

2We use the motion masks provided by [21].
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UCF-101 / THUMOS-15
Interpolation Extrapolation Extrapolation†

(2 frames as input) (2 frames as input) (4 frames as input)

Method PSNR SSIM PSNR SSIM PSNR SSIM

Beyond MSE [21] 32.8 / 32.3 0.93 / 0.91 30.6 / 30.2 0.90 / 0.89 32.0 0.92

Optical Flow 34.2 / 33.9 0.95 / 0.94 31.3 / 31.0 0.92 / 0.92 31.6 0.93

Ours 35.8 / 35.4 0.96 / 0.95 32.7 / 32.2 0.93 / 0.92 33.4 0.94

Method L1 Error

Recons. Views [30] 0.492

App. Flow [38] 0.471

Ours (w/o ft.) 0.336

Ours 0.178

Table 1: Left: Performance (PSNR and SSIM) of frame synthesis on UCF-101 and THUMOS-15 dataset. The higher the better. “Optical

Flow” is EpicFlow [25] for all experiments except “Extrapolation†”, whose number is taken from [21], which uses Dollar et al. [3].

“Extrapolation†” employs the same setting as that in [21], i.e., using four frames as input and adopting the same amount of network

parameters. Right: Performance (L1 error) of view synthesis on KITTI dataset, with and without fine-tuning. The lower the better.
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Figure 5: Performance comparisons on (a) multi-step interpola-

tion and (b) multi-step extrapolation.

33

34

35

36

Full Image Texture Regions

P
S

N
R

Voxel Flow Multi-scale VF

33

34

35

36

Motion Regions Large Motion Regions

P
S

N
R

Voxel Flow Multi-scale VF

(a) Appearance (b) Motion

Figure 6: Ablation study of (a) appearance modeling and (b)

motion modeling.

comparisons are performed under two settings. First, we

use their best-performing loss (ADV+GDL), and replace the

backbone networks in Beyond MSE [21] with ours and train

using the same data and protocol as in DVF (i.e., 2 frames as

input on UCF-101). Second, we adapt DVF to their setting

(i.e., using 4 frames as input and adopting the same number

of network parameters ) and directly benchmark against the

numbers reported in [21].

Results. As shown in Table 1 (left), our method out-

performs the baselines for video interpolation. Beyond

MSE is a hallucination-based method and produces blurry

predictions. EpicFlow outperforms Beyond MSE by 1.4dB

because it copies pixel based on estimated flow fields.

Our approach further improves the results by 1.6dB. Some

qualitative comparisons are provided in Fig. 4 (a).

Video extrapolation results are shown in Table 1 (mid-

dle). The gap between Beyond MSE and EpicFlow shrinks

to 0.7dB for video extrapolation since this task requires

more semantic inference, which is a strength of deep

models. Our approach combines the advantages of both,

and achieves the best performance (32.7dB). Qualitative

comparisons are provided in Fig. 4 (c).

Finally, we explore the possibility of multi-step pre-

diction, i.e., interpolate/extrapolate three frames (step =

1, 2, 3) at a time instead of one. From Fig. 5, we can see that

our approach consistently outperforms other alternatives

along all time steps. The advantages become even larger

when evaluating on long-range predictions (e.g., step = 3
in extrapolation). DVF is able to learn long-term temporal

dependencies through large-scale unsupervised training.

The qualitative illustrations are provided in Fig. 4 (b)(d).

4.1. Effectiveness of Multi-scale Voxel Flow

In this section, we demonstrate the merits of Multi-scale

Voxel Flow (Multi-scale VF); specifically, we examine

results separately along two axes: appearance, and motion.

For appearance modeling, we identify the texture regions

by local edge magnitude. For motion modeling, we identify

large motion regions according to the flow maps provided

by [25]. Fig. 6 compares the PSNR performance on UCF-

101 test set without and with multi-scale voxel flow. The

multi-scale architecture further enables DVF to deal with

large motions, as shown in Fig. 6 (b). Large motions

become small after downsampling, and these motion esti-

mates are mixed with higher-resolution estimates at the final

layer of our network. The plots show that the multi-scale

architecture add the most benefit in large-motion regions.

We also validate the effectiveness of skip connections.

Intuitively, concatenating feature maps from lower layers,

which have larger spatial resolution, helps the network

recover more spatial details in its output. To confirm

this claim, we conducted an additional ablation study,

showing that removing skip connections reduced the PSNR

performance by 1.1dB.

4.2. Generalization to View Synthesis

Here we demonstrate that DVF can be readily general-

ized to view synthesis even without re-training. We directly

apply the model trained on UCF-101 to the view synthesis

task, with the caveat that we only produce half-way in-

between views, whereas general view synthesis techniques

can render arbitrary viewpoints. The KITTI odometry

dataset [9] is used here for evaluation, following [38].

Table 1 (right) lists the performance comparisons of

different methods. Surprisingly, without fine-tuning, our
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Appearance FlowGround Truth Ours

(c)

(d)

(a)

(b)

Interpolated View (Ours)View 1 View 2

Figure 7: Several examples and comparisons for view synthesis

on the KITTI dataset. Rows (a-b) show two examples of interpo-

lating large viewpoint changes. Rows (c-d) compare ground truth,

Appearance Flow, and our method for two other examples. Our

method performs better than Appearance Flow, e.g., on the street

lamp (c) and trees (d).

Method EPE

LD Flow [2] 12.4

B. Basics [37] 9.9

FlowNet [5] 9.1

EpicFlow [25] 3.8

Ours (w/o ft.) 14.6

Ours 9.5

Method Acc.

Random 39.1

Unsup. Video [33] 43.8

Shuffle&Learn [23] 50.2

ImageNet [15] 63.3

Ours (w/o ft.) 48.7

Ours 52.4

Table 2: Left: Endpoint error of flow estimation on KITTI dataset.

The lower the better. Right: Classification accuracy of action

recognition on UCF-101 dataset, with and without fine-tuning.

The higher the better. Note that our method is fully unsupervised.

approach already outperforms [30] and [38] by 0.164 and

0.135 respectively. We find that fine-tuning on the KIITI

training set could further reduce the reconstruction error.

Note that KITTI dataset exhibits large camera motion,

which is much different from our original training data.

(UCF-101 mainly focuses on human actions.) This observa-

tion implies that voxel flow has good generalization ability

and can be used as a universal frame/view synthesizer. The

qualitative comparisons are provided in Fig. 7.

4.3. Frame Synthesis as Self-Supervision

In addition to making progress on the quality of video in-

terpolation/extrapolation, we demonstrate that video frame

synthesis can serve as a self-supervision task for represen-

tation learning. Here, the internal representation learned by

DVF is applied to unsupervised flow estimation and pre-

training of action recognition.

As Unsupervised Flow Estimation. Recall that 3D voxel

flow can be projected into a 2D motion field, which is

illustrated in Fig. 2 (e). We quantitatively evaluate the flow

estimation of DVF by comparing the projected 2D motion

field to the ground truth optical flow field. The KITTI flow

2012 dataset [9] is used as a test set. Table 2 (left) reports

the average endpoint error (EPE) over all the labeled pixels.

After fine-tuning, the unsupervised flow generated by DVF

surpasses traditional methods [2] and performs comparably

to some of the supervised deep models [5]. Learning to

synthesize frames on a large-scale video corpus can encode

essential motion information into our model.

As Unsupervised Representation Learning. Here we

replace the reconstruction layers in DVF with classification

layers (i.e., fully-connected layer + softmax loss). The mod-

el is fine-tuned and tested with an action recognition loss

on the UCF-101 dataset (split-1) [27]. This is equivalent

to using frame synthesis by voxel flow as a pre-training

task. As demonstrated in Table 2 (right), our approach

outperforms random initialization by a large margin and

also shows superior performance to other representation

learning alternatives [33]. To synthesize frames using voxel

flow, DVF has to encode both appearance and motion infor-

mation, which implicitly mimics a two-stream CNN [26].

4.4. Applications

DVF can be used to produce slow-motion effects on

high-definition (HD) videos. We collect HD videos (1080×
720, 30fps) from the web with various content and motion

types as our real-world benchmark. We drop every other

frame to act as ground truth. Note that the model used

here is trained on the UCF-101 dataset without any further

adaptation. Since the DVF is fully-convolutional, it can be

applied to videos of an arbitrary size. More video quality

comparisons are available on our project page3.

Visual Comparisons. Existing video slo-mo software

relies on explicit optical flow estimation to generate in-

between frames. Thus, we choose EpicFlow [25] to serve

as a strong baseline. Fig. 8 illustrates slo-mo effects on the

“Throw” and “Street” sequences, respectively. Both tech-

niques tend to produce spatially coherent results, though our

method performs even better. For example, in the “Throw”

sequence, DVF maintains the structure of the logo, while in

the “Street” sequence, DVF can better handle the occlusion

between the pedestrian and the advertisement. However,

the advantage is much more obvious when the temporal

axis is examined. We show this advantage in static form

by showing xt slices of the interpolated videos (Fig. 8

(c)); the EpicFlow results are much more jagged across

time. Our observation is that EpicFlow often produces zero-

length flow vectors for confusing motions, leading to spatial

coherence but temporal discontinuities. Deep learning is,

3https://liuziwei7.github.io/projects/VoxelFlow
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Figure 8: Visual quality comparisons between EpicFlow, ground truth and our approach. Row (a) shows several single frames from the

output videos. Row (b) shows close-ups of xt slices of each output video (rather than single frames, which are xy slices). From this

visualization, it can be seen that the EpicFlow output is more jagged across time.
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Figure 9: (a) Side-by-side comparison of video sequences with a diagonal-split stitch (order randomized), (b) user study results of our

approach against both EpicFlow and ground truth. 95% confidence intervals are used as error bars.

in general, able to produce more temporally smooth results

than linearly scaling optical flow vectors.

User Study. We conducted a user study on the final slo-

mo video sequences to objectively compare the quality

of different methods. We compare DVF against both

EpicFlow and ground truth. For side-by-side comparisons,

synthesized videos of the two different methods are stitched

together using a diagonal split, as illustrated in Fig. 9 (a).

The left/right positions are randomly placed. Twenty sub-

jects were enrolled in this user study; they had no previous

experience with computer vision. We asked participants to

select their preferences on 10 stitched video sequences, i.e.,

to determine whether the left-side or right-side videos were

more visually pleasant. As Fig. 9 (b) shows, our approach

is significantly preferred to EpicFlow among all testing

sequences. For the null hypothesis: “there is no difference

between EpicFlow results and our results”, the p-value is

p < 0.00001, and the hypothesis can be safely rejected.

Moreover, for half of the sequences participants choose the

result of our method roughly equally as often as the ground

truth, which suggests that they are of equal visual quality.

For the null hypothesis: “there is no difference between

our results and ground truth”, the p-value is 0.838193;

statistical significance is not reached to safely reject the null

hypothesis in this case. Overall, we conclude that DVF is

capable of generating high-quality slo-mo effects across a

wide range of videos.

Failure Cases. The most typical failure mode of DVF is in

scenes with repetitive patterns (e.g., the “Park” sequence).

In these cases, it is ambiguous to determine the true source

voxel to copy by just referring to RGB differences. Stronger

regularization terms can be added to address this problem.

5. Discussion

In this paper, we propose an end-to-end deep network,

Deep Voxel Flow (DVF), for video frame synthesis. Our

method is able to copy pixels from existing video frames,

rather than hallucinate them from scratch. On the oth-

er hand, our method can be trained in an unsupervised

manner using any video. Our experiments show that this

approach improves upon both optical flow and recent CNN

techniques for interpolating and extrapolating video. In

the future, it may useful to combine flow layers with pure

synthesis layers to better predict pixels that cannot be

copied from other video frames. Also, the way we extend

our method to multi-frame prediction is fairly simple; there

are a number of interesting alternatives, such as using

the desired temporal step (e.g., t = .25 for the first out

of three interpolated frames) as an input to the network.

Compressing our network so that it may be run on a mobile

device is also a direction we hope to explore.
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