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Abstract

The alterations of brain structures and functions have

been considered closely correlated to the change of cog-

nitive performance due to neurodegenerative diseases such

as Alzheimer’s disease. In this paper, we introduce a vari-

ational framework to compute the optimal transformation

(OT) in 3D space and propose a univariate neuroimag-

ing index based on OT to measure such alterations. We

compute the OT from each image to a template and mea-

sure the Wasserstein distance between them. By compar-

ing the distances from all the images to the common tem-

plate, we obtain a concise and informative index for each

image. Our framework makes use of the Newton’s method,

which reduces the computational cost and enables itself

to be applicable to large-scale datasets. The proposed

work is a generic approach and thus may be applicable

to various volumetric brain images, including structural

magnetic resonance (sMR) and fluorodeoxyglucose positron

emission tomography (FDG-PET) images. In the classifica-

tion between Alzheimer’s disease patients and healthy con-

trols, our method achieves an accuracy of 82.30% on the

Alzheimers Disease Neuroimaging Initiative (ADNI) base-

line sMRI dataset and outperforms several other indices.

On FDG-PET dataset, we boost the accuracy to 88.37%
by leveraging pairwise Wasserstein distances. In a longi-

tudinal study, we obtain a 5% significance with p-value =
1.13×105 in a t-test on FDG-PET. The results demonstrate

a great potential of the proposed index for neuroimage anal-

ysis and the precision medicine research.

1. Introduction

Neuroimaging studies the measurement of brain struc-

tures and functions and their changes during develop-

ment, aging, learning, disease, and evolution [27]. Mod-

ern techniques analyze noninvasive neuroimaging data typi-

cally obtained from structural Magnetic Resonance Imaging

(sMRI) and fluorodeoxyglucose positron emission tomog-

raphy (FDG-PET) by using mathematical and statistical

methods. A ubiquitous approach for neuroimaging research

is population based analysis, e.g. voxel based morphome-

try (VBM) [46] [5] [45] [7] and tensor based morphome-

try (TBM) [16] [12] [44]. They are being widely used to

identify differences in the local composition of brain tissue

while discounting large-scale differences in gross anatomy

and position [26]. VBM/TBM studies the brain abnormality

by non-linearly registering the brain images and comparing

the local differences among brain tissues and their functions

voxel by voxel in order to obtain the statistical significance

between groups and to discover the general trend of disease

burden and progression. The past decade has witnessed a

growing interest in developing new techniques to automat-

ically quantify the abnormality of brain structure and func-

tions, especially for the study of neurodegenerative diseases

such as Alzheimer’s disease (AD) [10] [40].

However, prior works (e.g. [38]) have shown that the sta-

tistically significant voxels obtained from the group differ-

ence studies do not necessarily carry strong statistical power

for computer-aided diagnosis (CAD). In clinical settings,

doctors prefer single indices as biomarkers because single

indices best quantify the brain structures and functions for

individuals rather than in the group level which has less

clinical effectiveness. A single neuroimaging index pro-

vides a practical reference for evaluating disease progres-

sion and for effective treatments. Yet the automated analy-

sis of brain diseases (e.g. AD) based on single indices faces

many challenges largely because these single indices can

hardly represent the complicated shape or metabolic activ-

ity of the entire human cerebral cortex. Most researchers

focus on developing indices from region of interest (ROI)

study (e.g. [10]). However, the ROI-based techniques re-

quire prior knowledge and precise segmentation which is

a major limitation that could result in inconsistency across

different studies [42]. In randomized clinical trials (RCT),

the regulatory agencies prefer single valued outcome mea-

sure which does not require statistical correction for mul-

tiple regional comparisons. Moreover, functional imaging

techniques such as FDG-PET often suffer from low reso-

lution and noises, which prevents traditional methods from
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accurate analysis. Therefore, it is highly advantageous for

clinical diagnosis and prognosis that we develop a unified,

robust method that works on different modalities to quantify

the shape of the cerebral cortex with a single index.

We have observed that after segmentation and normal-

ization, 3D brain images can be treated as 3D probability

distributions in the Euclidean domain, where (1) the in-

tensity of each voxel is non-negative, (2) the total inten-

sity is one, and (3) the distance between two voxels is the

Euclidean distance. Therefore, the problem of comparing

brain images can be converted to the problem of comparing

the corresponding distributions. The Wasserstein distance,

which is a numerical value, measures the similarity between

two probability distributions in a given metric space. It is

obtained by solving the underlying optimal transportation

problem which is to measure the minimum cost for moving

the total mass of one distribution to another. Thus, opti-

mal transportation (OT) is often referred to as optimal mass

transport (OMT) and so is the Wasserstein distance as the

earth mover’s distance. Recently, the Wasserstein distance

has proved itself to be a robust shape descriptor for 3D sur-

faces. Rabin et al computed the Wasserstein distance on 3D

surfaces to perform shape retrieval [31]. Solomon et al pro-

posed the convolutional Wasserstein distance and explored

many of its applications including shape interpolation and

skeleton layout [36]. In [37] and [33], the Wasserstein dis-

tance were applied to brain surfaces to find the correlation

between IQ and brain shapes, and Alzheimer’s disease and

brain shapes, respectively. Lévy [25] generalized a surface

optimal transportation algorithm to 3D and solved it with

quasi-Newton method. ur Rehman et al [39] solved OT on

the sMRI for 3D registration, which reveals the feasibility

to compute the Wasserstein distance on 3D brain volumes.

Despite of the convenience of using the Wasserstein dis-

tance to measure distributions, a limiting factor is the com-

putational complexity of solving the optimal transportation

problem. This is especially true when dealing with high di-

mensional distributions, and is the reason that ur Rehman

et al [39] adopted GPU to improve efficiency. In practice,

some methods seek to approximate the optimal transporta-

tion in order to avoid heavy computation, e.g. [36] [15].

In this paper, we introduce a numerically efficient algo-

rithm to compute the optimal transportation with Newton’s

method. Based on the algorithm, we propose a framework

for indexing brain images. First, we normalize the images

and re-discretize them in order to obtain their tetrahedral

representations. Then, we compute the optimal transporta-

tion between the tetrahedral meshes and obtain the 3D Eu-

clidean Wasserstein distance between them. Because of its

properties as a metric and its sensitivity to the difference be-

tween two measures, the Wasserstein distance servers as a

univariate neuroimaging index to distinguish between indi-

vidual images and between images in the group level. We

apply our framework on two modalities of brain images –

sMRI and FDG-PET – and verify the Wasserstein distance

as a univariate index in distinguishing Alzheimer’s disease

patients from cognitively normal people. Our results show

that the Wasserstein distance is a highly stable feature and

provides a relatively high classification accuracy of 82.30%

on sMRI and 88.37% on FDG-PET with boosting.

The contribution of this research is threefold. First and

foremost, we explore the potential of the Wasserstein dis-

tance as a univariate neuroimaging index in the analysis of

both sMR and FDG-PET images. Second, we provide an al-

ternative to score the changes in brain tissue and their func-

tions from their appearance on brain images. We model

the brain tissues and functions with their intrinsic geomet-

ric structure and obtain a shape distance between each pair.

To our knowledge, this is the first time that a geometric

approach has been proposed to quantify the whole brain

change on FDG-PET. Third, we propose a framework based

on the variational optimal transportation to compute the 3D

Euclidean Wasserstein distances of brain images. The vari-

ational framework is efficient, which makes it advantageous

for working with large-scale and high dimensional datasets.

2. Preliminaries

We first introduce the problem of optimal transportation

in the context of brain image analysis. We also describe vol-

umetric harmonic mapping in 2.2, which provides a convex

canonical space for computing optimal transportation .

2.1. Optimal Transportation

Suppose M(m,µ) and N(n,ν) are two metric spaces

with probability measures. In other words, 1 =
∫

M
µ(m)dm =

∫

M
ν(n)dn. We call a mapping T :

M(m,µ) → N(n,ν) a measure preserving one if the

measure of any subset B of N is equal to the measure of

the origin of subset B in M , which means µ(T−1(B)) =
ν(B), ∀B ⊂ N . Given a transportation cost function c :
M ×N → R

+
0 , the problem of optimal transportation (OT)

is to find the measure preserving mapping Topt : M → N
that minimizes the total cost,

Topt(M,N) = argmin
T

∫

M

c(m,T (m))dµ(m). (1)

For simplicity, Topt is replaced by T in the rest of the paper.

In the context of brain mapping under discrete settings,

given two brain images M(m,µ) and N(n,ν), the prob-

lem becomes to find the OT, T : M → N , such that the

cost is the minimum. And we call the minimum cost the

Wasserstein distance between M and N , which is defined

as:

w(M,N) := inf
∑

m∈M

c(m,T (m))µ(m). (2)
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Figure 1: Edge (mi,mj) (red) is shared by two tetrahedra (blue

and green). Each tetrahedron has an edge and dihedral angle

against edge (mi,mj). The summation of the length lt times di-

hedral angle θt forms the harmonic string energy.

The cost c(·) is defined as the quadratic Euclidean distance

between a voxel and its map, c(m,T (m)) = ‖m−T (m)‖2.

The Wasserstein distance is a metric that quantifies the sim-

ilarity of two domains which in our case are two brain im-

ages. The details of the optimal transportation problem

and the properties of the Wasserstein distance can be found

in [19] [23] [41] and [8].

2.2. Volumetric Harmonic Mapping

A tetrahedral mesh M can be regarded as a simplicial

complex K under embedding f : |K| → R
3. Suppose mi

and mj are two adjacent vertices in the mesh, and f(mi)
and f(mj) are their coordinates in R

3. Then, our goal is to

find the f ′ that minimizes a string energy,

E(f)
def.

=< f, f >=
∑

(mi,mj)∈K

k(mi,mj) ‖f(mi)− f(mj)‖
2.

(3)

k(mi,mj) is called the string constant. Different defini-

tions of k determine different types of string energy. Sup-

pose an edge (mi,mj) is shared by n tetrahedra. Then we

define the harmonic string constant as

k(mi,mj)
def.

=
1

12

n
∑

t=1

ltcot(θt), (4)

where lt is the length of the edge to which edge (mi,mj)
is against and θt denotes the dihedral angle on that edge.

Figure 1 depicts the geometric relations. The red line rep-

resents edge (mi,mj) shared by several tetrahedra, two of

which (one blue, one green) are shown in the figure. θt,
t = 1, 2 is the dihedral angle in Equation (4) and so is

the edge length lt. Plugging Equation (4) into Equation (3)

gives us the harmonic energy. We apply gradient descent to

get f ′. [43] provides details on volumetric harmonic map-

ping. Briefly, we first compute a brain surface spherical
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Figure 2: Voronoi diagram on a 2D plane. The plane is parti-

tioned into different cells, each with a particle. Every measure

point on the plane has a smaller distance to the particle of its own

cell than to any other particle.

conformal mapping. Using the sphere as a fixed boundary,

we minimize the volumetric harmonic energy (Equation 3)

and produce the volumetric harmonic mapping. After vol-

umetric harmonic mapping, an arbitrary tetrahedral mesh

will be harmonically mapped into a unit sphere. This is the

initial condition to perform the discrete optimal transporta-

tion which requires a convex metric space.

3. Discrete Variational Optimal Transporta-

tion

Having introduced the optimal transportation problem

in 2.1, given a discrete point set with a Dirac measure

(p,ν) = {(pi, νi)|pi ∈ R
n,
∑

i νi = 1}, i = 1, 2, ..., l,
our goal is to find a discrete optimal transportation from a

metric space M(m,µ) ⊂ R
n to the discrete point set (p,ν)

which partitions the metric space into polygons, forming a

power Voronoi diagram. Figure 2 illustrates a Voronoi di-

agram on a 2D Euclidean plane. Black dots represent the

measure (m,µ) while the orange dots indicate the point set

(p,ν). We introduce a height vector h = (h1, h2, ..., hl)
and a piecewise linear convex function:

uh(m) = max{〈m, pi〉 − hi}, i = 1, 2, ..., l. (5)

Thus, each Voronoi cell can be represented as:

Vi
def.

= {m ∈M | d2(pi,m)−h̃i 6 d2(pj ,m)−h̃j}, ∀j 6= i,
(6)

which is called a power Voronoi cell since we compute the

power distance d2(pi,m)− h̃i where

h̃i = 2hi − |pi|
2.

The gradient map ∇uh : Vi(h) → pi “transports” each

Vi(h) to a specific point pi. The total mass of Vi(h) is

denoted as: wi(h) = µ(Vi(h)). For a given metric space

M(m,µ) and any given Dirac measure (p,v), according
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Figure 3: The intersection (blue) of Voronoi cells in 2D (left) and

3D (right) cases. The hessian matrix is derived from the geometric

relation between adjacent Voronoi cells.

to [20], there exists a unique height vector h such that the

gradient map µ(h) is measure preserving, i.e. wi(h) = vi
and meanwhile minimized the quadratic transportation cost.

Now, we define an energy function,

E(h)
def.

=

∫ h(h) l
∑

i=1

hwidhi −

l
∑

i=1

νihi. (7)

Equation (7) is a convex function, which makes its opti-

mization tractable via Newton’s method. We follow the

variational principle and derive gradient and Hessian ma-

trix. The gradient of the energy is

∇E(h) = (w1(h)− ν1, ..., wl(h)− νl)
T . (8)

The Hessian matrix can be computed from the power

Algorithm 1: Computing discrete variational optimal

transportation

Data: A convex set

(M,µ) = {(m1, µ1), (m2, µ2), ..., (mk, µk)},
a set of particles with a Dirac measure

(p,v) = {(p1, v1), (p2, v2), ..., (pl, vl)},
a threshold ǫ, and a step λ.

Result: Discrete optimal transportation map

ϕ : (M,µ)→ (p,ν), represented as (V,h).
1 begin

2 h← (0, 0, ..., 0).
3 repeat

4 Compute V with current (p,h).
5 Compute w(h) = {wi =

∑

m∈Vi
µ(m)}.

6 Compute ∇E(h) using Equation (8).

7 Compute H using Equation (9).

8 h← h− λH−1∇E(h).

9 until |∇E(h)| < ǫ
10 return ϕ.

11 end

SEGMENTATION

Brain Images Cerebral Cortex

Brain mesh model

Brain mesh Spherical mesh
Voronoi diagram 

with Dirac measure

OPTIMAL 

TRANSPORTATION

PROJECTIONHARMONIC 

MAPPING

TRANSPORTATION MAPTemplateA

B

Wasserstein

distance 

between A and B

PET sMRI

Figure 4: The pipeline to compute the Wasserstein distance index

of an sMR or FDG-PET image. It consists segmentation, projec-

tion, harmonic mapping, and optimal transportation. Eventually,

the output of the framework is the Wasserstein distance between

mesh A (green) and mesh B (blue).

Voronoi diagram. Specifically, suppose two cells Vi(h) and

Vj(h) intersect at a hyperplane fij = Vi(h) ∩ Vj(h), as

shown in Figure 3. The Hessian matrix of E(h) is given by

H
def.

=

(

∂2E(h)

∂hi∂hj

)

=

(

Area(fij)
∣

∣pj − pi
∣

∣

)

. (9)

By Newton’s method, at each step, we solve a linear system,

Hδh = ∇E(h), (10)

and update the height vector h← h−λδh until δh is below

a pre-defined threshold. The step λ is an empirical value.

The initial value of h is set to h ← (0, 0, ...0)T . Letting

ϕ denote the optimal transportation map ϕ : M(m,µ) →
(p,h), we show the complete algorithm for computing the

optimal transportation map ϕ in Algorithm 1.

4. OT based Neuroimaging Index

Figure 4 shows the overview of our framework. It shows

the data flow from the brain images to its Wasserstein dis-

tance index. The flow before “Projection” is considered pre-

processing which is introduced in 4.1. In 4.2, we talk about

how to transform the 3D digitalized image into a tetrahe-

dral representation. After that, we describe our approach

to obtain a neuroimaging index for each brain volume via

discrete optimal transportation (OT) in 4.3.

4.1. Data Pre­processing

In this study, we focus on two modalities of brain images

– structural magnetic resonance image (sMRI) and fluo-

rodeoxyglucose positron emission tomography (FDG-PET)

image. Due to different mechanism of these two modalities,

we approach to pre-processing them in different ways and

in here we describe them separately.
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Figure 5: Volumetric harmonic mapping from a brain mesh to

a unit spherical mesh. The feature (e.g. intensity) at each vertex

remains the same after the mapping.

sMRI The sMRI scans we use for each subject are T1-

weighted which have been acquired at 1.5T. First, we

linearly align all the images together using FLIRT [35]

which is a linear image registration tool included in FM-

RIB Software Library (FSL) [1]. After that, we use

FreeSurfer [17][2] to process all the images to obtain the

segmented brain tissues (e.g. cerebral cortex) and statistics

on the brain structure (e.g. average cortical thickness).

FDG-PET The FDG-PET scans used in this research are

processed as follows. First, we use the software toolkit Sta-

tistical Parametric Mapping (SPM) [30][3] to linearly align

the images into a common space. Second, we borrow a

brain mask from SPM, manually exclude the brain stem and

only keep cerebral cortex (because cerebral cortex is the ob-

ject of this study), and then segment all the images with this

cerebral mask. Third, we conduct spatial smoothing with a

Gaussian kernel of the full width at half maximum (FWHM)

equal to (8, 8, 8) in three directions (x, y, z).

4.2. Re­discretization

The purpose of re-discretization is to replace the images

with regularized tetrahedral meshes so that it is easier to per-

form shape transformation. In this study, we adopt the seg-

mented brain volumes from the pre-processing phase and

use FreeSurfer for sMRI and SPM on FDG-PET respec-

tively to extract their surfaces. Then, we use TetGen [34]

to generate the tetrahedral meshes from the surfaces.

Given a brain image and its corresponding tetrahedral

mesh aligned together, we project the intensities of the im-

ages onto the meshes. Suppose, after the alignment, a voxel

of the image is surrounded by several vertices of the mesh.

First, for each voxel x of the image, we use ANN (Approx-

imate Nearest Neighbor) library [29] to find its four nearest

vertices, m = {mi}, i = 1, ..., 4, on the mesh. The number

of the nearest points we count for projection is adjustable to

the difference in the resolutions between the image and the

mesh. After that, the intensity I(x) is dispensed from x to

mi. The value µ(mi) that mi receives is determined by the
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Figure 6: 3D Voronoi diagrams. As the same as in 2D sce-

nario, the points in each 3D weighted Voronoi cell has the smallest

weighted distance to its own particles than to any other particle.

distance between that mi and x. In particular, we have:

µ(mi) = aiI(x), (11)

ai =
1/di

∑4
i=1 1/di

, (12)

where di =

√

‖x− vi‖
2

denotes the Euclidean distance be-

tween x and vi. The closer vertex receives a larger value of

intensity. This ensures the smoothness of the data.

Another way of determining ai is through inverse

barycentric method, but inverse barycentric could result in

negative values if the “center” is outside the convex hull

formed by neighbors, especially in the regions close to the

cerebral cortex surface. A negative vertex feature does not

have a physical meaning. Hence, we do not apply inverse

barycentric method, although it is mathematically correct.

4.3. Discrete Optimal Transportation

Volumetric Harmonic Mapping In order to provide the

convexity that the optimal transportation requires, we em-

ploy volumetric harmonic mapping which maps an arbitrary

3D tetrahedral mesh to a unit sphere. Figure 5 illustrates a

brain mesh before and after the harmonic mapping. Colors

indicate the intensities that have been projected from the

original images as the result of re-discretization.

Discrete Optimal Transportation After building the com-

mon canonical space by volumetric harmonic mapping, we

apply Algorithm 1 to compute the optimal transportation

between desired brain meshes. Figure 6 (left) shows the

resulting Voronoi diagram with 61 cells which is what we

use in the experiments. After the optimal transportation, the

size of each Voronoi cell has been adjusted so that each cell

encloses the vertices with measures whose total value ap-

proximates the Dirac measure of the center of the cell. To

show the shape of each Voronoi cell, we also draw the cen-

tral 11 cells of the diagram (middle and right) with different

colors. We implement our algorithm in C/C++ and we bor-

row Voro++ [32] to compute the 3D Voronoi diagram. We

solve the linear system in Equation (10) using the square

conjugate gradient solver provided by Eigen library [4].
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Table 1: Demographic information of subjects in this study

Modality Study Cohort # Age∗ MMSE∗

sMRI Cross.
AD 75 76.3 23.1

CN 175 76.1 29.0

FDG-PET

Cross.
AD 23 76.4 18.3

CN 20 78.4 28.8

Long.
AD 30×2 77.8 18.2

CN 30×2 79.1 28.4

Key: AD Alzheimer’s disease; CN cognitively nor-

mal; Cross. Cross-sectional; FDG-PET fluorodeoxyglu-

cose positron emission tomography; Long. Longitudinal;

MMSE Mini-Mental State Examination; sMRI structural

magnetic resonance imaging; ∗ mean values.

3D Euclidean Wasserstein Distance Recall Equation (2)

defining the minimum cost brought by the optimal trans-

portation. We call this minimal cost 3D Euclidean Wasser-

stein distance if the quadratic distance function is defined

in the 3D Euclidean space where the brain meshes are em-

bedded in. We describe our approach for computing the

Wasserstein distance index in the rest of the paragraph.

First, we build a template from a brain mesh. Specifically,

we initialize an unweighted Voronoi diagram with point set,

P (p,ν) where νi = 0, ∀i. The points are manually de-

signed to be uniformly distributed in the canonical space

which is the harmonic map of the brain mesh as shown in

Figure 4. After that, we calculate total mass of each Voronoi

cell, which is the summation of the intensities of all the ver-

tices in this particular cell, and assign it to the measure of

the corresponding point. Because the total mass of the en-

tire mesh is one, the newly generated point set is actually

a Dirac measure. The point set will serve as the template

for computing the optimal transportation between the brain

mesh model and each other brain mesh M(m,µ) using Al-

gorithm 1. The Wasserstein distance is then computed by

w(M,P ) =

k
∑

mi=1

d2(mi, pj)µi, (13)

where pj = ϕ(mi) and d2(mi, pj) =
∥

∥mi − pj
∥

∥

2
.

Because the Wasserstein distance measures the similar-

ity between the measurement of different brain meshes, by

comparing the distances from all the meshes to a common

template, we will obtain a one dimensional distance space

W , called the Wasserstein space. The origin is the Wasser-

stein distance between the template and itself and the coor-

dinates serve as single indices representing the shape of all

the brain volumes regarding to that template.

Table 2: Timing of computing the Wasserstein distance be-

tween two tetrahedral meshes

# of vertices 18,614

# of tetrahedra 111,466

Newton’s
# of iteration 176

Time 54.85s

Gradient descent
# of iteration 1,441

Time 397.21s

5. Applications to FDG-PET and sMR Images

for Alzheimer’s Disease Analysis

In this section, we use four separate experiments to eval-

uate the performance of our indexing framework on sMR

and FDG-PET images for the analysis of Alzheimer’s dis-

ease. The test data come from Alzheimers Disease Neu-

roimaging Initiative (ADNI) (adni.loni.usc.edu) [22] [21].

We randomly selected 164 FDG-PET scans from ADNI-2

and 250 sMRI scans from ADNI-1 databases. The detailed

cohort information is described in Table 1. In the rest of the

paper, we refer to FDG-PET as PET.

5.1. Timing and Numerics

All the tests were run on a 3.40 GHz Intel (R) Core (TM)

i7-3770 CPU with 8.00 GB RAM. To achieve a threshold

of 3.2 × 10−3 (convergence) on a tetrahedral mesh with

18, 614 vertices, the average running time of our method

for computing the Wasserstein distance between two tetra-

hedral meshes over 10 trials was 54.85 seconds with 176 it-

erations. Step λ was 0.3. Table 2 summaries the timing and

numerics. Our approach via Newton’s method outperforms

the traditional method based on gradient descent [39]. Both

were tested without GPU or CPU multi-threaded accelera-

tion – the performance can be further improved. The results

provide us a practical foundation to study the Wasserstein

distance as a univariate neuroimaging index.

5.2. Cross­sectional Study of AD on sMRI

To explore the practicality of our framework on sMR

images as well as its robustness over large brain image

datasets, we apply it to the ADNI-1 baseline dataset with

75 AD and 175 CN subjects, and compare the Wasser-

stein distance index with four frequently used single indices

– hippocampal volume, average entorhinal cortex thick-

ness, average cortical thickness and total grey matter vol-

ume [13] [6] [14] – in terms of their classification accura-

cies. To make them comparable, we use the minimum num-

ber of “base classifiers” – two base classifiers. One is based

on an AD template and the other is based on a CN template.

First, we randomly select 10 AD and 10 CN images
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Figure 7: Results from the classification between AD and CN

on ADNI-1 baseline. Among all the indicators, the Wasserstein

distance achieves the highest accuracy.

and respectively average them into two templates, each for

a group. Then, we compute the Wasserstein distances of

each baseline image to these 2 templates. Thus each im-

age will obtain 2 values. We regard these 2 values as a

2-dimensional feature and run linear discriminant analy-

sis (LDA) on them. Finally, we use the statistics com-

puted from FreeSurfer [17] to evaluate the performance of

our proposed method. We conduct the classification with

10-fold cross-validation. Each time, we adopt 90% of the

whole dataset with their true labels (AD or CN) to train a

classification model and then apply this model to the re-

maining 10% to obtain the result. Figure 7 summarizes the

performance of different indices. Among all the indices, the

Wasserstein distance index achieves the highest accuracy of

82.30%. Since the Wasserstein distance index works on a

large ADNI baseline dataset, we expect it as a potential in-

dex to be useful in assisting clinical diagnosis.

5.3. Cross­sectional Study of AD on FDG­PET

Prior research has shown strong evidence that PET is a

valid prognostic marker of progression of Alzheimer’s dis-

ease [28]. Geometric analysis of PET, however, has been

limited due to low resolution and lack of anatomical infor-

mation [24][9]. Our framework regards each image as a

probability measure and does not require the positional re-

lation between adjacent voxels, which makes it applicable

to PET images. We compute the Wasserstein distance be-

tween each two subjects. According to our previous discus-

sion, in the group level, the subjects in the same cohort (AD

or CN) may have similar brain functions compared to the

brain functions of subjects in different cohorts. We test our

hypothesis through classification between AD and CN.

Our approach is inspired by AdaBoost [18]. To be de-

tailed, each time we regard an image Ii as a template and

compute the Wasserstein distance w(Ii, Ij) from itself to all

others Ij , j 6= i, and repeat the process over all the images.

AD

AD

CN

CN

Figure 8: Distance matrix

obtained from computing the

Wasserstein distance between

each two FDG-PET images.

Figure 9: ROC curve for clas-

sification between AD and CN

on FDG-PET images.

Therefore, each time we get a base classifier

hi(w
i
j) =

{

sign(Ii), if wi
j < wthreshold

− sign(Ii), if wi
j ≥ wthreshold

(14)

where sign(Ii) ∈ {1,−1} indicates the class of Ii, which

is the ground truth, and wi
j is the Wasserstein distance be-

tween image Ij and template Ii. The final classifier is

H(wj) = sign

( N
∑

i=1

αihi(w
i
j)

)

, i 6= j, (15)

where wj represents the distance vector by computing the

Wasserstein distances between image Ij and all the tem-

plates including itself (but we exclude itself as the template

when we compute the output of the classifier). Since we

know the label (AD or CN) of the template, by setting a

proper threshold, wthreshold, we can obtain the labels of

all the other images. Due to the small number of the data

available to us, we consider that each base classifier equally

contributes to the final classifier, i.e. αi =
1
N
, ∀i.

Figure 8 shows the Wasserstein distance matrix, w, a

collection of all the distance vectors wj , each representing

a column (or a row). The distances have been normalized

to the range [0 1] for the purpose of visualization. By lever-

aging our approach to classify 23 AD patients and 20 CN

subjects, we obtained an accuracy of 88.37% with sensitiv-

ity of 91.30% and specificity of 85.00%. The area under

curve (AUC) is 97% as shown in Figure 9.

An interesting point we can find from Figure 8 is that al-

though the images labeled “AD” can be clustered by their

Wasserstein distances very well, images labeled as “CN”

are relatively not clustered together but rather distributed

over the space. One explanation could be, that when people

have Alzheimer’s disease often associated with the decline

in metabolic rate they form a similar pattern in terms of the

Wasserstein distance. It is well known that AD is highly

correlated to certain common regions across different sub-

jects. We treat each brain volume as a distribution. There-

fore, we hypothesize that the 3D distributions will become
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Figure 10: Box plot indicating the distribution of the Wasserstein

distances of AD and CN.

closer in terms of their pair-wise Wasserstein distances be-

cause the loss of the brain tissue (e.g. empty or almost-

empty voxels) during the progression of AD will gain more

weights in the distribution. As a result, the Wasserstein dis-

tances between AD images become smaller but others do

not have significant change.

5.4. Longitudinal Study of AD on FDG­PET:
A Statistical Significance Test

Clinical findings have shown strong association between

metabolic reduction and the cognitive decline among pa-

tients with AD [11]. Therefore, in the time domain, the

Wasserstein distance measure between the PET images and

the template should become smaller (assuming we have an

AD template) since the distribution of the images becomes

more similar to the template. In addition, the Wasserstein

distances of the PET images labeled AD should decrease at

a higher rate than the images of the CN subjects do.

We verify our hypothesis with a longitudinal experiment

involving 30 AD patients and 30 CN subjects each having

2 scans spanning 2 years. First, for each PET image, we

calculate its Wasserstein distance to every other PET image

labeled “AD”, and then average the results. This averaged

Wasserstein distance will serve as a one-dimensional fea-

ture for the rest of the analysis. Second, for each subject

with two PET scans, we record the change in the Wasser-

stein distance of the PET scan from initial visit to 2-year

visit. Therefore, we hypothesize that for AD subjects, the

change should be larger than that of CN subjects because

AD patients have fast metabolic reduction in cerebral cor-

tex as opposed to normal people whose cerebral metabolic

activities do not show significant change. Figure 10 reveals

the box plot of the longitudinal experiment. The one-side

t-test yields a 5% significance with p-value = 1.13× 10−5,

which very well accords with our hypothesis. Our statistical

results show that the proposed univariate index is a promis-

ing neuroimaging biomarker for tracking AD progression

and measuring responses to interventions.

6. Conclusions

Optimal transportation has long been studied in the ar-

eas of computer graphics and vision where most research

has been focused on 2D images and 3D surfaces. The com-

plexity of the underlying optimization has been a challenge

to researchers especially for high dimensional data, e.g. 3D

volumes. Our proposed algorithm for computing variational

optimal transportation provides a solution to process high

dimensional data within reasonable time. We proposed a

novel framework based on variational optimal transporta-

tion to compute the Wasserstein distance between brain im-

ages, and demonstrated the potential of the Wasserstein dis-

tance as a brain imaging index in characterizing neurode-

generative diseases. Our framework for indexing brain im-

ages provides a new perspective to analyze brain images.

We solve the optimal transportation problem on different

modalities of brain images for characterizing brain struc-

tures and metabolic patterns, and obtain promising results

that verify our hypothesis: people with Alzheimer’s disease

tend to have similar brain structures and metabolic activity

patterns in terms of their Wasserstein distances.

There are two open issues with our framework. One is to

determine the optimal number of Voronoi cells used in op-

timal transportation. Using more cells will likely increase

the accuracy of the mapping but will also boost the compu-

tational cost. Thus, it would be ideal to discover an opti-

mal number of cells that balances efficiency and effective-

ness. The other issue comes from the selection of templates.

In 5.2, we adopt two templates instead of one because find-

ing an ideal template for OT is extremely challenging and is

still an open problem. If a non-typical volume (with smaller

Wasserstein distances to most AD volumes but belongs to

CN) is selected as the template, the predictions can be far

from the truth and even the opposite.We choose to use two

templates to reduce the bias. More empirical knowledge

has to be discovered for building a high-quality template

that can work alone for classification tasks.

Our work provides a tool for solving the optimal trans-

portation problem efficiently in high dimensional spaces

and explores its applications to characterizing Alzheimer’s

disease on sMR and FDG-PET images. Future work could

include solving the OT problem for even higher dimen-

sional data, e.g. tensor images. Additionally, the use of

the proposed index to other modalities, such as functional

and diffusion MRI, may further improve pre-symptomatic

diagnosis and treatment of neurodegenerative diseases.
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