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Abstract

A popular approach to training classifiers of new image classes

is to use lower levels of a pre-trained feed-forward neural network

and retrain only the top. Thus, most layers simply serve as highly

nonlinear feature extractors. While these features were found use-

ful for classifying a variety of scenes and objects, previous work

also demonstrated unusual levels of sensitivity to the input espe-

cially for images which are veering too far away from the training

distribution. This can lead to surprising results as an impercepti-

ble change in an image can be enough to completely change the

predicted class. This occurs in particular in applications involving

personal data, typically acquired with wearable cameras (e.g., vi-

sual lifelogs), where the problem is also made more complex by the

dearth of new labeled training data that make supervised learning

with deep models difficult. To alleviate these problems, in this pa-

per we propose a new generative model that captures the feature

distribution in new data. Its latent space then becomes more rep-

resentative of the new data, while still retaining the generalization

properties. In particular, we use constrained Markov walks over a

counting grid for modeling image sequences, which not only yield

good latent representations, but allow for excellent classification

with only a handful of labeled training examples of the new scenes

or objects, a scenario typical in lifelogging applications.

1. Introduction

Visual lifelogging refers to the process of seamessly collecting

visual data by means of wearable cameras, and it is intended to

capture the bearer’s visual experience of over long and continu-

ous periods of time [4]. Visual lifelogs are recorded for personal

consumption or just for fun, although they also offered valuable

streams in medical applications, such as aids in elderly memory

lacks [6], or dietary analysis [21].

Lifelogging cameras have recently become available to the

consumer market: examples are YoCam, Autographer, Narrative,

EE CaptureCam. Unlike traditional cameras, these devices are

characterized by a passive record-it-all approach and by a low tem-

poral resolution (LTH), automatically shooting a photo every 10-

30 seconds.A popular approach to training classifiers of new image

classes is to use lower levels of a pre-trained feed-forward neural

network and retrain only the top. Thus, most layers simply serve

as highly nonlinear feature extractors. While these features were

found useful for classifying a variety of scenes and objects, pre-

vious work also demonstrated unusual levels of sensitivity to the

input especially for images which are veering too far away from

the training distribution. This can lead to surprising results as an

imperceptible change in an image can be enough to completely

change the predicted class. This occurs in particular in applica-

tions involving personal data, typically acquired with wearable

cameras (e.g., visual lifelogs), where the problem is also made

more complex by the dearth of new labeled training data that make

supervised learning with deep models difficult. To alleviate these

problems, in this paper we propose a new generative model that

captures the feature distribution in new data. Its latent space then

becomes more representative of the new data, while still retain-

ing the generalization properties. In particular, we use constrained

Markov walks over a counting grid for modeling image sequences,

which not only yield good latent representations, but allow for ex-

cellent classification with only a handful of labeled training exam-

ples of the new scenes or objects, a scenario typical in lifelogging

applications.

With increasing amounts of visual data collected, a manual

use of visual lifelogs to infer meaningful knowledge concerning

people’s lives becomes a tedious task. This has opened up a new

line of research in computer vision that tackle lifelogging, includ-

ing automated life story creation [18], summarization [15], action

or location recognition [24], or understanding social interactions

[8, 1].

Despite of significant work in this area, automated visual anal-

ysis of such collections of personal data still remains an open prob-

lem mainly because of i) challenging imaging conditions such as

blurring and motion artifacts due to the loose attachment of the

camera to clothes, ii) abrupt lighting variations, severe occlusions

or presence of non-informative frames due to the non-intentional
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Figure 1. An embedding provided by constrained Markov walks on All-I-Have-Seen (AIHS) [15] dataset. Contiguous regions are seen as

capturing consistent scenes. For instance, the highlighted region belongs to images taken inside the office of the lifelogger.

nature of the image capturing, and iii) very limited amount of la-

beled data to solve a problem with supervised learning1. These

three problems cause major problems for the most powerful clas-

sification frameworks, such as the Convolutional Neural Networks

(CNN), which are typically trained on very large amount of la-

beled, artifact-free images captured in an intentional manner.

One approach to resolving these issues is to pre-train a CNN

on sufficient amount of out out-of-sample, but related and labeled

training data (such as the MIT-Places database, trained with 8 mil-

lion images in 365 scene categories [31]), and transfer its image

representation to a given task. Particularly, one or multiple layers

of the CNN activations may serve as highly non-linear feature ex-

tractors, and new classifiers for new data can be trained on these

features [27]. Although this approach was found useful in clas-

sification of a wide variety of scenes and objects [27, 7], it also

demonstrated unusual levels of sensitivity to the input distribution.

Indeed, extracted deep features can lead to surprising results on in-

1Typically, only the bearer of the camera can provide labels for the

things they care about, making crowdsourcing impractical.

put images which are veering too far away from the training distri-

bution. For instance, two recent studies have shown that not only

an imperceptible change in an image can be enough to completely

change the predicted class [11], but also that CNNs can easily be

fooled with images humans do not consider meaningful, whereas

deep networks classify them with very high confidence as exam-

ples of the known classes [20]. This can lead to major problems in

visual lifelog applications, where video data recorded in the daily

life differs substantially from the training data distribution. Most

importantly, additional classifier training on extracted features still

requires more labeled data than can be expected to be available in

practice, where the users will likely find it tedious to label more

than a couple of images for each class of interest, lest they decide

to limit their interest to a small number of classes.

To mitigate these problems, this paper advocates the use of a

generative model to capture the distribution over the deep features

calculated using the pre-trained model but on the new data. By

fitting the generative model in an unsupervised fashion, the cor-

related changes that affect feature extractors when they move on

to the new domain are captured and explained away without the
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need for labeled data. The latent structure of the model then be-

comes the grounds for reasoning about the images in a manner

less affected by the transfer. Additionally, generative models can

be made more interpretable than neural networks’ activations, al-

lowing users to engage with the data in more effective ways than

by simply labeling examples.

In particular, the latent space of the model here corresponds to

the positions in a 2-D grid as illustrated in Figure 1 where we show

a representative image in each location. In this embedding space,

similar images, even when the CNN may assign them to different

classes, tend to map to nearby locations. The directions of varia-

tion across the space tend to follow the recognizable patterns from

the data, such as camera direction, even when images are captured

at a very low temporal resolution of one image per minute. For ex-

ample, a number of images captured inside an office are mapped

to the contiguous area outlined in the embedding. This model is

quite versatile, as it can be used as an unsupervised learning tool,

e.g. for clustering or summarizing the data without use of labels,

but it can also be used to build classifiers with ultra-low numbers

of labeled images.

Contributions. First, we show that the parameterization of

the counting grids (CG) [23], follows the typical neural network

parametrization, thus justifying their use as the final layer in a deep

architecture for a hybrid forward-backward model, where feature

extractors applied in forward manner are expected to follow a dis-

tribution of a generative model with grid position as a latent vari-

able. Counting grids are generative models that embed discrete

data onto a 2-D discrete torus. They are robust in presence of

data scarcity, and have been previously used for lifelogging-related

tasks like image retrieval [10] or location recognition [22, 24].

Second, we extended the counting grid model by enforcing the

temporal consistency of the mappings using constrained Markov

walks. We partition the visual stream into contiguous snippets of

frames and jointly embed the frames of each snippet by means

of a constrained version of the forward-backward algorithm [25].

This allows us to find better local minima of frame embedding into

CG where having multiple distant areas corresponding to the same

type of images is avoided. A further benefit is an improved robust-

ness to non-informative frames, which are mapped into ”garbage

areas” by the regular counting grid, and consume precious real-

estate on the grid. With constrained Markov walks each frame

is mapped jointly with its neighbors and because we expect that

at least 50% of the frames in a snippet are informative, they will

guide the mapping of the whole snippet disallowing creation of

separate areas with overexposed or occluded images. Finally, en-

forcing temporal consistency maps the locations which are close in

the real word into locations that are also close on the grid, making

the embedding more suitable for browsing or personal consump-

tion.

Finally, we prove that inference can be carried out in linear

time by adapting the forward-backward procedure (which is usu-

ally quadratic) to exploit the counting grid geometry for particular

shapes of the Markov constraint, from boxes to Gaussians.

In the experiments, we consider three recent types of visual

streams acquired with wearable cameras [28, 15, 17], and we ex-

ploited the mappings in the embedding to asses the similarity of

images rather than the direct comparison of feature vectors. Our

results unquestionably show that that the embedding produced by

this new model allows classification with ultra-low number of la-

beled examples better than standard supervised layers (e.g., Soft-

max), and also compares favorably to the unsupervised embed-

dings provided by autoencoders [2], t-sne [29], and regular count-

ing grids. This functionality, which next to low power consump-

tion, is one of the most needed precursors to adoption of wearable

cameras and their applications.

The rest of the paper is organized as follows. In Section 2,

the literature close to the proposed approach is addressed. Section

3 details the proposed variation of the counting grid generative

model, showing how it is able to properly organise the latent space.

Extensive experimental results are reported in Section 4, together

with comparative analyses. Section 5 draws the conclusions and

sketches future perspectives.

2. Constrained Markov walks over a counting

grid

In this section we first review the basic counting grid models

[23], then we turn to present our contributions: i) we justify count-

ing grids as generative layer in deep architectures, ii) we extend the

counting grid by constraining the walks on its embedding, calling

the resulting model CGcw and finally iii) we show how inference

in this new model can be carried out in linear time.

The Counting Grid Suppose that each image frame x
t is

represented by a set of non-negative feature intensities, x
t =

{ctz}
Z
z=1. Each frame is associated with a discrete location ℓt

on a 2-dimensional toroidal grid2
E = Er × Ec. The location

ℓ = (ℓr, ℓc) is a latent variable that defines the mapping on the

grid thus the distribution over possible feature observations for a

single frame t as:

p(xt|ℓt) =
∏

z

h
ctz
ℓ,z, (1)

Where hℓ,z is a distribution over features z associated with loca-

tion ℓ, thus
∑

z
hℓ,z = 1. A feature intensity cz is thus treated

as a count, as if there was a discrete detector for feature z that

was tripped cz times, and the feature probabilities hℓ,z form a nor-

malized expected histogram of counts. For example, the z − th
detector could be associated with a particular image pixel or, as is

the case in our experiments, it can correspond to the output of a

particular neuron in a neural network.

The large number of distributions hℓ,z are constrained by the

underlying set of sparse distributions πi,z and by the choice of

an averaging window W = Wr × Wc which is typically much

smaller than the grid, in formulae the relationship between h and

π is

hℓ,z =
1

|W|

∑

i∈Wℓ

πi,z (2)

being |W| the area of the averaging window |W| = Wr ·Wc (we

will use the same notation for the grid’s estate) and Wℓ the par-

ticular window that starts at location ℓ and expands in the lower

2On a toroidal grid, the location (0,0) is a unit distance away from both

(0,1) and (0,63), and two units of distance away from both (0,2) and (0,62),

etc; or in other words, the locations are considered in a (mod 64) sense

- See Figure 2
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Figure 2. Counting Grid Geometry for E = 64 × 64 and W =
4 × 4. Going from hℓ=(0,0) to hℓ=(1,0) the four π distribu-

tions in the first column are replaced by the four distributions in

the fourth row, with the other 12 π distributions remaining in-

tact in the above averaging equation, i.e., hℓ=(0,1) = hℓ=(0,0) +
1

|W|

∑3
n=0 πi=(n,4) − πi=(n,0). As all distributions are normal-

ized, the move affects only one fourth of the probability mass.

right direction. Therefore, if E = 64× 64 and W = 4× 4, each

of the grid’s 4096 distributions hℓ are each an average of the cor-

responding 16 underlying distributions πi, of which we also have

64× 64 = 4096. The h distributions for two nearby locations are

thus highly dependent on each other as average of two sets of π’s

with a large intersection; all these concepts are illustrated in Fig.

2. This key property forces the π distributions to sparsify during

EM learning and also controls complexity of the model, as only

non-overlapping windows are independent of each other, and the

number of such windows we can tile in the grid is approximately

equal to the ratio of the grid size |E| to the window size |W|. So,

despite having 4096 locations in this example, the model capac-

ity κ = |E|/|W| is only around 256 = 4096/16. This allows

creation of densely sampled latent spaces, where the distances can

be fine-grained, without the need for a very large set of observa-

tions for training of the generative model. In addition, the grid

structure allows for potential re-scaling of the model as more data

comes in, e.g. by gradual reduction of the window size W, or by

up-sampling the grid.

Counting Grids as generative layer in deep architectures
The conditional probability of the counting grid family [23, 22, 23]

- Eq. 1, fits the typical neural network parameterization; indeed the

posterior distribution for a single frame with uniform prior p(ℓ)
can be written as

p(ℓ|x) =
e
∑

z cz ·log hℓ,z

∑

m
(e

∑
z cz ·log hm,z )

, (3)

where ℓ and m are 2D indices into the grid. This form mirrors

the softmax output where the neurons’ weights wm,z are replaced

by weights log hm,z . Thus training the model on outputs of some

layer of a neural network is equivalent to replacing the top of the

network with a 2D field of neurons. These neurons are not trained

to predict particular labels, but to simply capture the structure of

the data similar in spirit to other deep emebeddings [29] and as

we discuss later could then be used to define a robust distance

in latent space allowing for classification with very few labeled

training samples.

In Fig. 1 we illustrate a E = 64×64 model trained on fc6 out-

put of AlexNet pre-trained with Places365 data[31] for 43516 im-

ages acquired by SenseCam [15] worn by a subject for two consec-

utive weeks (Supp material has a higher resolution version of this

image). In each grid position we show the best matching image,

thus the illustration shows only a little less than 1% of the data.

The large contiguous area that corresponds to the images taken at

the work office of the subject are mapped right next to the images

acquired from the home office. Furthermore, the camera orienta-

tions match in horizontal transitions from the work office area to

the office area, while the vertical variation in the grid seems to cap-

ture the variation in the camera orientation. Elsewhere in the grid

we can also observe that the ’posterior probability neurons’ of this

grid summarize the variation in the data in such a way that the grid

locations ℓ can be considered both in a discrete sense as cluster-

ing variables, and in an embedding sense as inducing meaningful

distances among images.

These properties are all necessary for bootstrapping the adop-

tion of wearables, as discussed in the introduction.

Modeling temporal dependencies among latent locations
As improvement on the counting grid model, we want that se-

quence of frames follows a prior distribution of the form

p(ℓ1, ℓ2, ..., ℓT ) = p(ℓ1) ·

T
∏

t=2

p(ℓt|ℓt−1), (4)

As the latent locations ℓ’s march to the beat of the conditional dis-

tribution p(ℓt|ℓt−1), the posterior over the locations for different

frames depends on all of the frames in a sequence and because of

the Markov structure the distributions p(ℓt|{x1, x2, ..., xT }), can

be computed efficiently using the forward-backwards algorithm

[25]

αt(i) = p(ℓt = i, x1, . . . , xt) βt(i) = p(xt+1, . . . , xT |ℓt = i)

Thus by multiplying the forward and backward distributions and

normalizing over locations ℓ we obtain the posterior

p(ℓt = i|x1, x2, ..., xT ) ∝ αt(i) · βt(i). (5)

Forward and backward distributions can be computed recursively,

e.g.

αt+1(i) =
∑

m

αt(m) · p(ℓt+1 = i|ℓt = m) · p(xt|ℓt+1 = m),

(6)

and so we can compute all marginals in O(|E|2) time. This is

because the above equation, and its analog for the backward dis-

tribution β require O(|E|) summation (over m above) for each of

|E| locations (i above). While this is a marvelous improvement

over O(|E|T ) computations that a direct naive posterior compu-

tation would require, it is still potentially a very large number of
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computations, especially as some of the grids one may want to

use to summarize potentially very long streams of images are well

over E = (100, 100). Fortunately, by adding structure to the prior

p(ℓt|ℓt−1) and by exploiting the counting grid topology we have

been able to further improve the computational efficiency and to

compute the forwards backwards algorithm in linear time.

Let the conditional distribution

p(ℓt = i|ℓt−1 = m) = ǫ+
( 1

|Nm|
− δ

)

·
[

i ∈ Nm

]

(7)

where [.] here denotes an indicator function, and Nm is a rectan-

gular neighborhood of m of, covering locations on the grid that are

at most ∆r and ∆l away respectively from row and column coor-

dinates of location m = (mr,mc). The size of the neighborhood

is thus |Nm| = (2 ·∆r +1) · (2 ·∆c+1); in Fig. 2, we illustrated

this constraint with ∆l = 1 and ∆l = 1. In this neighborhood,

the conditional probability of the transition form m is high, just

a small constant off uniformly spreading all the probability mass

in the neighborhood. Outside the neighborhood the probability

is equal to a small constant ǫ. As the sum of probabilities over

all locations has to sum up to 1, the two constants are linked as

δ = |N|
|E|

· ǫ, being |N | the area of a generic neighborhood.

With this structure of the random walk, subsequent location are

mostly expected to stay within a fixed distance from the previous

frame’s CG location, a natural assumption for a frame embedding

method. When this constraint becomes hard, ǫ = 0, the location

walk treatment is equivalent to the one in the Roweis’ constrained

models [26]. On the other hand, by maximizing ǫ to ǫ = 1
|E|

the transition distribution in Eq. 7 becomes completely uniform

over the entire grid, the model decouples into an i.i.d treatment of

frames and reduces to the basic CG model, albeit over different

features than what it was usually applied to before.

We show now that for any choice of ǫ inside the feasible interval

[0, 1
|E|

], the forward and backward recursions can be run in O(|E|)
time which significantly reduces the computational load.

αt+1(i) = ǫ ·
∑

m

(

αt(m) · p(xt|ℓt+1 = m)
)

+ (8)

+
( 1

|N |
− δ

)

·
∑

m|i∈Nm

(

αt(m) · p(xt|ℓt+1 = m)
)

Both summations involve the summand of the form f(m) =
αt(m) · p(xt|ℓt+1 = m). The first summation in Eq. 8 does not

depend on i, thus it is the same for all locations in αt+1(i) and can

be computed only once in O(|E|) time. The second summation

has different summation neighborhoods depending on i, however

we can compute them all efficiently with the use of cumulative

sums 3; in formulae

F (mr,mc) =

mr
∑

ir=0

mc
∑

ic=0

f(ir, ic). (9)

where we made explicit the row and column components of inde-

ces i = (ic, ir) and m = (mr,mc). Then, the first sum in (8) can

3The toroidal structure requires some care that we omit here for sim-

plicity: The top and the left edge of the matrix of values f(m) has to be

padded with rows and columns from the bottom and the right edge to ac-

count for the circularity of the coordinates in CG which affect the definition

of the neighborhood Nm for locations close to the boundaries.

be computed as

∑

m|i∈Nm

f(m) =

ir+∆r
∑

mr=ir−∆r

ℓc+∆c
∑

mc=ic−∆c

f(m) =

= F (ir −∆r, ic −∆c) + F (ir +∆ric +∆c)

−F (ir −∆r, ic +∆c)− F (ir +∆r, ic −∆c) (10)

Thus after computing the cumulative sum matrix F in O(|E|)
time, computing the required summation in a neighborhood

of any size takes only 4 additions per location. In computer

vision this algorithmic trick is often referred to as integral image

computation [30].

Furthermore, we can make more complex conditional distribu-

tions starting with Eq. 7 and adding more terms of the form

(1/|N i
m| − δi)[k ∈ N i

m] with varying sizes of the square

neighborhoods; in this way one can simulate gaussian constraints

as sum of box-filters [9, 12]. Averaging in each term would

require 4 operations per location after the cumulative sum matrix

F is computed and the cost remains linear.

Inference and learning using EM In the inference step we

are primarily interested in the marginal probability

qt(ℓ) = p(ℓt|x1, x2, ..., xT ) =
αt(ℓ) · βt(ℓ)

∑

m
αt(m) · βt(m)

. (11)

Its computational cost is linear in the grid locations, as discussed

above. Using this distribution and the grid from the previous it-

eration πold
i,z , we perform the M step in which we re-estimate the

grid sparse distributions π̂i,z to be used in inference in the next

iteration

π̂i,z ∝ πold
i,z ·

T
∑

t=1

(

ctz ·
∑

k|i∈Wk

qt(k)

hk,z

)

, (12)

This updated π is then used to re-estimated the histogram

distributions hi,z in (2). As discussed in [23] both (12) and (2) can

also be computed efficiently using cumulative sums, as well, and

so the entire learning algorithm is of O(|E| · T ) order. Training a

75× 75 model on two months of SenseCam images takes around

15 minutes on a single CPU.

Snippets and numerical problems In real applications, em-

ploying the forward-backwards detailed in the previous seciton to

very long streams (in case of lifelogs may span multiple months!)

may be too rigid or cause numerical problems. This is especially

true in our case as we are constraining the variability of one’s vi-

sual experience onto a 2D topology4. To make the learning more

flexible, we partitioned the stream into non-overlapping batches,

or snippets, of images and mapped each snippet separately. The

snippet may comprise images of a single day, a 6 hours span or

4In principle higher dimensional grids are possible [13], however, con-

sistently with previous literature, we did not observe any improvement in

the performance. Furthermore for ≥3-D grids the browsing the embedding

would be much harder.
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a random number of consecutive images (depends on the appli-

cation and the characteristics of the stream). Finally, in the case

the forward-backwards procedure still resulted in numerical un-

derflow one can employ the same technique used to learn stel-

eptiomes [15] or further reduce the batch size.

3. Experiments

We tested our proposed method on three challenging and re-

cent datasets: Google Glass (GG) dataset [17], All-I-Have-Seen

(AIHS) SenseCam dataset [22], and Multimodal Egocentric Ac-

tivity (MEA) dataset [28].

In all experiments, we used the output of the fc6 layer ex-

tracted from the pre-trained AlexNet [16] as the frame-level de-

scriptor. (We also tested other NN layers, but, consistently with

previous work [10] found fc6 to work best.) We used the reg-

ular counting grids and our proposed extension CGcw to learn

the distributions over these deep features. We varied grid E and

window W size of the counting grid’d discrete 2-Dimensional

space as E ∈ {50× 50, 60× 60, 70× 70, 80× 80} and W ∈
{3× 3, 5× 5, 7× 7}, respectively. As for the neighborhood Nm,

we tested box constraints with ∆r,∆c ∈ {1, 2, 3}, finding these

parameters to play a crucial role in the performance of model.

We partitioned the video streams into snippets of Miter sam-

pling at each iteration of the EM algorithm a Poisson distribution

Miter ∼ Poisson(λ = 10). Finally, to assign labels at test time,

we used a Nearest Neighbor (NN) classifier and Euclidean dis-

tance on a torus. Throughout all the experiments, we compared

our method with the following baseline methods

1. fc6+NN: As first baseline, we used fc6 deep feature with

4096 dimensions extracted from AlexNet [16] and NN with

Euclidean distance.

2. Softmax: As second baseline, we plugged the usual softmax

layer over fc6 deep features.

3. t-Distributed Stochastic Neighbor embedding - tSNE [29]:

Instead of counting grids, tSNE was used to project deep

features into 2-D embedding space, and to assign labels at

test time we used nearest neighbor classifier with Euclidean

distance.

4. Two-layers deep autoencoders - AE [2]: In this case, embed-

ding of all images in a stream was done with AE. We varied

the first hidden and the second hidden units in the range of

{50, 100, 200, 300} and {2, 50, 100, 200}.

3.1. The effect of the constrained walk: AIHS
Dataset

The AIHS dataset contains 43522 images captured from 45 lo-

cations (e.g., office, dinning room, etc.). Methods were compared

in the standard leave-one-out testing protocol. In this test, we set

the constant ǫ = 10−6 (Eq. 7) for the first X% iterations of the

EM algorithm (we used a fixed number of iteration), after which

for the rest of the training (till convergence) the parameter is re-set

to ǫ = 1
|E|

turning the model into the basic CG model. Figure 3

shows the accuracy on the 45-class classification task versus the

percentage of the iterations spent learning with the constrained

walk in the early phase for three different sizes of the constraint

Nm.

Figure 3. The effect of varying constraint neighborhood on the

quality of embedding of AIHS dataset.

Figure 4. Visual Comparison of CGcw with tSNE. First column

shows the whole embedding spaces of CGcw and tSNE [29].

Green regions are sections of the area where office images tend

to map. Second column shows the zoomed in green regions. The

red regions indicate location where tSNE [29] has non-office im-

ages mingled with the office images.

We found that even enforcing the temporal consistency for only

10% of the training time dramatically improved the classification

accuracy. This means that the trained grids are also reaching better

local minima for the unconstrained CG model compared to what

the basic EM algorithm can achieve. We should also note that

first point in the graph at 65% attests that just switching from

pixel intensities to fc6 features did half the work in improving

over the previous state of the art of around 60.2% [22], which

was also based on CGs. The other half of the total improvement is

achieved by learning with constrained walks. Finally, consistently

with previous literature on counting grids, the grid-window ratio

did not play a key role here and we only observed variations of

only around 3% accuracy across the values we considered.
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Table 1. Classification at the ultra-low labeling rate on AIHS [15] and MEA [28] and GG [17]. For all the tests we varyied the number of

training samples per class T .

AutoEncoders [2]

Datasets T fc6 [16] Softmax CG [23] CGCW tSNE [29] 2D 50D 100D 200D

AIHS [13, 22]

1 0.1821 0.1895 0.2914 0.3144 0.2782 0.0840 0.2516 0.2678 0.248

2 0.199 0.2860 0.3106 0.3262 0.3114 0.1004 0.2569 0.2691 0.2627

3 0.2158 0.3170 0.3455 0.3627 0.3383 0.0989 0.2828 0.295 0.2863

MEA [28]

1 0.7194 0.6041 0.7583 0.7646 0.7308 0.166 0.5858 0.581 0.5832

2 0.7236 0.7491 0.7747 0.7911 0.7584 0.2729 0.7438 0.7432 0.7387

3 0.7652 0.7784 0.801 0.8140 0.8091 0.3128 0.8025 0.8084 0.8045

GG: SetA [17]

1 0.1309 0.0817 0.2001 0.2185 0.1622 0.1638 0.1907 0.2089 0.2022

2 0.1771 0.1243 0.2694 0.2715 0.2309 0.2253 0.2673 0.2647 0.2736

3 0.2396 0.1871 0.2772 0.2886 0.2691 0.2437 0.3078 0.3066 0.3093

GG: SetB [17]

1 0.1564 0.1043 0.2014 0.2265 0.1848 0.1575 0.2015 0.2176 0.2142

2 0.1937 0.1561 0.2481 0.2749 0.2201 0.1885 0.2860 0.2829 0.3009

3 0.2108 0.1871 0.3028 0.3217 0.2506 0.2306 0.3246 0.3443 0.3408

GG: SetC [17]

1 0.1757 0.1216 0.2136 0.2398 0.1912 0.1703 0.2258 0.2301 0.2325

2 0.2159 0.1693 0.2594 0.2786 0.2048 0.1838 0.2953 0.3112 0.3089

3 0.2385 0.1901 0.2964 0.3107 0.242 0.2041 0.3125 0.3301 0.3362

3.2. Classification at the ultralow labeling rate

Vision techniques in lifelogging applications must assume a

very small number of labeled samples, limiting us to simple ex-

emplar and distance-based techniques, since parameterized clas-

sifiers would over-train. To test such techniques, in addition to

AIHS, we also considered Google Glass and MEA datasets. The

Google Glass dataset consists of 660, 000 seconds of egocentric

video streams collected by three subjects named A, B, and C. Each

subject was asked to annotate their location (e.g., office, university,

outdoor,... 10-18 different locations per subject ), sub-location

(e.g., classroom, restroom, ... 24-31 different sub-locations per

subject) and their activity (e.g., walking, eating, ... 30-65 different

sub-locations per subject). MEA dataset is specifically designed

for visual lifelogs tasks, it consists of visual data acquired by 10
subjects. Each subject annotated approx. 8, 000 images and 20 ac-

tivities. For all datasets, we varied the number of available labeled

samples in the range of {1, 2, 3} repeating the process 20 times

each time randomly selecting labeled images for the algorithms to

use in classification of the rest of the available labeled data in test-

ing. To make things simple, Table 1 shows the results when clas-

sification is performed on individual frames, rather than chunks

of timeline, in which case the accuracy should rise. As expected,

accuracy improves by increasing number of training samples per

class for all the methods. However the results show consistently

better performance for CG and CGcw, and the advantage is larger

the less training data is available. This supports our hypothesis on

the importance of training a suitable generative model and reason-

ing in the latent space. It is worth noting that 2D embedding of CG
and CGcw compare favorably with 2D autoencoder, demonstrat-

ing the sensitivity of auto encoder to very low level of compres-

sion. This is important in applications that are based on visualizing

the data. We can also observe that for a high number of dimensions

the autoencoder accuracy improves, slightly outperforming count-

ing grids on Google glass dataset. This is due to the fact that GG

provides a lot of unlabeled data in these experiments. Unfortu-

nately this is not a realistic condition for low temporal resolution

devices like lifelogging cameras, because to collect that amount of

data, the user would have to wear the camera for several months5

before reaching enough data to see the benefits of autoencoders’

embedding. Finally, the results also show that CGcw consistently

outperforms CG, which emphasizes the positive effect of consid-

ering temporal dependencies in mapping.

3.3. Google Glass life logging experiment

The objective of this experiment is to analyze the performance

of our approach in abundance of annotated data. The recent

Google Glass lifelog dataset [17] consists of 660, 000 seconds of

egocentric video streams collected by three subjects named A, B,

and C. Each subject was asked to annotate their location (e.g., of-

fice, university, outdoor ), sub-location (e.g., classroom, restroom)

and their activity (e.g., walking, eating). To properly compare we

used the same experimental set-up suggested in [17]. We com-

pared our method with all the baseline algorithms and DMA [28],

which is state-of-the-art in this dataset. In particular, it used two

network architectures a CNN and a shallow network, that tries to

manage domain shift between source and new target data in an on-

line manner.

We use the parameters listed in Section . Table 2 summarizes the

results. Once again we observed that CG models consistently out-

perform the competitors by a large margin. The technique, intro-

duced here (e.g., CGCW ) help to improve significantly the quality

of the latent space, and thus the accuracy.

One can also observe that for a large amount of training samples,

high dimensional autoencoders outperform other methods, which

yet gives satisfactory results. However, higher dimensional em-

beddings can not serve as a reliable visualization tool for visual

lifelog which is key in large data visualization. In Table 2 we

compare the classification rates of our model with the published

results [17]. We used the features made available by authors, and

we trained our CG-HMM model with E = (60,60) and W = (5,5).

Finally we use KNN classifier to compute the average accuracy

55.3 months for SenseCam
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Table 2. Comparison of average accuracy on Google Glass with

baselines. The final accuracy is computed as the average of three

available annotated levels, namely ”location”, ”sub-location” and

”Activity”, for each subject A, B, and C. 10-folds with 20 times of

repetition using kNN classifier is used for this task.

Subject

Method A B C

CG [14] 0.8256 0.7864 0.7951

CGCW 0.8337 0.8012 0.8103

tSNE [29] 0.7859 0.7052 0.7993

fc6 [16] 0.6117 0.5579 0.732

DMA [28] 0.6702 0.588 0.7757

2D-Autoencoder [2] 0.6096 0.695 0.6193

50D-Autoencoder [2] 0.9308 0.893 0.9254

100D-Autoencoder [2] 0.9384 0.8963 0.9269

200D-Autoencoder [2] 0.9390 0.9037 0.9277

for each subject. The classifier used the distance on the grid be-

tween the locations of the embeddings of the frames (taking grid

wraparound into account). In Table 2 reports summary of our re-

sults we compare the classification rates of our model with the

published results [17]

3.4. Visual Comparison of constrained walk CG
with tSNE Embedding

The embedding plays a central role in visual lifelog applica-

tions such as tracking elderly people health indicators, where we

can track his/her status at every instant of time. In addition, visu-

ally browsable embedding may be unavoidable as a tool in low-

labeling regime as our result show that for 45 classes, with ran-

domly selected 3 images per class to be labeled, the accuracy may

not be higher than 36% early in the life of the device. But with ap-

propriate ways to visualize the data and select areas to label, much

higher levels of accuracy with just as little human labor should

be possible. To this end, we provide a qualitative comparison of

CGcw and tSNE [29] 2D embeddings. Figure 4 shows a compar-

ison of the embedding space [29] which map 43526 images from

the AIHS dataset 6. Neither CGcw nor tSNE exploit annotated

data at the training phase. Different regions of embedding space

tend to belong to different scene categories. For instance, images

taken from office are mapped into a large contiguous area on the

left edge of the CGcw embedding space, while for tSNE all are

mapped to a bottom part of its embedding space. We highlight a

part of office region for both CGcw and tSNE. Although tSNE is

capable of clustering office region, we observe that there are also

irrelevant areas within the tSNE’s office region (highlighted red

regions). For instance, in the top-left corner, an image belonging

to the restaurant category is buried in tSNE’s office area. A closer

inspection reveals the reason for this: there is a chair in front of

the camera bearer which is very similar to the monitor of com-

puter (rectangle black shape) in the first row. We can observe that

lifelogger’s images while working in his/her home with a personal

6 We strongly recommend seeing our supplementary material for fur-

ther analysis and available high resolution embedding space along with a

random walk video

laptop is also mapped into office region. Therefore, we can con-

clude that main feature the tSNE locks onto here, is presence of

computer screen. We should note that high quality mapping in 2D

can allow users to annotate more images with less work by lasso-

ing a whole area as indicated in Fig. 1, in which case the more

advantageous mappings should have fewer noncontiguous areas

belonging to the same category.

4. Conclusions

We presented an original combination of supervised and unsu-

pervised methods for mining personal collections of data acquired

with wearable cameras. Particularly, we extended the counting

grid models to enforce temporal consistency in the latent space

and we used it to model the feature distribution over the responses

of deep networks. Extensive experiments on several benchmarks

demonstrated that the proposed method outperforms a variety or

alternative methods when only a handful of training samples are

available, which is the only realistic scenario in lifelogging ap-

plications. We also showed that the proposed model is able to

produce compelling visualizations space compared to tSNE and

autoencoders, and therefore it has a great potential to serve as a

standard visualization tool for large scale data summarization and

browsing tools.

Finally, it is worth noting that the CGcw model can also be

used as a standalone generative model, i.e not on top of a deep

architecture. For example, we considered the Behave dataset [3]

and the task of abnormal crowd behavior detection. Following the

same evaluation protocol of [5], we learned a model of normal be-

havior, by fitting a CGcw model using bag-of-word descriptors

(See [19] for details). Then, we used the loglikelihood of test

frames to detect abnormal events. Our new model achieved an

AUC of 91.82, outperforming regular counting grids 89.06 and

latent Dirichlet allocation 88.56 with the latter being currently

the most often used technique for learning behaviors from such

data.
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