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Abstract

Depth sensors open up possibilities of dealing with the

human action recognition problem by providing 3D human

skeleton data and depth images of the scene. Analysis of hu-

man actions based on 3D skeleton data has become popular

recently, due to its robustness and view-invariant represen-

tation. However, the skeleton alone is insufficient to distin-

guish actions which involve human-object interactions. In

this paper, we propose a deep model which efficiently mod-

els human-object interactions and intra-class variations un-

der viewpoint changes. First, a human body-part model is

introduced to transfer the depth appearances of body-parts

to a shared view-invariant space. Second, an end-to-end

learning framework is proposed which is able to effectively

combine the view-invariant body-part representation from

skeletal and depth images, and learn the relations between

the human body-parts and the environmental objects, the

interactions between different human body-parts, and the

temporal structure of human actions. We have evaluated

the performance of our proposed model against 15 existing

techniques on two large benchmark human action recogni-

tion datasets including NTU RGB+D and UWA3DII. The

Experimental results show that our technique provides a

significant improvement over state-of-the-art methods.

1. Introduction

Automatic human action recognition from videos is a

significant research problem with wide applications in var-

ious fields such as smart surveillance, health and medicine,

sports and recreation. Depth cameras, such as Microsoft

Kinect, have become popular for this task because, depth

images are robust to variations in illumination, clothing

color and texture, and 3D human joint positions can be ex-

tracted from a single depth image due to the development

of a real-time human skeleton tracking framework [28].

The depth sensor based human action recognition re-

search can be broadly divided into three categories includ-

ing skeleton data [6,12,25,33,34,38,40], depth images [15,

17,18,20,21,23,37,39] and depth�skeleton [19,26,27,36]

based methods. Although depth based approaches achieve

impressive results on most RGB-Depth action recogni-

tion datasets, their performance drops sharply in scenarios

where the humans significantly change their spatial loca-

tions, and the temporal extents of the activities significantly

vary [15]. On the other hand, limiting the learning into

skeleton based features cannot deliver high recognition ac-

curacy in action recognition, because depth visual appear-

ances of human body-parts provide discriminative informa-

tion, and most of the usual human actions are defined based

on the interaction of the body with other objects. For ex-

ample, drinking and eating snacks actions have a very sim-

ilar skeleton motion. Thus, additional information, such as

depth images, is required to distinguish such actions. The

straightforward method for combining depth and skeleton

data (feature fusion) is to concatenate these different types

of features [19, 35, 36]. In this fashion, achieving the op-

timal combination of features for an accurate classification

cannot be guaranteed.

Moreover, a practical system should be able to rec-

ognize human actions from novel and unseen viewpoints

(generalization). However, unlike 3D skeletal data, view-

invariant representation of depth images is a challenging

task [20–22, 24]. This is because the depth images of a hu-

man performing an action appear quite different when ob-

served from different viewpoints. Thus, how to effectively

represent these depth images in a view-invariant space and

combine them with estimated 3D skeleton data is a signifi-

cant research problem which remains under explored.

Furthermore, in human actions, body joints move to-

gether in groups. Each group can be considered as a set of

body-parts, and actions can be interpreted as interactions of

different body-parts. Thus, the most discriminative interac-

tions corresponding to different actions need to be exploited

for better recognition. Moreover, human actions may have

a specific temporal structure. Modeling the temporal struc-

ture of action videos is also crucial for the action recog-

nition problem. Most existing depth sensor based meth-

ods [23,33–36] model the temporal variations of videos us-
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ing Fourier Temporal Pyramid (FTP) and/or Dynamic Time

Warping (DTW) which results in a two-step system that typ-

ically performs worse than an end-to-end system [9]. Some

other methods [6, 12, 25], use Recurrent Neural Networks

(RNNs) or extensions, such as Long Short Term Memory

(LSTM) networks, to model the temporal variations of ac-

tion videos. However, CNN+RNN/LSTM models intro-

duce a large number of additional parameters, and thus need

much more training videos which are expensive to label [7].

This paper proposes a deep model for human action

recognition from depth and skeleton data to deal with

the above mentioned challenges in an end-to-end learning

framework. First, we propose a deep CNN model which

transfers the depth appearance of human body-parts to a

shared view-invariant space. Learning this deep CNN re-

quires a large dataset containing a variety of human body-

parts in different actions observed from many viewpoints.

Rahmani et al. [23] showed that a model learned on syn-

thetic depth human body images can be generalized to real

depth images without the need of fine-tuning. Thus, we gen-

erate a large training dataset by synthesizing human body-

parts from different views. More importantly, we propose

a framework which is able to 1) effectively combine infor-

mation from depth and skeletal data, 2) capture the rela-

tions between the human body-parts and the environmental

objects, 3) model the interactions between different human

body-parts, and 4) learn the temporal structure of human

actions in an end-to-end learning framework.

Our main contributions include the following three as-

pects. First, this paper proposes a model for view-invariant

appearance representation of human body-parts. Second,

we propose an end-to-end learning human action recogni-

tion model, which is shown through our experiments to be

well suitable for the depth sensor based human action recog-

nition task. Third, the proposed method simultaneously

learns to combine features from different modalities, i.e.

depth and skeleton, capture the interactions between differ-

ent human body-parts for different actions, and model the

temporal structure of different human actions.

The proposed method is evaluated on two large bench-

mark datasets including NTU RGB+D [25] and UWA3D

Multiview Activity II [20] datasets. The first dataset con-

tains more than 56K sequences captured simultaneously by

three Kinect cameras from three different views, and the

second dataset consists of 30 human actions captured from

four different viewpoints. This dataset is challenging be-

cause the videos were captured by a Kinect camera at four

different times from four different viewpoints. Our exten-

sive experimental results show that the proposed method is

able to achieve a significantly better recognition accuracy

compared with the state-of-the-art methods.

2. Related Work

Human action recognition has been explored from differ-

ent aspects during the recent years. In this section, we limit

our review to the most recent related approaches, which

can be divided into three different categories, namely depth,

skeleton and skeleton�depth video based methods.

Depth Videos: Most existing depth video based action

recognition methods use global features such as silhouettes

and space-time volume information. For instance, Oreifej

and Liu [15] proposed a spatio-temporal depth video rep-

resentation by extending histogram of oriented 3D normals

[30] to 4D by adding the time derivative. Yang and Tian [39]

extended HON4D by concatenating the 4D normals in the

local neighbourhood of each pixel as its descriptor. How-

ever, these methods are not view-invariant. Recently, Rah-

mani et al. [23] proposed to generate synthetic depth train-

ing data of human poses in order to train a deep CNN model

that transfers human poses, acquired from different views,

to a view-invariant space. They used group sparse Fourier

Temporal Pyramid to encode the temporal variations of hu-

man actions. Such holistic methods may fail in scenarios

where the human significantly changes her/his spatial po-

sition, or the temporal extent of the activities significantly

vary [15]. Some other methods [20,21,37] use local features

where a set of interest points are detected, and then, the

depth features are extracted from the local neighbourhood

of each interest point. For example, DSTIP [37] localizes

activity related interest points from depth videos by sup-

pressing flip noise. This approach may fail when the action

execution speed is faster than the flip of the signal caused by

sensor noise. Recently, Rahmani et al. [20, 21] introduced

to directly process the sequence of pointclouds correspond-

ing to an action video. They proposed a view-invariant in-

terest point detector and descriptor by calculating Principle

Component Analysis (PCA) at every point which is a com-

putationally expensive process [23]. However, these meth-

ods use hand-crafted features and implicitly assume that the

viewpoint does not change significantly [23].

Skeleton Videos: Due to the development of real-time hu-

man skeleton tracker from a single depth image [28], mo-

tion patterns can be effectively encoded using the positional

dynamics of joints [38] or body-parts [33]. For example,

Yang and Tian [38] used pairwise 3D joint position differ-

ences in each frame and temporal differences across frames

to represent an action. Zanfir et al. [40] proposed a moving

pose descriptor for capturing postures and skeleton joints.

Vemulapalli et al. [33,34] utilized rotations and translations

to represent the 3D geometric relationships of body-parts

in Lie group, and then employed Dynamic Time Warping

(DTW) and Fourier Temporal Pyramid (FTP) to model the

temporal dynamics. To avoid using hand-engineered fea-

tures, deep learning based methods have also been pro-

posed. For instance, HBRNN [6] divided the entire skeleton
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to five major groups of joints which were passed through

hierarchical RNNs. The hidden representation of the final

RNN was fed to a softmax classifier layer for action clas-

sification. Differential LSTM [32] introduced a new gating

inside LSTM to discover patterns within salient motion pat-

terns. Shahroudy et al. [25] proposed a part-aware exten-

sion of LSTM by splitting the memory cell of the LSTM

into part-based sub-cells and pushing the network towards

learning the long-term context representations individually

for each part.The output of the network was learned over

the concatenated part-based memory cells followed by the

common output gate. More recently, Liu et al. [12] intro-

duced a spatial-temporal LSTM to jointly learn both spatial

and temporal relationships among joints.

Skeleton�Depth Videos: Although skeleton based meth-

ods achieve impressive action recognition accuracies on

human action datasets, it is not sufficient to only use the

skeletal data to model actions, especially when the actions

have very similar skeleton motion and include the interac-

tions between the subject and other objects [36]. Therefore,

skeleton�depth based approaches are becoming an effec-

tive way to describe activities of interactions. Rahmani et

al. [19] proposed a set of random forests to fuse the spatio-

temporal depth and joints features. Wang et al. [36] pro-

posed to compute the histogram of occupancy patterns of

a fixed region around each joint in each frame of action

videos. In the temporal dimension, low frequency Fourier

components were used as features for classification. Re-

cently, Shahroudy et al. [27] proposed hierarchical mixed

norms to fuse different features and select the most infor-

mative body joints. Our proposed approach also falls in

this category. However, unlike the above mentioned works,

the framework proposed in this paper is robust to signifi-

cant changes in viewpoints. Moreover, the proposed model

learns the relations between the human body-parts and the

environmental objects, along with the temporal structure of

actions in an end-to-end learning framework.

3. Proposed Approach

This section presents a view-invariant human action

recognition model using a depth camera. The proposed ar-

chitecture is illustrated in Fig. 1. Based on the depth im-

ages and the estimated 3D joint positions, we propose a new

model which is able to 1) transfer the human body-parts to

a shared view-invariant space, 2) capture the relations be-

tween the human body-parts and environmental objects for

human-object interaction, and 3) learn the temporal struc-

ture of actions in an end-to-end learning framework. The

details of the proposed architecture are given below.

3.1. Human BodyPart Representation

In this section, we introduce two approaches to repre-

sent skeletal information of a body-part (subsection 3.1.1)

and to transfer the depth appearances of human body-parts

(subsection 3.1.2) to a shared view-invariant space.

3.1.1 Body-Part Skeletal Representation

Given a skeletal data of a human pose performing an action,

all 3D joint coordinates are transformed from the real-world

coordinate system to a person-centric coordinate system by

placing the hip center at the origin. This operation makes

the skeletons invariant to absolute location of the human in

the scene. Given a skeleton as reference, all the other skele-

tons are normalized without changing their joint angles such

that their body-part lengths are equal to the corresponding

lengths of the reference skeleton. This normalization makes

the skeletons scale-invariant. The skeletons are also rotated

such that the ground plane projection of the vector, from the

left hip to the right hip, is parallel to the global x-axis. This

rotation makes the skeletons view-invariant.

As shown in Fig. 2, let S ✏ ♣V,Eqq be a human body

skeleton, where V ✏ tv1, v2, ☎ ☎ ☎ , vN✉ represents the set

of body joints, and E ✏ te1, e2, ☎ ☎ ☎ , eM✉ denotes the set

of body-parts. Vemulapalli et al. [33] showed that the rel-

ative geometry of a pair of human body-parts en and em
can be represented in a local coordinate system attached to

the other. The local coordinate system of body-part en is

calculated by minimum rotation so that its stating joint be-

comes the origin and it coincides with the x-axis. Then, we

can compute the translation vector, ~dm,n♣tq, and the rota-

tion matrix, Rm,n, from em to the local coordinate system

of en. Thus, the relative geometry between em and en at

time instance t can be described using

Pm,n♣tq ✏

✒
Rm,n♣tq ~dm,n♣tq

0 1

✚
. (1)

Using the relative geometry between pairs of body-parts,

we represent a body-part ei at time instance t using Ci♣tq ✏
♣P1,i♣tq, P2,i♣tq, ☎ ☎ ☎ , Pi✁1,i♣tq, Pi�1,i♣tq, ☎ ☎ ☎ , PM,i♣tqq P
SE♣3q ✂ ☎ ☎ ☎ ✂ SE♣3q, where SE♣3q denotes Special Eu-

clidean group and M is the number of body-parts. Then, the

representation of the body-part ei at time instance t, Ci♣tq,
is mapped from Special Euclidean group to its Lie algebra

in vector representation using

ζi♣tq ✏ rvec♣log♣P1,i♣tqqq, vec♣log♣P2,i♣tqqq,

☎ ☎ ☎ vec♣log♣Pi✁1,i♣tqqq, vec♣log♣Pi�1,i♣tqqq,

☎ ☎ ☎ vec♣log♣PM,i♣tqqqs, (2)

where log denotes the usual matrix logarithm.

For a body-part i at a time instance t, ζi♣tq is a vector of

dimension 6♣M ✁ 1q. Hence, we represent each body-part

at time t as a 6♣M ✁ 1q dimensional vector (as shown in

Fig. 1).
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Figure 1: Architecture of the proposed model. Given a sequence of depth images and their corresponding skeleton data, the relative

geometry between every body-part and others are calculated (see Section 3.1.1). The bounding boxes containing human body-parts are

passed through the same body-part appearance representation model (see Section 3.1.2) to extract view-invariant depth information (the

outputs of fc7 layer). Bilinear compact pooling is then applied to the skeletal and appearance representations of each body-part (see

Section 3.2.1) which results in a compact 2000-dimensional feature vector. The compact feature vectors from all M body-parts are

concatenated to from a 2000✂M -dimensional vector and then passed through a fully-connected layer, fca, which encodes the interactions

between different human body-parts (see Section 3.2.2). Finally, a sequence of 4000-dimensional feature vectors corresponding to the

sequence of depth frames are passed through the temporal pooling layer (see Section 3.2.3) to extract a fixed-length feature vector for

classification.

3.1.2 Body-Part Appearance Representation

Unlike 3D skeletons, view-invariant depth appearance rep-

resentation of human body-parts is challenging. This is be-

cause the depth images of human body-parts appear quite

different when observed from different viewpoints. To over-

come this problem, we learn a single deep CNN model for

all human body-parts to transfer them to a shared view-

invariant space. However, learning such a deep CNN re-

quires a large training dataset containing a large number of

human body-parts, performing a variety of actions observed

from many viewpoints. Our solution is to generate synthetic

training data since Rahmani and Mian [23] showed that a

model trained on synthetic depth images is able to general-

ize real depth images without the need for retraining or fine

tuning the model.

The set of all possible human actions, and thus, body-

part appearances is extremely large. Therefore, we propose

a method to select the most representative human body-

parts. We use the CMU mocap database [2] containing

over 200K poses of subjects performing a variety of ac-

tions. However, many body-parts are quite similar even for

different actions. In order to find the most representative

body-parts, we first normalize the mocap skeleton data us-

ing the approach given in the previous section. We consider

the 3D vector connecting the hip centre to spine as a refer-

ence. The rotation required to take a body-part to the ref-

erence is used as the body-part features. Using Euclidean

Distance between the Euler Angles [10], we apply k-means

clustering to each body-part features independently. Given

the fact that human body-parts have different degrees of

movement, we extracted different numbers of clusters for

different body-parts. This algorithm results in 480 repre-

sentative body-parts.

To generate depth images of the selected body-parts, we

first use the open source MakeHuman software [3] to syn-

thesize different realistic 3D human shapes and the open

source Blender package [1] to fit 3D human shapes to mo-

cap data. Then, the full human bodies corresponding to

480 representative body-parts are rendered from 108 differ-
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Figure 2: An example skeleton consisting of 20 joints and 19

body-parts. The bounding boxes show regions of interest corre-

sponding to different body-parts.

ent viewpoints and the bounding boxes containing the rep-

resentative body-parts are used as training data. In total,

480 ✂ 108 depth images corresponding to 480 representa-

tive body-parts viewed from 108 different views are gen-

erated. Note that the length and width of a bounding box

containing a body-part are appropriately chosen to cover

the whole body-part. For example, we set the length and

width of a bounding box surrounding the left hand to twice

of the body-part’s length. This is because humans usually

interact with their environment, e.g. objects and other hu-

man, by hands and feet. Thus, a larger bounding box is able

to cover both the hand and the object. For instance, Fig. 1

shows two bounding boxes corresponding to head and left

forearm of a human performing an action, and Fig. 2 illus-

trates the bounding boxes corresponding to 19 body-parts

of an example skeleton.

We propose a view-invariant human body-part represen-

tation model that learns to transfer body-parts from any

view to a shared view-invariant space. The model is a deep

convolutional neural network (CNN) whose architecture is

as follows: C♣11, 96, 4q Ñ RL Ñ P ♣3, 2q Ñ N Ñ
C♣5, 256, 1q Ñ RL Ñ P ♣3, 2q Ñ N Ñ C♣3, 384, 1q Ñ
RL Ñ C♣3, 384, 1q Ñ RL Ñ C♣3, 256, 1q Ñ RL Ñ
P ♣3, 2q Ñ FC♣2048q Ñ RL Ñ D♣0.5q Ñ FC♣1024q Ñ
RL Ñ D♣0.5q Ñ FC♣480q, where C♣k, n, sq denotes a

convolutional layer with kernel size k ✂ k, n filters and a

stride of s, P ♣k, sq is a max pooling layer of kernel size

k✂k and stride s, N is a normalization layer, RL a rectified

linear unit, FC♣nq a fully connected layer with n filters and

D♣rq a dropout layer with dropout ratio r. We refer to the

fully-connected layers as fc6, fc7, and fc8, respectively.

During learning, a softmax loss layer is added at the end of

the network.

The generated synthetic depth images corresponding to

each representative body-part i, where i ✏ 1, ☎ ☎ ☎ , 480,

from all 108 viewpoints are assigned the same class label

i. Thus, our training dataset consists of 480 human body-

part classes. We initialize the convolution layers of the pro-

posed CNN with the model trained on depth images of full

human body from [23]. We fine-tune the proposed CNN

model with back-propagation and use an initial learning rate

of 0.001 for the convolution layers and 0.01 for the fully-

connected layers. We use a momentum of 0.9 and a weight

decay of 0.0005. We train the network for 30K iterations.

After training, the last fully-connected (fc8) and softmax

layers are removed and the remaining layers, as shown in

Fig. 1, are used as view-invariant body-part appearance rep-

resentation model.

3.2. Learning EndtoEnd Human Action Recogni
tion Model

So far, we have represented the skeletal data and depth

images corresponding to human body-parts in two differ-

ent view-invariant spaces, Lie algebra and fc7, respectively.

However, a human action is carried out by moving body-

parts and interacting between them along time. To take this

information into account, we propose an end-to-end learn-

ing model, which is shown in Fig. 1. The details of each

step are given below.

3.2.1 Bilinear Compact Pooling Layer

Bilinear classifiers take the outer product of two vectors

x1 P R
n1 and x2 P R

n2 and learn a model W , i.e.

z ✏ W rx1❜x2s, where ❜ denotes the outer product x1x2
T

and r.s denotes linearizing the matrix in a vector. Thus, all

elements of both vectors x1 and x2 are interacted with each

other in a multiplicative way. However, the outer product

of vectors x1 and x2, when n1 and n2 are large, results in

an infeasible number of parameters to learn in W . To over-

come this problem, Gao et al. [8] proposed a bilinear com-

pact pooling for a single modality which projects the outer

product to a lower dimensional space and also avoids com-

puting the outer product directly. This idea is based on the

Tensor Sketch algorithm of [16].

Let x
♣iq
s ♣tq P R6♣M✁1q and x

♣iq
d ♣tq P R1024 denote the

feature vectors obtained from the body-part skeletal (Sec-

tion 3.1.1) and appearance (Section 3.1.2) representation

models for the i-th body-part at time t, respectively. We ap-

ply bilinear compact pooling on x
♣iq
s ♣tq and x

♣iq
d ♣tq to com-

bine them efficiently and expressively. We set the projec-

tion dimension, d to 2000. This process results in a 2000-

dimensional feature vector for every body-part.

3.2.2 Fully-Connected Layer

In order to encode the interactions between different hu-

man body-parts, we propose to first concatenate the com-

5836



pact feature vectors of all M body-parts to form a 2000M -

dimensional feature vector and then pass them through a

fully-connected layer consisting of 4000 units. Thus, the

proposed model extracts a 4000-dimensional feature vector

for every depth image in an action video.

3.2.3 Temporal Pooling Layer

The straightforward CNN-based method for encoding a

video is to apply temporal max pooling or temporal average

pooling over the frames. However, such temporal pooling

methods are not able to capture the time varying informa-

tion of the video. To overcome this problem, we use the

recently proposed rank-pool operator [4]:

argmin
u

1

2
⑤⑤u⑤⑤2 �

C

2

T➳
t✏1

max♣0, ⑤t✁ uTvt⑤ ✁ ǫq2, (3)

where vt P R
4000 denotes the outputs of the fca layer cor-

responding to the frame at time t, ~v ✏ ♣v1, ☎ ☎ ☎ ,vTq de-

notes a sequence of feature vectors and u is a fixed-length

representation of the video which is used for classification.

This temporal rank pooling layer attempts to capture the or-

der of elements in the sequence by finding a vector u such

that uTvi ➔ uTvj for all i ➔ j, which can be solved using

regularized support vector regression (SVR) in Eq. (3).

3.2.4 Classification Layer and Learning

The aim of the classification layer is to assign one of the ac-

tion class labels to the sequence descriptor u. In this work,

we use soft-max classifier. Given a dataset of video-label

pairs,t♣~x♣iq, y♣iqq✉ni✏1
, we jointly estimate the parameters of

the temporal pooling layer Eq. (3) and the soft-max classi-

fication function as follows:

minimize
θ

n➳
i✏1

✁ logP ♣y♣iq⑤~x♣iqq �R♣θq

subject to u♣iq P Eq. (3), (4)

where ✁ logP ♣y♣iq⑤~x♣iqq is the cross-entropy loss for the

soft-max classifier and R♣θq is ℓ2-norm regularization of

the model parameters. Eq. (4) is a bilevel optimization prob-

lem and its derivative with respect to any parameters in the

model can be computed by applying the chain rule [7]. We

use stochastic gradient descent (SGD) to learn all parame-

ters jointly.

4. Experiments

We evaluate our proposed model on two large bench-

mark datasets including NTU RGB+D [25] and UWA3D

Multiview Activity II [20]. We compare our performance

to the state-of-the-art action recognition methods includ-

ing Comparative Coding Descriptor (CCD) [5], Histogram

of Oriented Gradients (HOG2) [14], Discriminative Virtual

Views (DVV) [11], Continuous Virtual Path (CVP) [41],

Histogram of Oriented 4D Normals (HON4D) [15], Ac-

tionlet Ensemble (AE) [36], Lie Algebra Relative Pairs

(LARP) [33, 34], Super Normal Vector (SNV) [39], His-

togram of Oriented 3D Pointcloud (HOPC) [20], Hier-

archical recurrent neural network (HBRNN) [6], STA-

LSTM [29], Spatio-Temporal LSTM with Trust Gates

(ST-LSTM+TG) [12], Human Pose Model with Tempo-

ral Modelling (HPM+TM) [23], Long-Term Motion Dy-

namics (LTMD) [13], and Deep Learning on Lie Groups

(LieNet) [9]. The baseline results are reported from their

original papers or [12, 23].

In addition to other compared methods, we report the

accuracy of our defined baseline methods, including:

• Baseline 1 (appearance only): The vectors of size 2000

in our proposed architecture are replaced by their cor-

responding body-part appearance representations,

• Baseline 2 (skeletal only): The vectors of size 2000

in our proposed architecture are replaced by by their

corresponding body-part skeletal representations,

• Baseline 3 (max-pooling for encoding temporal varia-

tion): Rank-pooling layer is replaced by max-pooling,

• Baseline 4 (replacing bilinear pooling by concatena-

tion): The proposed view-invariant body-part appear-

ance representation is combined with the correspond-

ing skeletal representation by a concatenation layer,

followed by a fully connected and rank pooling layers.

We used the MatConvNet toolbox [31] as the deep learn-

ing platform. We train the network using stochastic gra-

dient descent, and set the learning rate, momentum and

weight decay 10✁3, 0.9 and 5 ✂ 10✁4, respectively. We

also use a dropout rate of 0.5 for fully connected layers. It

is important to note that we set the learning rate of the pro-

posed view-invariant visual body-part representation model

to zero. This is because we have already learned this model

using synthetic training depth images to transfer human

body-part images to the view-invariant space.

4.1. NTU RGB+D Action Recognition Dataset

This dataset [25] is currently the largest depth based ac-

tion recognition dataset. It is collected by Microsoft Kincet

v2 and contains 60 action classes including daily actions,

pair actions, and medical conditions performed by 40 sub-

jects from three different views. Figure 3 shows sample

frames from this dataset. The dataset consists of more

than 56000 sequences. The large intra-class and viewpoint

variations make this dataset very challenging. This dataset
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has two standard evaluation protocols [25] including cross-

subject and cross-view. Following the cross-subject proto-

col, we split the 40 subjects into training and testing sets.

Each set contains samples captured from different views

performed by 20 subjects. Following the cross-view pro-

tocol in [25], we use all the samples of camera 1 and 2 for

training and samples of the remaining camera for testing.

Table 1 shows the performances of various methods on

this dataset. The recognition accuracy of our proposed

method significantly outperforms our defined baselines and

all existing methods. Our defined baseline methods achieve

lower accuracy than our proposed method in both cross-

subject and cross-view settings. This demonstrates the ef-

fectiveness of the feature fusion and end-to-end learning of

the proposed method.

Since this dataset provides rich samples for training deep

models, the RNN-based methods, e.g. ST-LSTM+TG [12],

achieve high accuracy. However, our method achieves 6%

and 5.4% higher accuracy than ST-LSTM+TG [12] in

cross-subject and cross-view settings, respectively. This re-

sult shows the effectiveness of our method to tackle chal-

lenges such as viewpoint variations in large scale of data.

Table 1: Comparison of action recognition accuracy (%) on

the the NTU RGB+D dataset [25].

Method Cross-Subject Cross-View

HON4D [15] 30.6 7.3

SNV [39] 31.8 13.6

HOG2 [] 32.24 22.27

LARP-SE [33] 50.1 52.8

LARP-SO [34] 52.1 53.4

HBRNN [6] 59.1 64.0

Part-aware LSTM [25] 62.9 70.3

STA-LSTM [29] 73.4 81.2

Deep RNN [25] 56.3 64.1

Deep LSTM [25] 60.7 67.3

ST-LSTM+TG [12] 69.2 77.7

LTMD [13] 66.2 ✁
LieNet [9] 61.4 67.0

Baseline 1 67.3 74.1

Baseline 2 58.8 62.7

Baseline 3 69.0 76.5

Baseline 4 68.1 75.7

Ours 75.2 83.1

It is important to emphasize that the proposed body-

part appearance representation model (Section 3.1.2) was

learned from synthetic depth images of human body-parts

generated from a small number of human poses. A search

for many human actions/poses such as wear on glasses, tak-

ing a selfie, typing on a keyword, and tear up paper, from

the NTU RGB-D dataset [25] returns no results in the CMU

mocap dataset which is used to train the body-part appear-

Figure 3: Sample frames from the NTU RGB+D [25] dataset.

Figure 4: Sample frames from the UWA3DII [20] dataset.

ance representation model. However, the proposed method

achieves a high classification accuracy. For instance, the ac-

curacies obtained for wear on glasses, taking a selfie, typing

on a keyword, and tear up paper are 90.1%, 85.6%, 80.0%,

and 85.7%, respectively.

4.2. UWA3D Multiview Activity II Dataset

This dataset [20] consists of a variety of daily-life human

actions performed by 10 subjects with different scales. It in-

cludes 30 action classes, such as two hand waving, holding

chest, irregular walking, and coughing. Each subject per-

formed 30 actions 4 times. Each time the action was cap-

tured from a different viewpoint (front, top, left and right

side views). Video acquisition from multiple views was

not synchronous. There are, therefore, variations in the ac-

tions besides viewpoints. This dataset is challenging be-

cause of varying viewpoints, self-occlusion and high simi-
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Table 2: Comparison of action recognition accuracy (%) on the UWA3D Multiview ActivityII dataset. Each time two views are used for

training and the remaining two views are individually used for testing.

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4
Mean

Test view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

CCD [5] 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2

DVV [11] 23.5 25.9 23.6 26.9 22.3 20.2 22.1 24.5 24.9 23.1 28.3 23.8 24.1

CVP [41] 25.0 25.6 25.5 28.2 24.7 24.0 23.0 24.5 26.6 23.3 30.3 26.8 25.6

HON4D [15] 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9

Actionlet [36] 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8

LARP [33] 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4

SNV [39] 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9

HOPC [21] 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2

HPM+TM [23] 80.6 80.5 75.2 82.0 65.4 72.0 77.3 67.0 83.6 81.0 83.6 74.1 76.9

Ours 86.8 87.0 80.7 89.1 78.1 80.9 86.5 79.3 85.1 86.9 89.4 80.0 84.2

Figure 5: Per class recognition accuracy of our proposed method and HPM+TM [23] on the UWA3D Multiview ActivityII [20] dataset.

larity among actions. Moreover, in the top view, the lower

part of the body was not properly captured because of oc-

clusion. Figure 4 shows four sample actions observed from

4 viewpoints.

We follow [20] and use the samples from two views as

training data, and the samples from the remaining views

as test data. Table 2 summarizes our results. Our pro-

posed model significantly outperforms the state-of-the-art

methods on all view pairs. The overall accuracies of

depth based methods, such as HOPC [20] and CCD [5],

and Depth+Skeleton based methods, such as HON4D [15],

SNV [39], and Actionlet [36], are low because depth ap-

pearances of many actions look very different across view

changes. However, our method achieves 84.2% average

recognition accuracy which is about 7.3% higher than than

the nearest competitor, HPM+TM [23].

Figure 5 compares the class specific action recognition

accuracies of our proposed approach and the nearest com-

petitor, HPM+TM [23]. The proposed method achieves

better recognition accuracy on all action classes exclud-

ing standing up. For example, our method achieves 24%

and 20% higher accuracies than HPM+TM [23] for drink-

ing and phone answering, respectively. This is because our

proposed model is able to capture the interactions between

human body-parts and environmental objects.

Notice that for many actions in the UWA3D Multiview

ActivityII dataset such as holding chest, holding head, hold-

ing back, sneezing and coughing, there are no similar ac-

tions in the CMU mocap dataset. However, our method still

achieves high recognition accuracies for these actions. This

demonstrates the effectiveness and generalization ability of

our proposed model.

5. Conclusion

We proposed an end-to-end learning model for action

recognition from depth and skeleton data. The proposed

model learned to fuse features from depth and skeletal data,

capture the interactions between body-parts and/or interac-

tions with environmental objects, and model the temporal

structure of human actions in an end-to-end learning frame-

work. In order to make our method robust to viewpoint

changes, we introduced a deep CNN which transfers vi-

sual appearance of human body-parts acquired from differ-

ent unknown views to a view-invariant space. Experiments

on two large benchmark datasets showed that the proposed

approach outperforms existing state-of-the-art.
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