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Abstract

In this paper, we propose a discriminative aggregation

network (DAN) method for video face recognition, which

aims to integrate information from video frames effective-

ly and efficiently. Unlike existing aggregation methods, our

method aggregates raw video frames directly instead of the

features obtained by complex processing. By combining

the idea of metric learning and adversarial learning, we

learn an aggregation network that produces more discrim-

inative synthesized images compared to raw input frames.

Our framework reduces the number of frames to be pro-

cessed and significantly speed up the recognition procedure.

Furthermore, low-quality frames containing misleading in-

formation are filtered and denoised during the aggregation

process, which makes our system more robust and discrimi-

native. Experimental results show that our method can gen-

erate discriminative images from video clips and improve

the overall recognition performance in both the speed and

accuracy on three widely used datasets.

1. Introduction

Video face recognition has been attracting increasing ef-

forts in the past few years [1, 3, 4, 13, 29, 34, 37, 43, 44, 45],

which has many practical applications in surveillance, per-

son identification, video search. Compared to still image

recognition, video face recognition is more challenging be-

cause there are many noisy frames in videos which con-

tain unfavorable poses and viewing angles. Furthermore,

as the video usually consists of more than 100 frames, it

brings considerable computational burdens for the state-of-

the-art recognition methods such as the deep neural net-

works. Therefore, it is desirable to propose a framework

that can denoise the original video by extracting useful in-

formation from noisy data and reduce the overall runtime.

In other words, a new framework which can aggregate the
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Figure 1. The basic idea of our proposed frames aggregation

method. For each video clip, we integrate the information of

videos to produce few synthesized images with discriminative

aggregation network (DAN). The supervision signal of our pro-

posed framework makes the synthesized images more discrimi-

native than original frames in the feature space. Besides, we only

need to pass the few aggregated images into feature extraction net-

work and thus greatly speed up the overall system.

information from the video keep the same discriminative a-

bility for efficient face recognition is required.

There have been varieties of efforts on integrating in-

formation from different frames to represent the whole

video [2, 16, 19, 32, 45]. However, most of them focuses

on extracting features from raw video frames, which mean-

s that feature extraction is performed at first before other

operations. This kind of procedure will harm the recog-

nition performance because some frames have low quality

will mislead the system into wrong decisions, which cannot

be easily distinguished in the feature space because such in-

formation is usually lost during the feature extraction stage.

Therefore, it is important to conduct aggregation process

before feature extraction.

Generative adversarial networks (GAN) have achieved

great success in many fields of computer vision [5,8,22,27,
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35, 36, 47]. Inspired by the basic idea of adversarial learn-

ing, we propose a GAN-like aggregation network which

takes the video clip as the input and reconstruct a single im-

age as the output. However, the output image produced by

the generative adversarial network is only visually similar

to the original data, but does not guarantee any discrimina-

tive power. On the other hand, metric learning [9,13,37,43]

has been one of the most discriminative techniques in face

recognition, which maps samples into a semantic feature

space where they can be well distinguished. By combin-

ing metric learning with adversarial learning, we are able to

train a generative model that can produce photo-realist face

images and provides even stronger discriminative ability si-

multaneously.

In this paper, we propose a discriminative aggregation

network (DAN) method for video-based face recognition,

where the overall framework is shown in Figure 1. By

combining metric learning and adversarial learning, DAN

can aggregate the useful information of an input video in-

to one or few more discriminative images in the feature s-

pace for face recognition. Since the number of images to

be processed is greatly reduced, our framework significant-

ly speeds up video-based face recognition. Unlike exist-

ing methods which extract features from raw video frames

before other fusion operations, our framework directly fus-

es the information from one raw video into several images,

and can thus distinguish low quality frames and denoise the

input video simultaneously. Experimental results on the Y-

ouTube Face dataset [44], Point-and-Shoot Challenge [1]

and the YouTube Celebrities dataset [24] show that DAN

can accelerate the recognition speed and improve the recog-

nition performance simultaneously.

2. Related Work

Video Face Recognition: Existing video face recogni-

tion methods [15, 17, 18, 30, 31, 32, 34, 37, 39, 40, 42, 43, 45]

can be mainly categorized into two classes: image-based

and video-based. For the first category, each video is

considered as a set of images and the relationship be-

tween frames is exploited for recognition. These method-

s are designed to solve the general face recognition prob-

lem, where they are easily applied into video face recogni-

tion [6, 34, 37, 39, 40, 43]. We consider this type of meth-

ods as the basis of video face recognition, and our model

is built upon these methods. For the second category, each

video is usually modeled as an image set, and the distance

or similarity between videos is computed by the properties

of image sets. In previous works, image-set-based models

have a variety of forms. Cevikalp et al. modeled image set-

s as affine hulls [2]. Huang et al. calculated the distances

between image sets using the distances between SPD man-

ifolds [16, 18]. Lu et al. represented image sets as a set of

n-order statistics [31,42]. Yang et al. proposed an attention-

based model to aggregated features of image sets [45]. For

methods from both classes, the key challenge is how to rep-

resent a video as a single feature. In their works, they first

represent frames in videos using handcraft by feature vec-

tors or deep neural networks, and then aggregate these fea-

tures. In this work, we represent videos in a different way,

where we aggregate frames at the beginning and speed up

the recognition process.

Deep Metric Learning: Many metric learning algo-

rithms have been proposed in recent years, and many of

them have been successfully applied to improve the recog-

nition performance [9,13,37,43]. Deep metric learning [13]

aims to produces discriminative features through the com-

bination of deep learning and metric learning. For example,

Hu et al. employed a fully connected network to achieve

parametric metric learning. Schroff et al. presented a triplet

loss function for feature embedding. Wen et al. proposed

the center loss function to improve the faces distribution

in feature space. Different from these feature embedding

methods, we propose a new image embedding method to

guide the aggregation network to synthesize discriminative

images.

Adversarial Learning: Goodfellow et al. proposed the

idea of generative adversarial networks (GAN) [8]. After

that, adversarial learning has attracted great attention in re-

cent years [5, 22, 27, 35, 36, 47]. Compared to convention-

al generative models, GAN has shown promising perfor-

mance for generating more sharper images, and the ability

of photo-realistic image synthesis has been applied in many

areas. Larsen et al. combined a variational autoencoder

(VAE) [26] with a GAN to take the advantages from both

models and learned a high-level abstract visual features em-

bedding [27]. Zhang et al. developed the idea of deep con-

volutional GAN [35] and text-to-image synthesis [36] and

achieved impressive results on image synthesis [47], Iso-

la et al. studied on a variety of image-to-image translation

applications in computer vision by combining the tradition-

al n-norm distance loss and adversarial loss [22]. Ledig et

al. employed a GAN-like network together with a loss func-

tion defined by high-level features to improve the perceptual

quality of image super-resolution. However, little progress

has been made in adversarial learning for recognition task.

In our work, we combine the idea of adversarial learning

with metric learning to aggregate photo-realistic images for

boosting face recognition performance.

3. Approach

3.1. Problem Definition

Video-based face recognition aims to recognize whether

a face video belongs to a certain subject. Such videos usu-

ally contain more than 100 frames (like videos in the Y-

ouTube Face dataset) and brings considerable computation-
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Figure 2. Detailed architecture of our proposed framework. The numbers are either the feature map channel for convolutional blocks or

feature dimension for fully connected layers. The output of aggregation network is then fed into discriminative network for adversarial

learning, and the feature extraction network to increase discrimination. Different losses are applied at different places as illustrated in the

figure.

al burdens for existing methods. The goal of our framework

discriminative aggregation network (DAN) is to aggregate

a long video into one or few frames while still remains or

increases the discriminative power, which can be used for

efficient face recognition.

We denote our goal as the following objectives:

V m → Xn

subject to. m > n, (1)

Dis(F (Xp), F (Xn)) > Dis(F (Vp), F (Vn))

where V m is the input video with m frames and Xn is the

aggregated n images, with m much greater than n. The

subscripts p and n refer to positive and negative samples

and F is the feature extraction network. We used a function

Dis to evaluate the discriminative ability between positive

and negative samples. This means with DAN we can greatly

reduced the number of images to be processed, while the

aggregated images still have more discriminative ability in

the feature space of certain CNN F .

3.2. Overall Framework

The overall framework of our proposed discriminative

aggregation network (DAN) is presented in Figure 2. DAN

consists of 3 sub-networks. We define them as aggregation

(generator) network G, discriminator network D and fea-

ture extraction network F . We denote the whole video as

V . For the ease of implementation, at each time we aggre-

gate a subset S of V into a single image, so the input of G

is a subset S and the output is a single discriminative image

X . The discriminator D tries to judge whether the image is

generated by G or selected from the original video, forming

adversarial learning with G. The feature generator network

F extracts features from the aggregated images, and tries to

make the feature discriminative in the feature space.

The aggregation network G starts with several convolu-

tion blocks into smaller feature maps, and then reconstruct-

s the aggregated output image with several deconvolution
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blocks. We also add a skip connection between the first

and high-level feature map following another GAN based

framework [28]. The discriminator network D consists of

several convolution blocks and finally produces 1 output de-

noting whether the image is generated or selected from the

original video. For aggregation network, each convolutional

block consists of a standard convolution layer and a batch

normalization layer [20]. For discriminator network, each

convolutional block is a standard convolution layer. The k-

ernel size and stride of convolutional layers is 3 × 3 and

1× 1 respectively. All max pooling layers have kernel size

2 × 2 and stride 2. For upsampling layer, we use bilinear

filter with stride 2 to upscale feature maps. All hidden lay-

ers in both G and D use PReLU [11] as activations, and the

output layer of G uses tanh nonlinearity to produce nor-

malized pixel values. The output layer of D use sigmoid

nonlinearity to produce the possibility of whether the input

image is true or synthesized. G and D are trained iterative-

ly such that they can provide loss signal to each other to

reach an optimal balance, where the generated output of G

cannot be distinguished from ground-truth images. For the

feature extraction network F , we used the network provid-

ed by the author of [43], which is a residual convolutional

network [12]. The detailed structure of F is provided in the

supplementary. We keep F unchanged during the training

process.

3.3. Loss Functions

We hope our framework DAN can aggregate video clip

into single image while at the same time gain more discrim-

inative power. Special designed loss functions are needed

to achieve such goal. We use the following loss function:

L = λLDis + ηLRec + 0.01LGAN (2)

where LDis is the discriminative loss, LRec is the recon-

struction loss and LGAN is the adversarial loss. The param-

eter 0.01 is referred from [22].

3.3.1 Discriminative Loss

Samples from face recognition datasets consists of pos-

itive video pairs and negative video pairs. We use the ter-

m (X,P ) for positive pairs and (X,N) for negative pairs,

where X is the aggregated image, P and N are positive

and negative samples randomly chosen from the other video

clips respectively.

To make the generated image discriminative, we propose

the discriminative loss as:

LDis =

{

(||F (X)− F (P )||2 − α)+ y = 1

(β − ||F (X)− F (N)||2)+ y = 0
(3)

and

α = min
A∈S

||F (A)− F (P )||2 (4)

where y is the label either 1 or 0 denoting positive or neg-

ative pairs, F is the feature extraction network. S is the

subset clip to be aggregated and A is one of a frame in it.

We use Euclidean distance to measure the distance between

two feature representations. α is the smallest distances be-

tween all frames in S and P . β is a manually set constant

margin. The subscript + means max(0, ·).
The basic idea is that if we sample a positive video pair

from training data, and take a subset S of one video for

aggregation and randomly sample a frame P from the oth-

er video, we hope the aggregated image X is closer to P

than any other frame from the original video subset S in the

feature space of F . Contrarily, if negative sample is consid-

ered, we hope the distance between generated X and N is

greater than a certain margin. With such loss function, we

can guarantee the feature of aggregated image extracted by

F is more discriminative than original frames.

3.3.2 Reconstruction Loss

Since we reconstruct a face image from a compressed repre-

sentation, we need to exert reconstruction loss on the output

image. Here we compared 3 forms of reconstruction loss as

shown in Figure 2.

Pixel-wise MSE loss is the most widely used objective

function for existing frameworks like [7, 38], which is cal-

culated as:

LRec
MSE =

1

NI

||I −X||2F (5)

where I is the original image and X is the reconstructed

one. NI is the number of total pixels in an image.

Another reconstruction loss proposed in [28] focuses on

the feature map difference between reconstructed or origi-

nal image, as shown in the bottom part in Figure 2. The loss

function is listed below:

LRec
FM =

1

N

n
∑

i=1

||φi(I)− φi(X)||2F (6)

where φ maps image to its high-level feature maps, and in

our case, we use the convolutional part of feature extrac-

tion network F as φ. The subscript i denotes the index of

channel, with totally n feature maps. NFM is the number

of total entries of feature maps.

We cannot naively define the above two forms of recon-

struction loss, as there are multiple images in the input S.

For implementation, we choose I according to the follow-

ing rule:

I =

{

argminA∈S ||F (A)− F (P )||2 y = 1

argmaxA∈S ||F (A)− F (N)||2 y = 0
(7)

However, the two forms of reconstruction loss both fo-

cus on visually similarity, from shallow to upper level. They
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can guarantee visual characteristics but not semantic infor-

mation or discriminative power. DAN focuses on the feature

representation extracted from the aggregated image, so it is

naturally to apply reconstruction loss to the feature embed-

ding. We propose our new reconstruction loss as below:

LRec
FC = ||F (X)− mean(F (V m))||2 (8)

where F is the feature extraction network as mentioned

above, and V m is the original video consisting of m frames.

We hope the feature of reconstructed image is close to the

mean of features extracted from V per frame to reduce the

intra-class distances.

We give detailed analysis on the three forms of recon-

struction loss in Section 4.3.

3.3.3 Adversarial Loss

In addition to the reconstruction loss, we also add the ad-

versarial loss to our framework as widely adopted in GAN-

based frameworks [5, 22, 27, 35, 36, 47]. This encourages G

to generate aggregated outputs that are close to the natural

distribution, by forming adversarial learning with G. The

loss is defined based on the possibility whether an image

comes from the original video, denoted as:

LGAN = EA∼ptrain(A)[logD(A)] (9)

+ EV m∼ptrain(V m)[log(1−D(G(V m))]

Here D(G(V m)) is the probability that the aggregated

image G(V m) is a natural image taken from the original

video V m. The goal of D is to maximize LGAN while G

tends to minimize it. D and G play the minimax game until

reaching a balanced state. D and G are trained iteratively

following commonly used settings.

The overall training procedure of our method is summa-

rized in Algorithm 1.

4. Experiments

4.1. Datasets and Protocols

We evaluated the proposed discriminative aggregation

network (DAN) on three widely used datasets includ-

ing the YouTube Face dataset (YTF) [44], the Point-and-

Shoot Challenge (PaSC) [1] and the YouTube celebrities

(YTC) [24]. Here we give a brief description of these three

datasets.

YTF: The YouTube Face (YTF) dataset is a widely used

video face dataset, which contains 3,425 videos of 1,595 d-

ifferent subjects. In this dataset, there are many challenging

videos, including amateur photography, occlusions, prob-

lematic lighting, pose and motion blur. The length of face

videos in this dataset vary from 48 to 6,070 frames, and

the average length of videos is 181.3 frames. In experi-

ments, we follow the standard verification protocol and test

Algorithm 1 Minibatch stochastic gradient descent training

of our DAN.

Input: Training video pairs, learning rate lr, iterative num-

ber It, and parameter λ, η.

Output: Aggregation network G

1: Initialize G with MSE pretrained model.

2: Initialize D with pretrained model.

3: Load model of F .

4: for iter < It do

5: for k steps do

• Sample a video V from the training set, and ag-

gregate a subset S into image X = G(S).

• Sample a frame A from the subset S

• Update the discriminator by ascending its stochas-

tic gradient:

∇LGAN

6: end for

• Sample a video sampling V from the training set,

and aggregate a subset S into image X = G(S).

• Calculate the reconstruction target of LRec from

selected V

• Update the aggregation by descending its stochas-

tic gradient:

∇L = ∇(LDis+LRec+Ebatch[log(1−D(G(S))])

7: end for

8: return Neural network G

our method for unconstrained face 1 : 1 verification with

the given 5,000 video pairs. These pairs are equally divided

into 10 splits, and each split has around 250 intra-personal

pairs and around 250 inter-personal pairs.

PaSC: The Point-and-Shoot Challenge (PaSC) dataset

contains 2,802 videos of 265 subjects. In this dataset,

videos have different distances to the camera, viewpoints,

the sensor types and etc. The dataset is composed of two

parts, in which videos are taken by control and handheld

cameras respectively. Compared to the YTF dataset, PaSC

is more challenging because faces in this dataset have full

pose variations. We followed the standard 1 : N verifi-

cation protocol and tested our method on both control and

handheld parts of the dataset.

YTC: The YouTube Celebrities (YTC) dataset contain-

s 1,910 videos of 47 subjects and the number of frames

varies from 8 to 400. We followed the protocol of standard

ten-fold cross validation and selected 3 videos for training

and 6 videos for testing randomly for each subject in each

fold. We used the dataset to evaluate the performance of our

method on the video face classification task.
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4.2. Implementation Details

Pre-processing: Following [43], we employed a recen-

t algorithm MTCNN [48] to detect 5 points landmarks for

faces in videos. If detection fails, we used the landmarks

provided by datasets. We used similarity transformation to

align faces according to the landmarks, and then cropped

and resized faces to 112× 96 to remove the background in-

formation. In order to reduce the influence of video lengths,

each video was resampled to 200 frame as pre-processing.

In practice, our aggregation network can be applied to im-

ages of arbitrary size since it is fully convolutional.

Training: We set the input of aggregation network as

20 video frames in implementation, which is a trade-off of

efficiency and complexity. When training the adversarial

networks, we followed the standard approach [8] and set k

as 1. We alternately updated one step for discriminator net-

work and one step for aggregation network. To optimize

proposed networks, we employed the mini-batch stochastic

gradient descent (SGD) with batch size 16 and applied the

Adam [25] optimizer. We set learning rate, β1 and β2 as

0.0001, 0.9 and 0.999 respectively. We used the aggrega-

tion and discriminator networks pretrained by the supervi-

sion signal of MSE loss as initialization before using other

reconstruction losses and discriminative loss to avoid local

optima. Each network was trained for 10, 000 iterations.

We turned the update of batch-normalization parameters off

during test time to ensure that the output depends only on

the input [20]. The parameter λ and η in Eq. [37] is set as

1.0, and the weight of GAN loss is set as 0.01, as [22].

We trained our DAN on the training set of the YTF

dataset. For PaSC and YTC, which have relatively small

training set, we fine-tuned the YTF trained model to report

the result.

Testing: For all of the three datasets, we firstly used

our proposed method to aggregate the whole video into 10

face images. Then we use the face recognition network

and mean-pooling to represent each video as a single fea-

ture vector. For both 1 : 1 and 1 : N verification task, we

used the cosine similarity and threshold comparison, where

thresholds were computed from the training set. For clas-

sification task, we computed the cosine similarity between

examples in training set and testing set and decided the cat-

egories according to the nearest neighbor.

Experiment environment: Our implementation is

based on Caffe [23] with python wrapper. Our hardware

configuration comprises of a 2.40 GHz CPU and a 32.0 GB

RAM. We use a Tesla K80 GPU for neural network accel-

eration.

4.3. Results and Analysis

Results: The results of YTF, PaSC and YTC datasets are

given in Tables 1-3 respectively. For all these three datasets,

we report the average accuracy obtained by our framework,

Table 1. Comparisons of the average verification accuracy (%)

with the state-of-the-art results on the YTF dataset.

Method Accuracy

LM3L [14] 81.3± 1.2

DDML [13] 82.3± 1.2

EigenPEP [29] 84.8± 1.4

DeepFace-single [40] 91.4± 1.1

DeepID2+ [39] 93.2± 0.2

FaceNet [37] 95.12± 0.39

Deep FR [34] 97.3

NAN [45] 95.72± 0.64

Wen et al. [43] 94.9

CNN 93.16± 0.97

Random + CNN 92.80± 1.17

Hierarchical Pooling 93.15± 1.12

DAN 94.28± 0.69

Table 2. Comparisons of the verification rate (%) with the other

state-of-the-art results on the PaSC at a false accept rate(FAR) of

0.01.

Method Control Handheld

PittPatt 48.00 38.00

DeepO2P [21] 68.76 60.14

VGGFace 78.82 68.24

SPDNet [16] 80.12 72.83

GrNet [19] 80.52 72.76

CNN 90.78 78.67

Random+CNN 89.12 78.03

Hierarchical Pooling 89.83 78.23

DAN 92.06 80.33

Table 3. Comparisons of the classification accuracy (%) with the

other state-of-the-art results on the YTC.

Method Accuracy

MDA [41] 67.2± 4.0

LMKML [32] 70.31± 2.52

MMDML [30] 78.5± 2.8

GJRNP [46] 81.3± 2.0

DRM-WV [10] 88.32± 2.14

CNN 96.79± 1.27

Random + CNN 96.63± 1.31

Hierarchical Pooling 96.78± 1.25

DAN 97.32± 0.71

denoted as DAN in the three tables. We also report the re-

sult by directly passing all the video frames through feature

extraction CNN F with mean pooling for comparison, de-

noted as CNN. To investigate into the influence of frame

numbers, we formed two subsets of original video frames

by: (1) randomly sampling the same number of frames as

generated by DAN from the original video, which is 10 in

3786



Table 5. Investigation of different loss functions and the corresponding accuracy.

Adversarial loss Discriminative loss Reconstruction loss Accuracy

LGAN LDis LRec

MSE LRec

FM LRec

FC (%)

� 91.38± 0.74

� 92.50± 0.96

� � 92.36± 0.90

� � 92.46± 0.97

� � 92.92± 0.81

� � � 93.02± 0.88

� � � 93.16± 0.93

� � � 94.28± 0.69

Table 4. Runtime analysis.

Method Runtime(ms) Processed frames

CNN 819.7 181

Random + CNN 42.0 10

DAN 126.1 200

our case; (2) mean pooling on similar faces and summariz-

ing the whole video as 10 frames. We measured the per-

formance by mean pooling on corresponding CNN features

and denoted results as Random + CNN and Hierarchical

Pooling respectively.

The results show that on all three datasets, DAN outper-

forms the original CNN for dense feature extraction. This is

a strong baseline with high computation complexity, show-

ing that the aggregated images produced by DAN are more

discriminative than original video frames. Randomly sam-

pling 10 frames from the original video will lead to signif-

icantly performance drop. This, on the contrary, shows the

robustness and denoising ability of proposed DAN results.

Compared to previous state-of-the-art methods, DAN

outperforms all of them on PaSC and YTC. On YTF, DAN

achieves competitive but not the best result. This is large-

ly due to the baseline CNN which is comparatively weaker

than those of [37] and [45]. But the gained improvement

over baseline CNN result has already proven the effective-

ness.

Runtime Analysis: Efficiency is one of the advantages

of our framework, and here we give a short analysis of run-

time. For dense feature extraction baseline, we calculated

that the average frame number of the YTF dataset is 181.3,

which is used to measure the runtime. For random CNN

protocol, we randomly selected 10 frames from the video

and measure the forward time. For our DAN, we measured

the overall time including aggregating 200 frames into 10

images with DAN and the forward time of CNN. The re-

sults are listed in Table 4.

From the table we can see that our DAN is much faster

than the baseline method with dense feature extraction, and

has only little overhead compared to the random sampled

baseline, while achieves better results than both of them.

This shows the effectiveness of proposed DAN framework.

Investigation of Loss Functions: We proposed three

loss functions above: discriminative loss, reconstruction

loss and adversarial loss. Here we analyze the effects of

each loss functions with detailed experiments on YTF. The

results are given in Table 5.

As shown in the table, training with only MSE recon-

struction loss provides the basic baseline, where the dis-

criminative ability is harmed, leading to significant perfor-

mance drop. Introducing adversarial loss will contribute

to more realistic and therefore more discriminative images

than the MSE loss, but are below dense CNN feature ex-

traction baseline. Combining adversarial loss and recon-

struction loss will improve the performance slightly.

As for the reconstruction loss, we provide comparison

between three forms of LRec: MSE loss, feature map loss

and feature embedding loss. MSE loss focuses on low level

visual characteristics, and thus can make little contribution

to the discriminative power of the extracted feature. Feature

map loss exert supervision on high level activation map and

is closer to perceptual similarity. Such characteristics can

help to distinguish person in some degree, but still cannot

guarantee the distribution in the final feature embedding.

On the contrary, our proposed LRec
FC directly supervises the

feature embedding itself, and introduces metric learning in-

to the training, thus can make the aggregated images even

more dividable in the feature space. The results prove our

theory.

The most important observation is that bringing discrim-

inative loss LDis to the system can greatly boost the recog-

nition performance, which is also the main contribution of
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Figure 3. The examples of original video frames and the aggregated images (on the left), and the distribution of their features after t-sne [33]

(on the right). The crossings refer to original video frames and the dots refer to synthesized images. From the distribution we can see that

DAN can decrease the intra-class distance while increase the inter-class distance.

our article. By combining discriminative loss LDis and fea-

ture embedding based reconstruction loss LRec
FC we can ob-

tain the best result beyond CNN baseline.

Visualization: To investigate into the effectiveness of

the proposed DAN, we visualize some of the results in Fig-

ure 3. The visualization consists of 2 parts: raw video

frames and aggregated images, and their distribution in

the feature space after reducing dimension to two with t-

sne [33] operations. We can see from the figure that the

aggregated images are visually similar to the original data

and of very good quality, including good positions, view-

ing angles, illuminations, etc., which are very important for

recognition. Bad quality frames with blurring or unfavor-

able viewing angles are denoised during the process.

As for the feature space representation, we plot the distri-

bution of original video with 200 frames and the aggregated

10 images. We can see from the figure that DAN helps to

enlarge the margin between negative video pairs, especially

the first example, and reduce the intra-class distance. This

well demonstrates that DAN aggregated images can have

better discriminative power and robustness than the original

video.

5. Conclusion

In this paper, we propose a discriminative aggregation

network (DAN) method for effective and efficient video-

based face recognition. By combining metric learning and

adversarial learning, our DAN can aggregate the useful in-

formation of an input video into one or few more discrim-

inative images in the feature space, which can be used for

face recognition. DAN is one of the first aggregation frame-

works that takes raw video frames as input instead of feature

embeddings, further utilizing the raw information. After the

aggregation, the generated images have smaller intra-class

distances and greater inter-class distances in the feature s-

pace, contributing to the discriminative power and robust-

ness of the system. Furthermore, runtime is greatly reduced

as we only need to pass few output images through feature

extraction network for recognition. Experimental results on

three widely used datasets demonstrate the effectiveness of

our framework.
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