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Abstract

We propose a new method to analyze the impact of er-

rors in algorithms for multi-instance pose estimation and a

principled benchmark that can be used to compare them.

We define and characterize three classes of errors - local-

ization, scoring, and background - study how they are in-

fluenced by instance attributes and their impact on an al-

gorithm’s performance. Our technique is applied to com-

pare the two leading methods for human pose estimation on

the COCO Dataset, measure the sensitivity of pose estima-

tion with respect to instance size, type and number of visible

keypoints, clutter due to multiple instances, and the relative

score of instances. The performance of algorithms, and the

types of error they make, are highly dependent on all these

variables, but mostly on the number of keypoints and the

clutter. The analysis and software tools we propose offer a

novel and insightful approach for understanding the behav-

ior of pose estimation algorithms and an effective method

for measuring their strengths and weaknesses.

1. Introduction

Estimating the pose of a person from a single monoc-

ular frame is a challenging task due to many confound-

ing factors such as perspective projection, the variabil-

ity of lighting and clothing, self-occlusion, occlusion by

objects, and the simultaneous presence of multiple inter-

acting people. Nevertheless, the performance of human

pose estimation algorithms has recently improved dramat-

ically, thanks to the development of suitable deep architec-

tures [9, 11, 12, 17, 28, 29, 32, 33, 42, 44] and the availabil-

ity of well-annotated image datasets, such as MPII Human

Pose Dataset and COCO [4, 27]. There is broad consen-

sus that performance is saturated on simpler single-person

datasets [23, 24], and researchers’ focus is shifting towards

less constrained and more challenging datasets [4, 14, 27],

where images may contain multiple instances of people, and

a variable number of body parts (or keypoints) are visible.

However, evaluation is challenging: more complex datasets

make it harder to benchmark algorithms due to the many

sources of error that may affect performance, and existing
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Figure 1. Coarse to Fine Error Analysis. We study the errors

occurring in multi-instance pose estimation, and how they are af-

fected by physical characteristics of the portrayed people. We

build upon currently adopted evaluation metrics and provide the

tools for a fine-grained description of performance, which allows

to quantify the impact of different types of error at a single glance.

The fine-grained Precision-Recall curves are obtained by fixing an

OKS threshold and evaluating the performance of an algorithm af-

ter progressively correcting its mistakes.

metrics, such as Average Precision (AP) or mean Percent-

age of Correct Parts (mPCP), hide the underlying causes of

error and are not sufficient for truly understanding the be-

haviour of algorithms.

Our goal is to propose a principled method for analyzing

pose algorithms’ performance. We make four contributions:

1. Taxonomization of the types of error that are typical of

the multi-instance pose estimation framework;

2. Sensitivity analysis of these errors with respect to mea-

sures of image complexity;

3. Side-by-side comparison of two leading human pose esti-

mation algorithms highlighting key differences in behaviour

that are hidden in the average performance numbers;

4. Assessment of which types of datasets and benchmarks

may be most productive in guiding future research.

Our analysis extends beyond humans, to any object cat-

egory where the location of parts is estimated along with

detections, and to situations where cluttered scenes may

contain multiple object instances. This is common in

fine-grained categorization [8], or animal behavior analy-

sis [10, 16], where part alignment is often crucial.
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2. Related Work

2.1. Error Diagnosis

Object Detection: Hoiem et al. [19] studied how a de-

tailed error analysis is essential for the progress of recogni-

tion research, since standard benchmark metrics do not tell

us why certain methods outperform others and how could

they be improved. They determined that several modes of

failure are due to different types of error and highlighted the

main confounding factors for object detection algorithms.

While [19] pointed out the value of discriminating between

different errors, it did not show how to do so in the context

of pose estimation, which is one of our contributions.

Pose Estimation: In their early work on pose regression,

Dollár et al. [13] observed that unlike human annotators,

algorithms have a distribution of the normalized distances

between a part detection and its ground-truth that is typi-

cally bimodal, highlighting the presence of multiple error

modes. The MPII Human Pose Dataset [4] Single-Person

benchmark enables the evaluation of the performance of al-

gorithms along a multitude of dimensions, such as 45 pose

priors, 15 viewpoints and 20 human activities. However,

none of the currently adopted benchmarks for Multi-Person

pose estimation [14, 27, 31] carry out an extensive error

and performance analysis specific to this framework, and

mostly rely on the metrics from the Single-Person case.

No standards for performing or compactly summarizing de-

tailed evaluations has yet been defined, and as a result only

a coarse comparison of algorithms can be carried out.

2.2. Evaluation Framework

We conduct our study on COCO [27] for several rea-

sons: (i) it is the largest collection of multi-instance per-

son keypoint annotations; (ii) performance on it is far from

saturated and conclusions on such a large and non-iconic

dataset can generalize to easier datasets; (iii) adopting their

framework, with open source evaluation code, a multitude

of datasets built on top of it, and annual competitions, will

have the widest impact on the community. The framework

involves simultaneous person detection and keypoint esti-

mation, and the evaluation mimics the one used for ob-

ject detection, based on Average Precision and Recall (AP,

AR). Given an image, a distance measure is used to match

algorithm detections, sorted by their confidence score, to

ground-truth annotations. For bounding-boxes and segmen-

tations, the distance of a detection and annotation pair is

measured by their Intersection over Union. In the keypoint

estimation task, a new metric called Object Keypoint Simi-

larity (OKS) is defined. The OKS between a detection θ̂(p)

and the annotation θ(p) of a person p, Eq. 1, is the average

over the labeled parts in the ground-truth (vi = 1, 2), of the

Keypoint Similarity between corresponding keypoint pairs,

Fig. 2; unlabeled parts (vi = 0) do not affect the OKS [2].
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Figure 2. Keypoint Similarity (ks). The ks between two detec-

tions, eye (red) and wrist (green), and their corresponding ground-

truth (blue). The red concentric circles represent ks values of .5

and .85 in the image plane and their size varies by keypoint type,

see Sec.2.2. As a result, detections at the same distance from the

corresponding ground-truth can have different ks values.
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The ks is computed by evaluating an un-normalized Gaus-

sian function, centered on the ground-truth position of a

keypoint, at the location of the detection to evaluate. The

Gaussian’s standard deviation ki is specific to the keypoint

type and is scaled by the area of the instance s, measured

in pixels, so that the OKS is a perceptually meaningful and

easy to interpret similarity measure. For each keypoint type,

ki reflects the consistency of human observers clicking on

keypoints of type i and is computed from a set of 5000 re-

dundantly annotated images [2].

To evaluate an algorithm’s performance, its detections

within each image are ordered by confidence score and as-

signed to the ground-truths that they have the highest OKS

with. As matches are determined, the pool of available an-

notations for lower scored detections is reduced. Once all

matches have been found, they are evaluated at a certain

OKS threshold (ranging from .5 to .95 in [1]) and clas-

sified as True or False Positives (above or below thresh-

old), and unmatched annotations are counted as False Nega-

tives. Overall AP is computed as in the PASCAL VOC Chal-

lenge [15], by sorting the detections across all the images by

confidence score and averaging precision over a predefined

set of 101 recall values. AR is defined as the maximum

recall given a fixed number of detections per image [20].

Finally, we will refer to cocoAP and cocoAR when AP and

AR are additionally averaged over all OKS threshold values

(.5:.05:.95), as done in the COCO framework [1].
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Figure 3. Taxonomy of Keypoint Localization Errors. Keypoint localization errors, Sec. 3.1, are classified based on the position of a

detection as, Jitter: in the proximity of the correct ground-truth location, but not within the human error margin - left hip in (a); Inversion:

in the proximity of the ground-truth location of the wrong body part - inverted skeleton in (b), right wrist in (c); Swap: in the proximity

of the ground-truth location of the body part of a wrong person - right wrist in (d), right elbow in (e); Miss: not in the proximity of any

ground-truth location - both ankles in (f). While errors in (b,d) appear to be more excusable than those in (c,e) they have the same weight.

Color-coding: (ground-truth) - concentric red circles centered on each keypoint’s location connected by a green skeleton; (prediction) -

red/green dots for left/right body part predictions connected with colored skeleton, refer to the Appendix for an extended description.

Score = 15.64

OKS = .82

Score = 2.98

OKS = .96

Figure 4. Instance Scoring Error. The detection with highest

confidence score (Left) is associated to the closest ground-truth by

the evaluation algorithm described in Sec. 2.2. However, its OKS

is lower than the OKS of another detection (Right). This results in

a loss in performance at high OKS thresholds, details in Sec. 3.2.

2.3. Algorithms

We conduct our analysis on the the top-two ranked algo-

rithms [29, 11] of the 2016 COCO Keypoints Challenge [1],

and observe the impact on performance of the design differ-

ences between a top-down and a bottom-up approach.

Top-down (instance to parts) methods first detect hu-

mans contained in an image, then try to estimate their pose

separately within each bounding box [14, 17, 32, 44]. The

Grmi [29] algorithm is a two step cascade. In the first stage,

a Faster-RCNN system [34] using ResNet-Inception archi-

tecture [37] combining inception layers [38] with residual

connections [18] is used to produce a bounding box around

each person instance. The second stage serves as a refine-

ment where a ResNet with 101 layers [18] is applied to the

image crop extracted around each detected person instance

in order to localize its keypoints. The authors adopt a com-

bined classification and regression approach [39, 34]: for

each spatial position, first a classification problem is solved

to determine whether it is in the vicinity of each of the key-

points of the human body, followed by a regression problem

Table 1. 2016 COCO Keypoints Challenge Leaderboard [1]

Cmu Grmi DL61 R4D Umichvl

cocoAP 0.608 0.598 0.533 0.497 0.434

to predict a local offset vector for a more precise estimate

of the exact location. The results of both stages are aggre-

gated to produce highly localized activation maps for each

keypoint in the form of a voting process: each point in a

detected bounding box casts a vote with its estimate for the

position of every keypoint, and the vote is weighted by the

probability that it lays near the corresponding keypoint.

Bottom-up (parts to instance) methods first separately

detect all the parts of the human body from an image, then

try to group them into individual instances [9, 28, 33, 42].

The Cmu [11] algorithm estimates the pose for all the peo-

ple in an image by solving body part detection and part

association jointly in one end-to-end trainable network, as

opposed to previous approaches that train these two tasks

separately [22, 31] (typically part detection is followed by

graphical models for the association). Confidence maps

with gaussian peaks in the predicted locations, are used to

represent the position of individual body parts in an image.

Part Affinity Fields (PAFs) are defined from the confidence

maps, as a set of 2D vector fields that jointly encode the lo-

cation and orientation of a particular limb at each position

in the image. The authors designed a two-branch VGG [36]

based architecture, inspired from CPMs [42], to iteratively

refine confidence maps and PAFs with global spatial con-

texts. The final step consists of a maximum weight bipartite

graph matching problem [43, 26] to associate body parts

candidates and assemble them into full body poses for all

the people in the image. A greedy association algorithm

over a minimum spanning tree is used to group the predicted

parts into consistent instance detections.
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Figure 5. Distribution and Impact of Localization Errors. (a) Outcome for the predicted keypoints: Good indicates correct localization.

(b) The breakdown of errors over body parts. (c) The algorithm’s detections OKS improvement obtained after separately correcting errors

of each type; evaluated over all the instances at OKS thresholds of .5, .75 and .95; the dots show the median, and the bar limits show the first

and third quartile of the distribution. (d) The AP improvement obtained after correcting localization errors; evaluated at OKS thresholds of

.75 (bars) and .5 (dots). A larger improvement in (c) and (d) shows what errors are more impactful. See Sec. 3.1 for details.

3. Multi-Instance Pose Estimation Errors

We propose a taxonomy of errors specific to the multi-

instance pose estimation framework: (i) Localization,

Fig. 3, due to the poor localization of the keypoint predic-

tions belonging to a detected instance; (ii) Scoring, Fig. 4,

due to a sub-optimal confidence score assignment; (iii)

Background False Positives, detections without a ground-

truth annotation match; (iv) False Negatives, missed detec-

tions. We assess the causes and impact on the behaviour

and performance of [11, 29] for each error type.

3.1. Localization Errors

A localization FP occurs when the location of the

keypoints in a detection results in an OKS score with the

corresponding ground-truth match that is lower than the

evaluation threshold. They are typically due to the fact that

body parts are difficult to detect because of self occlusion

or occlusion by other objects. We define four types of

localization errors, visible in Fig. 3, as a function of the

keypoint similarity ks(., .), Eq. 1, between the keypoint i

of a detection θ̂
(p)
i and j of the annotation θ

(p)
j of a person p.

Jitter: small error around the correct keypoint location.

.5 ≤ ks(θ̂
(p)
i , θ

(p)
i ) < .85

The limits can be chosen based on the application of inter-

est; in the COCO framework, .5 is the smallest evaluation

threshold, and .85 is the threshold above which also human

annotators have a significant disagreement (around 30%) in

estimating the correct position [2].

Miss: large localization error, the detected keypoint is

not within the proximity of any body part.

ks(θ̂
(p)
i , θ

(q)
j ) < .5 ∀q ∈ P and ∀j ∈ J

Inversion: confusion between semantically similar parts

belonging to the same instance. The detection is in the prox-

imity of the true keypoint location of the wrong body part.

ks(θ̂
(p)
i , θ

(p)
i ) < .5

∃j ∈ J | ks(θ̂
(p)
i , θ

(p)
j ) ≥ .5

In our study we only consider inversions between the left

and right parts of the body, however, the set of keypoints J
can be arbitrarily defined to study any kind of inversion.

Swap: confusion between semantically similar parts of

different instances. The detection is within the proximity of

a body part belonging to a different person.

ks(θ̂
(p)
i , θ

(p)
i ) < .5

∃j ∈ J and ∃q ∈ P | ks(θ̂
(p)
i , θ

(q)
j ) ≥ .5

Every keypoint detection having a keypoint similarity

with its ground-truth that exceeds .85 is considered good,

as it is within the error margin of human annotators. We

can see, Fig. 5.(a), that about 75% of both algorithm’s de-

tections are good, and while the percentage of jitter and

inversion errors is approximately equal, [11] has twice as

many swaps, and [29] has about 1% more misses. Fig. 5.(b)

contains a breakdown of errors over keypoint type: faces

are easily detectable (smallest percentage of miss errors);

swap errors are focused on the upper-body, as interactions

typically involve some amount of upper-body occlusion;

the lower-body is prone to inversions, as people often self-

occlude their legs, and there are less visual cues to distin-

guish left from right; finally jitter errors are predominant

on the hips. There are no major differences between the

two algorithms in the above trends, indicating that none of

the methods contains biases over keypoint type. After defin-

ing and identifying localization errors, we measure the im-

provement in performance resulting from their correction.
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Figure 6. Scoring Errors Analysis. (a) The AP improvement

obtained when using the optimal detection scores, as defined in

Sec. 3.2. The histogram of detections’ (b) original and (c) optimal

confidence scores. We histogram separately the scores of detec-

tions achieving the maximum OKS with a given ground-truth in-

stance (green) and the other detections achieving OKS of at least

.1 (red). High overlap of the histograms, as in (b), is caused by the

presence of many detections with high OKS and low score or vice

versa; a large separation, as in (c), is indication of a better score.

Localization errors are corrected by repositioning a key-

point prediction at a distance from the true keypoint loca-

tion equivalent to a ks of .85 for jitter, .5 for miss, and

at a distance from the true keypoint location equivalent to

the prediction’s distance from the wrong body part detected

in the case of inversion and swap1. Correcting localiza-

tion errors results in an improvement of the OKS of ev-

ery instance and the overall AP, as some detections become

True Positives (TP) because the increased OKS value ex-

ceeds the evaluation threshold. Fig. 5.(c) shows the OKS

improvement obtainable by correcting errors of each type:

it is most important to correct miss errors, followed by in-

versions and swaps, while jitter errors, although occurring

most frequently, have a small impact on the OKS. We learn,

Fig. 5.(d), that misses are the most costly error in terms of

AP (∼ 15%), followed by inversions (∼ 4%), relative to

their low frequency. We focus on the improvement at the .75

OKS threshold, as it has almost perfect correlation with the

value of cocoAP (average of AP over all thresholds) [21].

Changing the evaluation threshold changes the impact of

errors (for instance by lowering it to .5 more detections are

TP so there is less AP improvement from their correction),

but the same relative trends are verified, indicating that the

above observations reflect the behavior of the methods and

are not determined by the strictness of evaluation.

3.2. Scoring Errors

Assigning scores to instances is a typical task in object

detection, but a novel challenge for keypoint estimation. A

scoring error occurs when two detections θ̂
(p)
1 and θ̂

(p)
2 are

in the proximity of a ground-truth annotation θ(p) and the

one with the highest confidence has the lowest OKS:
{

Score(θ̂
(p)
1 ) > Score(θ̂

(p)
2 )

OKS(θ̂
(p)
1 , θ(p)) < OKS(θ̂

(p)
2 , θ(p))

1The Appendix contains examples showing how errors are corrected.

Table 2. Improvements due to the optimal rescoring of detections.

Cmu [11] Grmi [29]

Imgs. w. detections 11940 14634

Imgs. w. optimal detection order 7456 (62.4%) 9934 (67.8%)

Number of Scoring Errors 407 82

Increase of Matches 64 156

Matches with OKS Improvement 590 430

This can happen in cluttered scenes when many people

and their detections are overlapping, or in the case of an iso-

lated person for which multiple detections are fired, Fig. 4.

Confidence scores affect evaluation, Sec. 2.2, locally by de-

termining the order in which detections get matched to the

annotations in an image, and globally, when detections are

sorted across the whole dataset to compute AP and AR. As a

result, it is important for the detection scores to be: (i) ‘OKS

monotonic increasing’, so that a higher score always results

in a higher OKS; (ii) calibrated, so that scores reflect as

much as possible the probability of being a TP. A score pos-

sessing such properties is optimal, as it achieves the highest

performance possible for the provided detections. It follows

that the optimal score for a given detection corresponds to

the maximum OKS value obtainable with any ground-truth

annotation: monotonicity and perfect calibration are both

guaranteed, as higher OKS detections would have higher

score, and the OKS is an exact predictor of the quality of

a detection. The optimal scores can be computed at evalu-

ation time, by an oracle assigning to each detection a con-

fidence corresponding to the maximum OKS score achiev-

able with any ground-truth instance. To aid performance

in the case of strong occlusion, we apply Soft-Non-Max-

Suppression [5], which decays the confidence scores of de-

tections as a function of the amount of reciprocal overlap.

Using optimal scores yields about 5% AP improvement,

averaged at all the OKS evaluation thresholds, and up to

10% at OKS .95, Fig. 6.(a), pointing to the importance of

assigning low scores to unmatched detections. A careful

examination shows that the reason of the improvement is

two-fold, Tab. 2: (i) there is an increase in the number of

matches between detections and ground-truth instances (re-

duction of FP and FN) and (ii) the existing matches ob-

tain a higher OKS value. Both methods have a signifi-

cant amount of overlap, Fig. 6.(b), between the histogram

of original scores for the detections with the highest OKS

with a given ground-truth (green line) and all other detec-

tions with a lower OKS (red line). This indicates the pres-

ence of many detections with high OKS and low score or

vice versa. Fig. 6.(c) shows the effect of rescoring: op-

timal score distributions are bi-modal and present a large

separation, so confidence score is a better OKS predictor.

Although the AP improvement after rescoring is equivalent,

[29] provides scores that are in the same order as the opti-

mal ones for a higher percentage of images and makes less

errors, indicating that it is using a better scoring function.
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Figure 8. Background Errors Analysis. (a) The AP improve-

ment obtained after FN (top) and FP (bottom) errors are removed

from evaluation; horizontal lines show the average value for each

method. (b) The histogram of the area size of FP having a high

confidence score. (c) The heatmaps obtained by adding the resized

ground-truth COCO segmentation masks of all the FN.

3.3. Background False Positives and False Negatives

FP and FN respectively consist of an algorithm’s de-

tections and the ground-truth annotations that remain un-

matched after evaluation is performed. FP typically oc-

cur when objects resemble human features or when body

parts of nearby people are merged into a wrong detection.

Most of the FP errors could be resolved by performing bet-

ter Non-Max-Suppression and scoring, since their impact

is greatly reduced when using optimal scores, i.e. Fig. 1.

Small size and low number of visible keypoints are instead

the main cause of FN. In Fig. 8.(a) we show the impact

of background errors on the AP at three OKS evaluation

thresholds: FN affect performance significantly more than

FP, on average about 40% versus only 5%. For both meth-

ods, the average number of people in images containing FP

and FN is about 5 and 7, compared to the dataset’s aver-

age of 3, suggesting that cluttered scenes are more prone

to having background errors. Interestingly, the location of

FN errors for the two methods differs greatly, Fig.8.(c): [11]

predominantly misses annotations around the image border,

while [29] misses those at the center of an image. Another

significant difference is in the quantity of FP detections

having a high confidence score (in the top-20th percentile

of overall scores), Fig.8.(b): [29] has more than twice the

number, mostly all with small pixel area size (< 322).

4. Sensitivity to Occlusion, Crowding and Size

One of the goals of this study is to understand how the

layout of people portrayed in images, such as the number

of visible keypoints (occlusion), the amount of overlap be-

tween instances (crowding) and size, affects the errors and

performance of algorithms. This section is focused on the

properties of the data, so we analyze only on method, [11].

The COCO Dataset contains mostly visible instances hav-

ing little overlap: Fig. 10 shows that only 1.7% of the anno-

tations have more than two overlaps with an IoU ≥ .1, and

86.6% have 5 or more visible keypoints. Consequently, we

divide the dataset into twelve benchmarks, Fig. 7, and study

the performance and occurrence of errors in each sepatate

one. The PR curves obtained at the evaluation threshold of

.75 OKS, after sequentially correcting errors of each type

are shown in Fig. 9.(a). It appears that the performance of

methods listed in Tab. 1 is a result of the unbalanced data
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Figure 10. Benchmarks of the COCO Dataset. The number of

instances in each benchmark of the COCO training set based on

(a) the size of instances, or (b) the number of overlapping ground-

truth annotations with IoU ≥ .1 and visible keypoints, Fig. 7.

distribution, and that current algorithms still vastly under-

perform humans in detecting people and computing their

pose, specifically when less than 10 keypoints are visible

and overlap is present. Localization errors degrade the per-

formance across all benchmarks, but their impact alone does

not explain the shortcomings of current methods. Over 30%
of the annotations are missed when the number of visible

keypoints is less than 5 (regardless of overlap), and back-

ground FP and scoring errors account for more than 40%
of the loss in precision in the benchmarks with high over-

lap. In Fig. 9.(b), we illustrate the frequency of each local-

ization error. Miss and jitter errors are predominant when

there are few keypoints visible, respectively with high and

low overlap. Inversions are mostly uncorrelated with the

amount of overlap, and occur almost always in mostly vis-

ible instances. Conversly, swap errors depend strongly on

the amount of overlap, regardless of the number of visible

keypoints. Compared to the overall rates in Fig. 5.(a-cmu)

we can see that inversion and jitter errors are less sensi-

tive to instance overlap and number of keypoints. A similar

analysis can be done by separating COCO into four size

groups: medium, large, extra-large and extra-extra large,

Fig. 10.(a). The performance at all OKS evaluation thresh-

olds improves with size, but degrades when instances oc-

cupy such a large part of the image that spatial context is

lost, Fig. 11.(a). AP is affected by size significantly less

than by the amount of overlap and number of visible key-

points. In Fig. 11.(b) we show the AP improvement obtain-

able by separately correcting each error type in all bench-

marks. Errors impact performance less (they occur less of-

ten) on larger instances, except for scoring and FP. Finally,

while FN, miss and jitter errors are concentrated on medium

instances, all other errors are mostly insensitive to size.

5. Discussion and Recommendations

Multi-instance pose estimation is a challenging visual

task where diverse errors have complex causes. Our analy-

sis defines three types of error - localization, scoring, back-

ground - and aims to discover and measure their causes,

rather than averaging them into a single performance met-

ric. Furthermore, we explore how well a given dataset may

be used to probe methods’ performance through its statistics

of instances’ visibility, crowding and size.
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Figure 11. Performance and Error Sensitivity to Size. (a) The overall AP obtained by evaluating [11] at three OKS evaluation thresholds

on the four Size Benchmarks described in Sec. 4. (b) The AP improvement at the OKS threshold of .75 obtained after separately correcting

each error type on the benchmarks. In both figures, the dashed red line indicates evaluation over all the instance sizes, Sensitivity (S) and

Impact (I) are respectively computed as the difference between the maximum and minimum, and the maximum and average, values.

The biggest problem for pose estimation is localization

errors, present in about 25% of the predicted keypoints in

state of the art methods, Fig. 5.(a). We identify four distinct

causes of localization errors, Miss, Swap, Inversion, and Jit-

ter, and study their occurrence in different parts of the body,

Fig. 5.(b). The correction of such errors, in particular Miss,

can bring large improvements in the instance OKS and AP,

especially at higher evaluation thresholds, Fig. 5.(c-d).

Another important source of error is noise in the detec-

tion’s confidence scores. To minimize errors, the scores

should be (i) ‘OKS monotonic increasing’ and (ii) cali-

brated over the whole dataset, Sec. 3.2. The optimal score

of a given detection corresponds to the maximum OKS

value obtainable with any annotation. Replacing a method’s

scores with the optimal scores yields an average AP im-

provement of 5%, Fig. 6.(a), due to the fact that ground-

truth instances match detections that obtain higher OKS,

and the overall number of matches is increased, Tab. 2. A

key property of good scoring functions is to separate as

much as possible the distribution of confidence scores for

detections obtaining high OKS versus low OKS, Fig. 6.(c).

Characteristics of the portrayed people, such as the

amount of overlap with other instances and the number

of visible keypoints, substantially affects performance. A

comparison between Fig. 9.(a) and Tab. 1, shows that aver-

age performance strongly depends on the properties of the

images, and that state of the art methods still vastly under-

perform humans when multiple people overlap and signifi-

cant occlusion is present. Since COCO is not rich in such

challenging pictures, it remains to be seen whether poor per-

formance is due to the low number of training instances,

Fig. 10.(b), and a new collection and annotation effort will

be needed to investigate this question. The size of instances

also affects the quality of the detections, Fig. 11.(a), but is

less relevant than occlusion or crowding. This conclusion

may be biased by the fact that small instances are not anno-

tated in COCO and excluded from our analysis.

In this study we also observe that despite their design dif-

ferences, [11, 29] display similar error patterns. Nonethe-

less, [11] is more sensitive to swap errors, as keypoint pre-

dictions from the entire image can be erroneously grouped

into the same instance, while [29] is more prone to misses,

as it only predicts keypoint locations within the detected

bounding box. [29] has more than twice the number of high

confidence FP errors, compared to [11]. Finally, we observe

that FN are predominant around the image border for [11],

where grouping keypoints into consistent instances can be

harder, and concentrated in the center for [29], where there

is typically clutter and bounding boxes accuracy is reduced.

Improving Localization: 3D reasoning along with the es-

timation of 2D body parts [40] can improve localization by

both incorporating constraints on the anatomical validity of

the body part predictions, and learning priors on where to

expect visually occluded parts. Two promising directions

for improvement are possible: (i) collecting 3D annota-

tions [7] for the humans in COCO and learning to directly

regress 3D pose end-to-end [30]; (ii) modeling the manifold

of human poses [3, 6, 35] and learning how to jointly pre-

dict the 3D pose of a person along with its 2D skeleton [41].

Improving Scoring: Graphical models [25] can be used to

learn a scoring function based on the relative position of

body part locations, improving upon [11, 29] which only

use the confidence of the predicted keypoints. Another

promising approach is to use the validation set to learn a

regressor for estimating optimal scores (Sec. 3.2) from the

confidence maps of the predicted keypoints and from the

sub-optimal detection scores generated by the algorithm.

Comparing scores of detections in the same image relatively

to each other will allow optimizing their order.

We release our code2 for future researchers to analyze the

strengths and weaknesses of their methods.

2https://goo.gl/9EyDyN
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