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Abstract

Recognising semantic pedestrian attributes in surveil-

lance images is a challenging task for computer vision,

particularly when the imaging quality is poor with com-

plex background clutter and uncontrolled viewing condi-

tions, and the number of labelled training data is small. In

this work, we formulate a Joint Recurrent Learning (JRL)

model for exploring attribute context and correlation in or-

der to improve attribute recognition given small sized train-

ing data with poor quality images. The JRL model learns

jointly pedestrian attribute correlations in a pedestrian im-

age and in particular their sequential ordering dependen-

cies (latent high-order correlation) in an end-to-end en-

coder/decoder recurrent network. We demonstrate the per-

formance advantage and robustness of the JRL model over

a wide range of state-of-the-art deep models for pedestrian

attribute recognition, multi-label image classification, and

multi-person image annotation on two largest pedestrian at-

tribute benchmarks PETA and RAP.

1. Introduction

Pedestrian attributes, e.g. age, gender, and hair style

are humanly searchable semantic descriptions and can be

used as soft-biometrics in visual surveillance, with appli-

cations in person re-identification [20, 26, 32], face ver-

ification [18], and human identification [35]. An advan-

tage of attributes as semantic descriptions over low-level vi-

sual features is their robustness against viewpoint changes

and viewing condition diversity. However, it is inherently

challenging to automatically recognise pedestrian attributes

from real-world surveillance images because: (1) The imag-

ing quality is poor, in low resolution and subject to motion

blur (Fig. 1); (2) Attributes may undergo significant ap-

pearance changes and situate at different spatial locations in

an image; (3) Labelled attribute data from surveillance im-

ages are difficult to collect and only available in small num-

bers. These factors render learning a pedestrian attribute

model very difficult. Early attribute recognition methods

mainly rely on hand-crafted features like colour and tex-
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Figure 1. Pedestrian attribute recognition in poor surveillance im-

ages is inherently challenging due to ambiguous visual appearance

from low resolution and large variations in human pose and view-

ing conditions, e.g. illumination, background clutter, occlusion.

ture [20, 26, 15, 7]. Recently, deep learning based attribute

models have started to gain attraction [21, 33, 10, 9], due

to deep model’s capacity for learning more expressive rep-

resentations when large scale data is available [17, 2, 39].

However, large scale training data is not available for pedes-

trian attributes. The two largest pedestrian attribute bench-

mark datasets PETA [7] and RAP [22] contain only 9, 500
and 33, 268 training images, much smaller than the popu-

lar ILSVRC (1.2 million) [36] and MS COCO (165, 482)

datasets [25]. Deep learning of pedestrian attributes is fur-

ther compounded by degraded fine-grained details due to

poor image quality, low resolution and complex appearance

variations in surveillance scenes.

To address these difficulties, one idea is to discover the

interdependency and correlation among attributes [3, 21, 50,

47, 48], e.g. two attributes “female” and “skirt” are likely

to co-occur in a person image. This correlation provides

an inference constraint complementary to visual appearance

recognition. Another idea is to explore visual context as

an extra information source to assist attribute recognition

[23, 11]. For instance, different people may share similar

attributes in the same scene, e.g. most skiers wear sun-

glasses. However, these two schemes are mostly studied

independently by existing methods.
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In this work, we explore both modelling inter-person

image context and learning intra-person attribute correla-

tion in a unified framework. To this end, we formulate a

Joint Recurrent Learning (JRL) of attribute correlation and

context. We introduce a novel Recurrent Neural Network

(RNN) encoder-decoder architecture specifically designed

for sequential pedestrian attribute prediction jointly guided

by both intra-person attribute and inter-person similarity

context awareness. This RNN based model explores ex-

plicitly a sequential prediction constraint that differs signif-

icantly from the existing CNN based concurrent prediction

policy [23, 11, 21]. We argue that this approach enables us

to exploit more latent and richer higher-order dependency

among attributes, therefore better mitigating the small train-

ing data challenge. Our approach is motivated by natural

language sentence prediction which models inter-word rela-

tions [45, 27]. Importantly, two information sources (intra-

person attribute correlations and inter-person image simi-

larities) are simultaneously modelled to learn person-centric

inter-region correlation to compensate poor (or missing) vi-

sual details. This provides the model with a more robust

embedding given poor surveillance images and learns more

accurate intra-person attribute correlations. Crucially, we

do not assume people in the same scene share common

attributes [23], nor assuming person body-part detection

[11]. Because people appearances in surveillance scenes

are without a common theme, and person body-part detec-

tion in low resolution images under poor lighting is incon-

sistent, resulting in many poor detections.

More specifically, our approach considers the sequence-

to-sequence mapping framework (with a paired encoder

and decoder) [5, 42, 4]. To explore a sequence prediction

model, we convert any given person image into a region se-

quence (Fig. 2(b)) and a set of attributes into an ordered list

(Fig. 2(c)). An encoder maps a fixed-length image region

sequence into a continuous feature vector. The recurrent

step is to encode sequentially localised person spatial con-

text and to propagate inter-region contextual information.

We call this intra-person attribute context modelling. More-

over, we also incorporate inter-person similarity context

(Fig. 2(a)). That is, we identify visually similar exemplar

images in the training set, encode them so to be combined

with the encoded image by similarity max-pooling. This

fused encoding feature representation is used to initialise a

decoder. The decoder transforms the image feature vector

from the encoder to a variable-length attribute sequence as

output. This joint sequence-to-sequence encoding and de-

coding process enables a low- to high-order attribute corre-

lation learning in a unified model. As attributes are weakly-

labelled at the image level without fine-grained localisation,

we further exploit a data-driven attention mechanism [1] to

identify attribute sensitive image regions and to guide the

decoder to those image regions for feature extraction.

The contributions of this work are: (1) We propose a

Joint Recurrent Learning (JRL) approach to pedestrian at-

tribute correlation and context learning in a unified model.

This is in contrast to existing methods that separate the two

learning problems thus suboptimal [23, 11, 21, 41]. (2)

We formulate a novel end-to-end encoder-decoder archi-

tecture capable of jointly learning image level context and

attribute level sequential correlation. To our best knowl-

edge, this is the first attempt of formulating pedestrian at-

tribute recognition as a sequential prediction problem de-

signed to cope with poor imagery data with missing de-

tails. (3) We provide extensive comparative evaluations on

the two largest pedestrian attribute benchmarks (PETA [7]

and RAP [22]) against 7 contemporary models including 5

pedestrian attribute models (SVM [19], MRFr2 [8], ACN

[41], DeepSAR and DeepMAR [21]), a multi-label image

classification model (Semantically Regularised CNN-RNN

[27]), and a multi-person image annotation model (Contex-

tual CNN-RNN [24]). The proposed JRL model yields su-

perior performance compared to these methods.

2. Related Work

Pedestrian Attribute Recognition. Semantic pedestrian

attributes have been extensively exploited for person identi-

fication [15] and re-identification [20, 40, 32]. Earlier meth-

ods typically model multiple attributes independently and

train a separate classifier for each attribute (e.g. SVM or

AdaBoost) based on hand-crafted features such as colour

and texture histograms [20, 51, 19, 7]. Inter-attribute cor-

relation was considered as complementary information to

compensate noisy visual appearance for improving predic-

tion performance, e.g. graph model based methods allow

to capture attribute co-occurrence likelihoods by using con-

ditional random field or Markov random field to estimate

the final joint label probability [8, 3, 38]. However, these

methods are prohibitively expensive to compute when deal-

ing with a large set of attributes, due to the huge number of

model parameters on pairwise relations. Deep CNN mod-

els have been exploited for joint multi-attribute feature and

classifier learning [52, 21, 41, 50, 23, 9], and shown to bene-

fit from learning attribute co-occurrence dependency. How-

ever, they do not explore modelling high-order attribute se-

quential correlations. Other schemes also exploited contex-

tual information [11, 23], but making too strong assump-

tions about image qualities to be applicable to surveillance

data. Attribute correlation and contexting are often treated

independently by existing methods. This work aims to ex-

plore jointly their complementary benefits in improving at-

tribute recognition when only small sized and poor quality

training data is available.

Multi-Label Image Classification. Pedestrian attribute

recognition is a Multi-Label Image Classification (MLIC)
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problem [28, 13]. Sequential multi-label prediction has

been explored before [46, 27]. These methods are based

on a CNN-RNN model design, whilst our JRL model

has a CNN-RNN-RNN architecture. Crucially, these ex-

isting MLIC models assume (1) the availability of large

scale labelled training data (2) with sufficiently good im-

age quality, e.g. 165, 482 carefully selected Flickr photo

images in the MS COCO dataset [25]. Both assumptions

are invalid for pedestrian attribute recognition in surveil-

lance images. A very recent multi-person image annotation

method advances this sequential MLIC paradigm by incor-

porating additional inter-person social relations and scene

context [24]. This method exploits specifically context

among family members and friend-centric photo images

of high-resolution, but not scalable to open-world surveil-

lance scenes of poor image data. Moreover, strong attribute-

level labels are required [24], whilst pedestrian attributes

are mostly weakly-labelled at the image level. In contrast,

the proposed JLR model is designed specially to combat the

challenges of attribute recognition in low-resolution poor

quality images with weakly-labelled data in small train-

ing data size. Learning image region sequence correla-

tion has been exploited for face recognition [37] and person

re-identification [43]. Their problem settings are different

from this work: here we aim to exploit image level context

for enhancing sequential attribute correlation learning in a

multi-label classification setting, whist both [37] and [43]

consider a single-label image classification problem.

3. Joint Recurrent Learning of Attributes

To establish a deep model for recognising pedestrian at-

tributes in inherently ambiguous surveillance images, we

assume n labelled training images Itr = {Ii}
n
i=1 available,

with the attribute labels as Atr = {ai}
n
i=1. Each image-

level label annotation ai = [a(i,1), . . . , a(i,nattr)] is a binary

vector, defined over nattr pre-defined attributes with 0 and

1 indicating the absence and presence of the correspond-

ing attribute, respectively. Intrinsically, this is a multi-label

recognition problem since the nattr pedestrian attribute cat-

egories may co-exist in a single image. It is necessary to

learn attribute sequential correlations (high-order) in simi-

lar imagery context in order to overcome the limitations in

training data due to poor image quality, weak labelling, and

small training size. To that end, we formulate a Joint Recur-

rent Learning (JRL) of both attribute context and correlation

in an end-to-end sequential deep model.

3.1. Network Architecture Design

An overview of the proposed JRL architecture is de-

picted in Fig. 2. We consider the RNN encoder-decoder

framework as our base model because of its powerful capa-

bility in learning sequence data and modelling the transla-

tion between different types of sequences [42, 6, 5]. Specif-

ically, RNN is a neural network consisting an internal hid-

den state h ∈ R
d and operating on a variable-length input

sequence X = (x1, . . . ,xt, . . . ). At each time step t, the

RNN takes sequentially an element xt of X and then up-

dates its hidden state ht as

ht = φθ(ht−1,xt) (1)

where φθ denotes the non-linear activation function param-

eterised by θ. To capture the long range dependency of

attribute-attribute, region-region, and attribute-region, we

adopt the LSTM [14] as recurrent neuron for both en-

coder and decoder RNN. Also, LSTM is effective to handle

the common gradient vanishing and exploding problems in

training RNN [31]. Particularly, at each time step t, the

LSTM updates using the input xt and the LSTM previous

status ht−1 ∈ R
d, and ct−1 ∈ R

d as:

ft = sigmoid(Wfxxt +Wfhht−1 + bf )

it = sigmoid(Wixxt +Wihht−1 + bi)

ot = sigmoid(Woxxt +Wohht−1 + bo)

gt = tanh(Wgxxt +Wghht−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2)

where sigmoid(·) refers to the logistic sigmoid function,

tanh(·) the hyperbolic tangent function, the operator ⊙ the

element-wise vector product. The LSTM contains four mul-

tiplicative gating units: forget gate f ∈ R
d, input gate

i ∈ R
d, output gate o ∈ R

d, input modulation gate g ∈ R
d,

with matrix W s and vector bs the corresponding to-be-

learned parameters. The memory cell ct depends on (1)

the previous memory cell ct−1, modulated by ft, and (2)

the input modulation gate, modulated by it. As such, the

LSTM learns to forget its previous memory and exploit its

current input selectively. Similarly, the output gate o learns

how to transfer the memory cell ct to the hidden state ht.

Collectively, these gates learn to effectively modulate the

behaviour of input signal propagation through the recurrent

hidden states for helping capture complex and long-term

dynamics/dependency in sequence data.

(I) Intra-Person Attribute Context. We model the intra-

person attribute context within each person image I by the

encoder LSTM. This is achieved by mapping recurrently

each input image into a fixed-length feature vector (Fig. 2

(b)). Specifically, for allowing sequential modelling of the

person image I , we first divide it into m (empirically set

m = 6 in our experiment) horizontal strip regions and form

a region sequence S = (s1, . . . , sm) in top-bottom order.

Then the encoder reads each image region sequentially, and

the hidden state hen of the encoder LSTM updates accord-

ing to Eqn. (2). Once reaching the end of this region se-

quence, the hidden state hen
m of the encoder can be consid-

ered as the summary representation z = hen
m of the entire
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Figure 2. An overview of the proposed Joint Recurrent Learning (JRL) of attribute context and correlation.

sequence or the person image. We call z as context vec-

tor. Importantly, this allows to selectively extract and en-

code the spatial dependency between different body parts

whilst also propagate relevant localised topological contex-

tual information through the recurrent network, thanks to

the capability of LSTM in modelling the long short term

relationships between sequence elements.

(II) Inter-Person Similarity Context. To compensate ap-

pearance ambiguity and poor image quality in a target im-

age, we explore auxiliary information from visually similar

exemplar training images to provide a inter-person similar-

ity context constraint. Specifically, we search top-k exem-

plars {Ia
i }

k
i=1 that are visually similar to the image I from

the training pool. For each exemplar Ia
i , we compute its

own context vector za
i using the same encoding process as

that for the image I . Then, we ensemble all the context vec-

tor representations of auxiliary images as the inter-person

context to z as follows:

z∗ = max(z, za
1 , · · · , z

a
k) (3)

where max(·) defines the element-wise maximum opera-

tion over all input feature vectors of both the input image

and top-k exemplars. While the averaging based ensemble

may be more conservative and reducing the likelihood of

introducing additional noisy information, we found empir-

ically that maximum-pooling based ensemble is more ef-

fective. The rational for this inter-person similarity context

compensation is that missing or corrupted local information

in the input image cannot be easily recovered in the decod-

ing process whilst newly introduced localised noise can be

largely suppressed by optimising the decoder.

Image Representation and Similarity Search. As input to

the LSTM encoder, we utilise a deep CNN initialised by

ImageNet (e.g. the AlexNet [17]), then fine-tune the CNN

on the pedestrian attribute training data to better represent

pedestrian images by its deep feature vectors. Specifically,

for a given person image, we decompose the activations of

the 5th convolutional layer into m horizontal regions, each

of which is pooled into a vector by directly concatenating

all dimensions. Moreover, we use the FC7 layer’s output as

the feature space for top-k exemplar similarity search using

L2 distance metric.

(III) Inter-Attribute Correlation. We construct a decoder

LSTM to model the latent high-order attribute correlation

subject to jointly learning a multi-attribute prediction clas-

sifier. Specifically, given the encoded context vectors z and

z∗, the decoder LSTM aims to model a sequential recur-

rent attribute correlation within both intra-person attribute

context (z) and inter-person similarity context (z∗) and to

generate its variable-length output as a predicted sequence

of attributes yt over time t (Fig. 2(c)). This is desired since

the co-occurring attribute number varies among individual

images. An attribute label sequence of a person image is

generated from a fixed order list of all attributes (Sec. 3.2).

We initialise the decoder hidden state hde
1 with the improved

encoder context vector: hde
1 = z∗. This is to incorporate

the inter-person similarity context into the decoding pro-

cess. Compared to the encoder counterpart, hde
t and yt are

additionally conditioned on the previous output yt−1 (ini-

tialised y0 = 0, i.e. the “start” token). In essence, it is this

sequential recurrent feedback connection that enables our

model to mine the varying high-orders of attribute-attribute

dependency – longer prediction, higher-order attribute cor-

relation modelled. Formally, rather than by Eqn. (1),hde
t is

updated via:

hde
t = φθ(h

de
t−1,yt−1, z). (4)

In case of LSTM, the particular update formulation is:

ft = sigmoid(Wfzz +Wfhh
de
t−1 +Wfyyt−1 + bf )

it = sigmoid(Wizz +Wihh
de
t−1 +Wiyyt−1 + bi)

ot = sigmoid(Wozz +Wohh
de
t−1 +Woyyt−1 + bo)

gt = tanh(Wgzz +Wghh
de
t−1 +Wgyyt−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(5)

This is similar to Eqn. (2) except the extra dependence

on the previous prediction yt−1 and corresponding param-
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eters1. To predict the attribute, we first compute the condi-

tional probability over all attributes and a “stop” signal as:

p({yt,i = 1}nattr+1
i=1 ) = φy(h

de
t−1,yt−1, z)

= Wyot + by
(6)

where Wy ∈ R
(nattr+1)×d and by ∈ R

(nattr+1) are model

parameters, and ot ∈ R
d can be obtained by Eqn. (5). Then,

we predict the current attribute yt as:

i∗ = argmaxi∈[1,...,nattr+1](yt,i), (7)

i.e. the i∗-th bit of yt is 1 whilst all the others are 0.

Recurrent Attribute Attention. Appearance attribute pat-

terns in real-world person images can vary complexly and

significantly. By summarising a person image into a sin-

gle fixed-length context vector z with the encoder, a large

amount of semantic information, (e.g. spatial distribution)

may be not well encoded due to the limited representation

capacity of context vector [5]. To overcome this limitation,

we propose to improve our JRL model by incorporating the

attention mechanism [1, 4] so as to automatically identify

and focus on the most relevant parts of the input region

sequence when predicting the current attribute to improve

the correlation modelling and finally the prediction perfor-

mance. This is essentially an explicit sequence-to-sequence

alignment mechanism. We achieve this by imposing a struc-

ture into the encoder output and then reformulating the at-

tribute decoding algorithm accordingly.

Specifically, we first allow the encoder to output a struc-

tured representation, a set of summary vectors as:

Hen = (hen
1 , . . . ,h

en
i , ....,h

en
m), hen

i ∈ R
d (8)

for an input image region sequence S = (s1, . . . , sm) with

m the number of all time steps or the input region sequence

length. Clearly, hen
i represents the context representation of

the i-th (top-down order) spatial region of the input image.

The aim of our attribute attention is to identify an optimised

weighting distribution wt = (wt,1, · · · , wt,i, · · · , wt,m)
over (hen

1 , · · · ,h
en
i , · · · ,h

en
m) at each time step t when the

decoder is predicting the attribute, as:

wt,i =
exp(αt,i)∑m

i=1 exp(αt,i)
,with αt,i = φatt(h

de
t−1,h

en
i ) (9)

where φatt defines the attention function realised with a feed

forward neural network in our approach as in [44]. Once

obtaining the attention weighting score wt, we utilise it to

compute the step-wise context representation zt by

zt =

m∑

i=1

wt,i × hen
i (10)

1We do not use the encoded z
∗ with inter-person similarity context as

the decoder input to avoid possible divergence from the exemplar images.

The final prediction yt can be obtained similarly by com-

puting hde
t with Eqn. (4), and applying Eqns. (6) and (7).

Note that the context representation zt utilised in

attention-aware attribute decoding is varying over time t

due to the difference in the spatial attention distribution wt.

In contrast, in case of no attention, z is constant during the

whole decoding process. Implicitly, the current wt is con-

ditioned on wt−1 (the attention used at time t − 1) due to

the dependence of ht−1 on zt−1 (Eqn. (4)) and of zt−1 on

wt−1 (Eqn. (10)), therefore allowing to optimise the under-

lying correlation in per-step attention selection for sequen-

tial attribute decoding during model training.

Attribute Embedding. To incorporate the previous attribute

prediction as recurrent feedback on the next prediction, we

need a proper attribute representation. One common way is

the simple one-hot vector. Alternatively, word embedding

[30] has been shown as a favourable text representation by

learning a lookup table optimised for specific annotation er-

ror and thus more semantically meaningful. Therefore, we

adopt the latter scheme in our attribute decoder.

3.2. Model Training and Inference

To train the JRL model, we need to determine attribute

selection order. However, pedestrian attributes are natu-

rally unordered without a fixed ordering, similar to generic

multi-label image classification [27, 46] and dissimilar to

image caption [45]. To address this problem, one can ei-

ther randomly fix an order [24] or define some occurrence

frequency based orders, e.g. rare first (rarer attributes are

placed earlier so that they can be promoted) [27], or fre-

quent first (more frequent attributes appear earlier with the

intuition that easier ones can be predicted before harder

ones) [46]. In our model training, we explore the ensem-

ble idea [34] to incorporate the complementary benefits of

all these different orders and thus capture more high-order

correlation between attributes in context. We consider that

using an order ensemble is critical for pedestrian attribute

modelling because: (1) Small sized training data makes

poor model learning for most attribute classes; (2) Given

significant attribute appearance change in surveillance data,

the optimal sequential attribute correlation can vary signif-

icantly between different pedestrian images, with no single

universally optimal sequential order. Thus, we employ an

ensemble of 10 attribute orders: rare first, frequent first, top-

down and bottom-up (for encoding body topological struc-

ture information), global-local and local-global (for inter-

acting coarse and fine grained attributes), and 4 random or-

ders (for incorporating randomness).

Model Training. For each attribute order in the ensemble,

we train an order-specific JRL model. We learn any JRL

model end-to-end by back-propagation through time [49]

so as to jointly optimise the encoder and decoder LSTM.

We use the cross-entropy loss on the softmax score subject
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Figure 3. Example images. Left: PETA [7]; Right: RAP [22].

to training attribute labels. To avoid noise back propagation

from the RNN to CNN, we do not train the CNN image

feature representation network together with the JRL RNN

encoder-decoder. Each JRL model is optimised against per-

image attribute sequences without duplication. Therefore,

repeated prediction is inherently penalised and discouraged.

Model Inference. Given a test image, each trained JRL

model gives a multi-attribute prediction. We generate a

set of 10 predictions per test image given 10 order-specific

models. To infer the final prediction, we adopt the majority

voting scheme [29].

4. Experiments

Datasets. For evaluations, we used the two largest pedes-

trian attribute datasets publically available (Fig.3): (1)

The PEdesTrian Attribute (PETA) dataset [7] consists of

19, 000 person images collected from 10 small-scale per-

son datasets. Each image is labelled with 65 attributes (61

binary + 4 multi-valued). Following the same protocol per

[8, 21], we randomly divided the whole dataset into three

non-overlapping partitions: 9500 for model training, 1900
for verification, and 7600 for model evaluation. (2) The

Richly Annotated Pedestrian (RAP) attribute dataset [22]

has in total 41,585 images drawn from 26 indoor surveil-

lance cameras. Each image is labelled with 72 attributes

(69 binary + 3 multiple valued). We adopted the same data

split as in [22]: 33,268 images for training and the remain-

ing 8,317 for test. We evaluated the same 51 binary at-

tributes per [22] for a fair comparison. For both datasets,

we converted multi-valued attributes into binary attributes

as in [8, 21, 22]. Both datasets pose significant challenges

to pedestrian attribute recognition under difficult illumina-

tion with low resolution, occlusion and background clutter.

Performance Metrics. We use four metrics to evaluate

attribute recognition performance. (1) Class-centric: For

each attribute class, we compute the classification accuracy

of positive and negative samples respectively, average them

to obtain an Average Precision (AP) for this attribute, then

take the mean of AP over all attributes (mAPcls) as the met-

ric [8]. (2) Instance-centric: We measure per instance (im-

age) attribute prediction precision and recall. This measure

additionally considers the inter-attribute correlation, in con-

trast to mAP that assumes independence between attributes

[22]. Specifically, we compute the precision and recall of

predicted attributes against the groundtruth for each test im-

age, and then take the mean of the two measures over all test

images to yield mean Precision (mPrcins) and mean Recall

(mRclins) rates. We also compute the F1 score (F1ins) based

on mPrcins and mRclins as a more comprehensive metric.

Competitors. We compared our model JRL against 7 con-

temporary and state-of-the-art models. They include (I)

two conventional discriminative attribute methods: (1) We

adopted CNN features (FC7 output of the AlexNet) with the

SVM attribute model [19], replacing its original Ensemble

of Localized Features (ELF) [12, 19]; (2) MRFr2 [8] is a

graph based attribute recognition method that exploits the

context of neighbouring images by Markov random field for

mining the visual appearance proximity relations between

different images to support attribute reasoning; (II) Three

deep learning attribute recognition methods: (3) Attributes

Convolutional Network (ACN) [41] trains jointly a CNN

model for all attributes, and sharing weights and transfer

knowledge among different attributes; (4) DeepSAR [21] is

a deep model that that treats attribute classes individually by

training multiple attribute-specific AlexNet models [17]; (5)

DeepMAR [21] , unlike DeepSAR, considers additionally

inter-attribute correlation by jointly learning all attributes in

a single AlexNet model [17], so to capture the concurrent at-

tribute relationships, similar to [41]; (III) One multi-person

image annotation recurrent model: (6) Contextual CNN-

RNN (CTX CNN-RNN) [24] is a CNN-RNN based sequen-

tial prediction model designed to encode the scene context

and inter-person social relations for modelling multiple peo-

ple in an image2; (IV) One generic multi-label image clas-

sification model: (7) Semantically Regularised CNN-RNN

(SR CNN-RNN) [27] is a state-of-the-art multi-label image

classification model that exploits the groundtruth attribute

labels for strongly supervised deep learning and richer im-

age embedding.

Implementation Details. The hidden state for both the en-

coder LSTM and the decoder LSTM of the JRL model has

512 units (neurons). We set empirically the learning rate as

0.0001 with AdamOptimizer [16], and the dropout rate as

0.5. By default, we adopted the AlexNet (same as Deep-

MAR) as the network architecture for image embedding,

and top-2 exemplars were selected for inter-person context.

4.1. Comparison to the StateOfTheArts

Tables 1 and 2 show evaluations on PETA and RAP

respectively. It is evident that the proposed JRL model

2In our weakly supervised setting for attribute recognition, we have no

attribute fine-grained location labelling. So we feed the whole image CNN

features at each recurrent decoding step for both training and test.
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Table 1. Evaluation on PETA [7], 1st/2nd best results in red/blue.

Method

Metric
mAPcls mPrcins mRclins F1ins

MRFr2[8] 75.60 - - -

ELF+SVM [19] 75.21 49.45 74.24 59.36

CNN+SVM [22] 76.65 51.33 75.14 61.00

ACN [41] 81.15 84.06 81.26 82.64

DeepSAR [21] 81.30 - - -

DeepMAR [21] 82.60 83.68 83.14 83.41

CTX CNN-RNN [24] 80.13 79.68 80.24 79.68

SR CNN-RNN [27] 82.83 82.54 82.76 82.65

JRL 85.67 86.03 85.34 85.42

Table 2. Evaluation on RAP [22], 1st/2nd best results in red/blue.

Method

Metric
mAPcls mPrcins mRclins F1ins

MRFr2[8] - - - -

ELF+SVM [19] 69.94 32.84 71.18 44.95

CNN+SVM [22] 72.28 35.75 71.78 47.73

ACN [41] 69.66 80.12 72.26 75.98

DeepSAR [21] - - - -

DeepMAR [21] 73.79 74.92 76.21 75.56

CTX CNN-RNN [24] 70.13 71.03 71.20 70.23

SR CNN-RNN [27] 74.21 75.11 76.52 75.83

JRL 77.81 78.11 78.98 78.58

achieves the best accuracy on PETA given by all four evalu-

ation metrics, and on RAP the best accuracy given by three

metrics except mPrcins coming second best (JRL 78.11%

vs. ACN 80.12%). This implies that ACN is conserva-

tive in prediction, i.e. predicting only very confident at-

tributes. More significantly, JRL outperforms in mAPcls the

state-of-the-art attribute model DeepMAR [21] and multi-

label image annotation model SR CNN-RNN [27] respec-

tively by 3.07% and 2.84% on PETA, 4.02% and 3.60%
on RAP. Similar margins are observed with other perfor-

mance metrics, except with the mPrcins ACN [41] achieves

the best score (80.12% vs. 78.11% by JRL) on RAP, but

with a much lower mRclins (72.26% vs. 78.98% by JRL)

also a lower overall F1ins (75.98% vs. 78.58% by JRL).

This shows clearly the benefit of the proposed correlation

and context joint recurrent learning approach to predict-

ing ambiguous pedestrian attributes in poor quality surveil-

lance images. This is mainly due to JRL’s capacity to max-

imise and exploit the complementary effect of correlation

and context on sparsely labelled weak annotations, through

an end-to-end encoder/decoder learning.

Robustness Against Training Label Sparsity. In addition

to the overall performance comparisons, we further con-

ducted a model scalability evaluation against the training

data size to better understand model robustness to small

sized (difficult-to-collect) attribute labels. To that end, we

randomly removed varying ratios (25∼75%) of the whole

training data set with the test data remaining unchanged on

both PETA and RAP. We compared the JRL model with the

best two competitors: DeepMAR [21] and SR CNN-RNN

[27]. It is evident from Table 3 that JRL is more robust than

Ground Truth: Age60+, Leather Shoes, Male, No 

accessory, Plastic bags, Trousers

DeepMAR(T: 2 F: 6 M:4): Age15-30, Jeans, Male, No 

accessory, No carrying, Sneakers, UpperOther, V-Neck

SR CNN-RNN(T: 5 F: 0 M:1): Age60+, Leather Shoes, 

Male, No accessory, Plastic bags

JRL(T: 6 F: 0 M:0):Age60+, Leather Shoes, Male, No 

accessory, Plastic bags, Trousers

Ground Truth: Age31-45, Formal lower, Formal upper, 

Jeans, Long hair, MessengerBag, Plastic bags, Shoes, 

Upper Other

DeepMAR(T: 2 F: 5 M:7): Age15-30, Backpack , Formal 

lower, Formal upper, Male, No accessory, Sneakers

SR CNN-RNN(T: 3 F: 3 M:6): Age31-45, Formal lower, 

Formal upper, Leather Shoes, Male, No accessory

JRL(T: 4 F: 2 M:5): Age31-45, Formal lower, Formal 

upper, Male, No accessory, Shoes

Figure 4. Qualitative evaluation of pedestrian attribute recognition

on PETA [7], with wrong predictions in red, true in green.

both DeepMAR and SR CNN-RNN against training data

sparsity. When training data decreased from 100% to 25%,

the mAPcls performance drop of JRL is 3.64% and 3.55%
on PETA and RAP respectively. This compares favourably

against DeepMAR (6.23% and 5.73%) and SR CNN-RNN

(6.24% and 5.85%). This validate the advantages and po-

tentials of our proposed JRL model in handling sparse train-

ing data situations by effectively maximising the joint ben-

efits of modelling attribute context and correlation end-to-

end from only limited labelled data.

Table 3. Model robustness vs. training data size (TDS) in %.

Dataset TDS (%)
Model

Metric
mAPcls mPrcins mRclins F1ins

PETA [8]

100

DeepMAR [21] 82.60 83.68 83.14 83.41

SR CNN-RNN[27] 82.83 82.54 82.76 82.65

JRL 85.67 86.03 85.34 85.42

75

DeepMAR [21] 80.83 81.02 81.73 81.37

SR CNN-RNN[27] 81.06 81.11 81.66 81.21

JRL 84.45 84.86 84.23 84.07

50

DeepMAR [21] 79.16 80.66 80.39 80.52

SR CNN-RNN[27] 79.09 80.40 80.13 80.06

JRL 83.42 84.16 82.39 82.46

25

DeepMAR [21] 76.37 79.12 77.93 78.52

SR CNN-RNN[27] 76.59 79.23 78.12 78.39

JRL 82.03 83.16 81.01 81.51

RAP [22]

100

DeepMAR [21] 73.79 74.92 76.21 75.56

SR CNN-RNN[27] 74.21 75.11 76.52 75.83

JRL 77.81 78.11 78.98 78.58

75

DeepMAR [21] 71.38 72.40 74.62 73.49

SR CNN-RNN[27] 71.96 72.33 74.73 73.64

JRL 76.69 77.34 77.76 77.36

50

DeepMAR [21] 70.01 71.52 72.53 72.06

SR CNN-RNN[27] 70.53 71.96 72.77 72.36

JRL 75.51 76.31 76.69 76.64

25

DeepMAR [21] 68.06 70.33 69.86 70.08

SR CNN-RNN[27] 68.36 70.67 70.39 70.67

JRL 74.26 75.16 75.21 75.34

4.2. Further Analysis and Discussions

(1) Benefit of intra-person attribute context. We eval-

uated explicitly the benefit of modelling intra-person at-

tribute context by the encoder LSTM. For that, we built

a stripped-down JRL model by removing the encoder and
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directly using the CNN FC features for the decoder input.

Table 4 shows the difference on both PETA and RAP, im-

proving mAPcls by 2.22% and 2.62% respectively, similarly

under the other metrics.

Table 4. Benefit of intra-person Attribute Context (AC).

Dataset
Method

Metric
mAPcls mPrcins mRclins F1ins

PETA [8]
JRL (No AC) 83.45 83.96 83.97 83.89

JRL 85.67 86.03 85.34 85.42

RAP [22]
JRL (No AC) 75.19 75.55 76.93 75.97

JRL 77.81 78.11 78.98 78.58

(2) Effect of inter-person similarity context. We also

evaluated explicitly the benefit of exploiting auxiliary ex-

emplar images as inter-person context. For that, we ex-

cluded them in both model training and inference stages.

Table 5 shows that this context modelling brings 0.65% and

0.87% boost in mAPcls on PETA and RAP respectively.

Table 5. Effect of inter-person Similarity Context (SC).

Dataset
Method

Metric
mAPcls mPrcins mRclins F1ins

PETA [8]
JRL(No SC) 85.02 85.27 84.36 84.86

JRL 85.67 86.03 85.34 85.42

RAP [22]
JRL(No SC) 76.94 77.39 78.23 77.92

JRL 77.81 78.11 78.98 78.58

(3) Effects of model ensemble. We evaluated the bene-

fit of exploiting attribute order ensemble. We compared

the average results of all 10 orders. Table 6 shows that

the ensemble of distinct sequential orders improves signifi-

cantly the model performance, improving mAPcls by 3.54%
and 3.07% on PETA and RAP when compared to the av-

erage. This validates our ensemble design intuition for

modelling ambiguous attributes in poor surveillance images

from sparsely labelled training data.

Table 6. Effects of the model ensemble.

Dataset
Method

Metric
mAPcls mPrcins mRclins F1ins

PETA [8]
Average 82.13 82.55 82.12 82.02

Ensemble 85.67 86.03 85.34 85.42

RAP [22]
Average 74.74 75.08 74.96 74.62

Ensemble 77.81 78.11 78.98 78.58

(4) Effects of recurrent attribute attention. Table 7 shows

that the data-driven alignment between image region se-

quence and attribute label sequence is beneficial, giving

1.64% and 1.85% in mAPcls boost on PETA and RAP.

Table 7. Effects of recurrent attribute attention.

Dataset
Method

Metric
mAPcls mPrcins mRclins F1ins

PETA [8]
JRL(No Attention) 84.03 84.92 84.19 84.24

JRL 85.67 86.03 85.34 85.42

RAP [22]
JRL(No Attention) 75.96 76.89 77.49 77.13

JRL 77.81 78.11 78.98 78.58

(5) Qualitative analysis on the effect of attribute cor-

relations. We examined more carefully the effect of at-

Ground Truth: age16-30, skirt, hair 

long 

DeepMAR: age16-30, skirt , hair long

JRL: age16-30→hair long→skirt

JRL: skirt→hair long→ age16-30

Ground Truth : age16-30, skirt, hair 

long 

DeepMAR: age31-45, skirt , hair long

JRL : age31-45 →hair long→skirt

JRL : skirt→hair long→ age16-30

Figure 5. Qualitative analysis of latent attribute correlation, with

wrong predictions in red, true in green and missed predictions in

blue. The two examples are from PETA [7].

tribute correlations on the JRL model performance. Fig. 5

shows two examples. The person on the left with a fash-

ionable bag and legging/shoes was predicted reliably by

JRL to be “young”, whilst the “hair long” is less obvious

and “skirt” almost invisible but both predicted correctly by

JRL invoking the relevant ordering context. In contrast,

a non-sequence prediction model DeepMAR [21] missed

both “hair long” and “skirt”. This is because that JRL ben-

efited from identifying the relevant sequential “age-hair-

skirt” ordering as inter-attribute correlation context for at-

tribute prediction. When getting the wrong ordering con-

text, JRL missed “skirt”. The person on the right wears

“skirt”, clearly visible, with both “hair long” and “age” un-

clear. The JRL model again benefited from invoking the

useful “skirt-hair-age” ordering context for attribute predic-

tion. When given the wrong ordering, JRL makes the mis-

take on “age” prediction. DeepMAR missed both “skirt”

and “hiar long”, and predicted “age” incorrectly.

5. Conclusion

In this work, we presented a novel deep Joint Recurrent

Learning (JRL) model for exploring attribute context and

correlation in deep learning of pedestrian attributes given

low quality surveillance images and small sized training

data. Our JRL method outperforms a wide range of state-

of-the-art pedestrian attribute and multi-label classification

methods. Extensive experiments demonstrate the advan-

tages and superiority of joint learning high-order (sequen-

tial) inter-attribute correlation on two pedestrian attribute

benchmarks. Moreover, the JRL model is shown to be more

robust than state-of-the-art deep models when trained with

small sized training data, thus more scalable to real-world

applications with limited annotation budget available.
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