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Abstract

Semi-supervised learning (SSL) is an import paradigm

to make full use of a large amount of unlabeled data in

machine learning. A bottleneck of SSL is the overfitting

problem when training over the limited labeled data, es-

pecially on a complex model like a deep neural network. To

get around this bottleneck, we propose a bio-inspired SS-

L framework on deep neural network, namely Deep Grow-

ing Learning (DGL). Specifically, we formulate the SSL as

an EM-like process, where the deep network alternately it-

erates between automatically growing convolutional layers

and selecting reliable pseudo-labeled data for training. The

DGL guarantees that a shallow neural network is trained

with labeled data, while a deeper neural network is trained

with growing amount of reliable pseudo-labeled data, so as

to alleviate the overfitting problem. Experiments on differ-

ent visual recognition tasks have verified the effectiveness

of DGL.

1. Introduction

Deep convolutional neural networks (CNNs) [22, 21, 12]

have exhibited state-of-the-art performance in image classi-

fication [22, 21, 35, 4], and the prediction accuracy of the

CNN-based classifier can be improved by training on mas-

sive amounts of data (e.g., ImageNet [2]). However, the

task of labeling huge amounts of samples is quite expensive

and time-consuming. Recent research [28, 26, 15, 18, 23]

reveals that the semi-supervised learning, which uses a

large amount of unlabeled data in conjunction with a smal-

l amount of labeled data, is also greatly beneficial to train

deep networks and has achieved leading results on the M-

NIST [22] and CIFAR-10 [20] benchmarks.

Driven by the significance of the semi-supervised deep

learning, a question arises: how to exploit both labeled and
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Figure 1: Overview. Deep growing learning can efficiently

learn a deep convolutional network with a small amount of

labeled data and a large amount of unlabeled data. Basi-

cally, it consists of three phases: first, it grows a new lay-

er when meets some conditions. Second, we train the net-

work using the labeled and pseudo-labeled data. Third, we

predict the labels of all the unlabeled data and select the

confident ones as pseudo-labeled data. This process is re-

peated until a certain termination condition is reached. The

proposed architecture is comprised of four sub-networks:

growing sub-network, fixed sub-network, supervised sub-

network, and selection sub-network. (Best viewed in color)

unlabeled data to train deep neural networks in an end-to-

end way? An obstacle to answering this question is the

overfitting problem when training a deep neural network

with a large number of parameters by exploiting a few la-

beled examples only. Existing works [28, 26, 18, 23, 15, 33]

that may offer a partial solution to this problem can be

generally categorized into three groups based on different

schemes of collaborating labeled data with unlabeled data.
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In the first group, the semi-supervised learning is

achieved by combining two phases: unsupervised pre-

training and fine-tuning. The weights of all layers are firstly

initialized by a layer-wise unsupervised training and then

trained globally with a few labeled examples using the s-

tandard stochastic gradient-based optimization algorithm in

a supervised fashion [13, 6, 18]. However, one would ar-

gue that training on labeled and unlabeled data separately

should be inferior to a joint approach that trains on labeled

and unlabeled data simultaneously because all the learning

from the first stage may be “forgotten” in the second stage,

and thus can not make full use of the unlabeled data.

In the second group, both supervised learning and unsu-

pervised learning are integrated into a unified framework to

jointly train on both labeled and unlabeled data. For exam-

ple, [15, 33, 32, 25] introduced a semi-supervised regulariz-

er into deep architectures, where labeled data (unlabeled da-

ta) is used as a regularizer and incorporated into a unsuper-

vised (supervised) objective function to learn a metric em-

bedding or probability distributions. Unfortunately, a new

degradation problem has been exposed: these embeddings

or probability distributions have not yet been learned at the

beginning of the training, leading to an error catastrophe

of the clustering. Different from using a semi-supervised

regularizer, the literatures [36, 28, 26] are presented to in-

tegrate unsupervised and supervised learning into a unified

network by employing the former one for low-lever image

reconstruction while the latter one for high-level image clas-

sification.

In the third group, labeled and unlabeled data are ex-

ploited alternately. This kind of methods often resorts to a

heuristic self-training scheme for training deep neural net-

works, where a classifier is firstly trained using only the la-

beled data and then applied to the unlabeled data to generate

more pseudo-labeled examples for supervised learning; this

process is repeated until a certain termination condition is

reached [23]. The drawback of this method is the intractable

problem of overfitting where the method uses a few labeled

examples to train a deep neural network at the beginning.

Along with the line of third-group method, we propose

a novel growing learning framework. Instead of training a

fixed deep neural network all the time, we introduce a grow-

ing network initialized with a very shallow neural network

to avoid overfitting. Basically, our training scheme consist-

s of three phases: growing network, training network, and

selecting pseudo-labeled examples. First, the network au-

tomatically grows a new layer if meets some conditions.

Second, labeled and pseudo-labeled examples (if any) are

used to train the network. Third, the trained model is used

to predict the labels of all the unlabeled data and to select

the confident ones as pseudo-labeled data. This process is

repeated until reaching the termination condition. Fig. 1

illustrates the framework of our method.

Growing learning can be implicitly explained as an

EM-like algorithm, which alternates between automatically

growing convolutional layers and selecting reliable pseudo-

labeled data. Specifically, the better (deeper) network we

train, the more pseudo-labeled examples we get, and the

growth of the pseudo-labeled examples in turn helps to train

the deeper network. Growing learning can be also thought

of as analogous to a human learning process which does

not happen all at once, but builds upon and is shaped by

previous knowledge. With the accumulation of experience

(data), human beings can boost themselves up by gradual-

ly changing the structure and function of neurons [19, 11]

(called neuroplasticity) and thus can learn a highly complex

task.

Deep growing learning can be realized by automatically

adding new layers on the network if meets some conditions.

The entire network can still be trained end-to-end by SGD

with backpropagation, and can be easily implemented using

common libraries (e.g., Caffe [17]).

In summary, this paper makes three main contributions.

• First, like the human learning process, we propose a

novel deep growing learning method, where with the

accumulation of data (experience) increasing, the abil-

ity of the classifier is improved by dynamically grow-

ing new layers.

• Second, the deep growing learning can be regarded as

an EM-like process, where the deep network alternate-

ly iterates between growing convolutional layers and

selecting reliable pseudo-labeled data, and thus pro-

vides a new paradigm well for semi-supervised deep

learning by automatically fitting growing amount of re-

liable pseudo-labeled data.

• Third, extensive experiments show that the proposed

method is effective in visual recognition tasks on both

MNIST and CIFAR-10 datasets.

The rest of the paper is organized as follows. Section

2 reviews the related work. Section 3 introduces our deep

growing learning model. The experimental comparisons,

ablation studies, and analyses are presented in Section 4.

Section 5 concludes the paper.

2. Related Work

Semi-supervised deep neural networks. Many researches

have shown the use of semi-supervised deep models to learn

accurate classifiers. Most of existing approaches [13, 6]

provide an effective method for semi-supervised learning by

using unsupervised pre-training and fine-tuning separately.

Recently, Kingma [18] et al. extended the semi-supervised

learning problem as a specialised missing data imputation

task which firstly learns a new latent representation using
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a generative model and subsequently trains with a laten-

t label variable. However, the disjoint training scheme of

collaborating labeled data with unlabeled data may lead to

sub-optimal solutions.

Instead of training on labeled and unlabeled data sepa-

rately, some semi-supervised deep models [10, 15, 33] aim

to train an accurate classifier using labeled and unlabeled

data simultaneously. For example, Grandvalet and Ben-

gio [10] introduced minimum entropy to regularize genera-

tive models, and the weighting of unlabeled data provides

robustness to the violation of the cluster assumption. In

[15, 33], the labeled examples are used as targets to learn

a metric embedding using labeled data and then each unla-

beled data is assigned to a distinct cluster based on embed-

ded distance. The above methods share a common criterion

of examples being more related to nearby examples than

to examples farther away. Furthermore, some approach-

es [32, 25, 3] extended Generative Adversarial Network-

s (GANs) [9] to semi-supervised learning. Springenberg

[32] used an objective function that trades off mutual in-

formation between observed examples and their predicted

categorical class distribution, against robustness of the clas-

sifier to an adversarial generative model. Odena [25] ex-

tended GANs to the semi-supervised context by forcing the

discriminator network to output class labels while Denton

et al. [3] introduced a simple semi-supervised learning ap-

proach to generate whole images based on in-painting using

an adversarial loss. Different from using a semi-supervised

regularizer, the Ladder network [28, 26] is extended to si-

multaneously minimize the sum of supervised and unsuper-

vised cost functions by backpropagation in a unified net-

work. Besides, the method of [36] integrates discriminative

and generative pathways and provides a unified approach

to supervised, semi-supervised and unsupervised learning

without relying on sampling during training.

Among the works that share similar idea to ours, a self-

training scheme [23] is exploited to train a semi-supervised

deep model. The main idea is to pick up the class which

has the maximum predicted probability as the pseudo-label

of unlabeled data every weights update to boost up the per-

formance in a supervised fashion, alternately exploiting la-

beled and unlabeled data. Our approach differs from this

method, as the proposed model can fit the increasing data

by dynamically adding parameters.

Layer-wise training. To address the difficulty of training

deep multi-layer neural networks, an approach [7] based

on constructively adding layers in a supervised fashion has

been explored with some success. Hinton et al. [13] pro-

posed a greedy algorithm that can learn deep and directed

belief networks one layer at a time to initialize a learning

procedure. This algorithm was further studied by [1]. In [1],

they confirmed the hypothesis that the greedy layer-wise un-

supervised training strategy mostly helps the optimization,

by initializing weights in a region near a good local mini-

mum, giving rise to internal distributed representations that

are high-level abstractions of the input, bringing better gen-

eralization.

Inspired by the greedy layer-wise unsupervised training,

one would think if the layer-wise training scheme is bene-

ficial to the training of convolutional neural networks. This

topic was investigated partly in [30] and the result shows

that the greedy layer-wise training strategy can be advanta-

geous for training deep convolutional neural networks with

small size datasets, yielding cleaner and more interpretable

visual features, as well as improved accuracy. To train

a very deep convolutional networks for large-scale image

recognition, the approach [14] begins with training a shal-

low network, and then trains a deeper network initialized

by the shallow one. These methods suggest that layer-wise

training can simplify the optimization. Different from these

methods, our DGL model aims to fit the increasing data by

automatically growing layers.

3. Deep Growing Learning

Deep growing learning aims to learn an accurate classi-

fier with a small amount of labeled data and a large amount

of unlabeled data. With limited labeled data, it is difficult

for deep neural networks to deal with overfitting due to a

large number of parameters to be trained. To prevent deep

networks from overfitting, we firstly train a shallow network

with labeled data and subsequently feed the unlabeled data

to pick up the confident ones as pseudo-labeled data, which

is further used to train a deeper network.

3.1. Selftraining

Self-training [34, 37], also known as self-teaching or

bootstrapping, is one of techniques using both labeled and

unlabeled data to improve learning. Given a set of labeled

data L and unlabeled data U , self-training proceeds as fol-

lows: train a classifier C using L, and classify U with C; s-

elect a pseudo-labeled subset U
′

(U
′

⊂ U) for which C has

the highest confidence scores; add U ′ to L and remove U ′

from U . Repeat the process until the algorithm converges.

Note that, C can be any classifier, e.g., SVM, random forest,

boosting tree, and neural networks.

Self-training is based on an assumption that examples

from the same class follow a coherent distribution. It can

produce outstanding results because unlabeled examples

provide a wealth of information to describe the details of

the data structure and give a better sense of the class sep-

aration boundary. The drawback of the self-training is that

misclassified instances could occur and reinforce itself.

One of the interesting things about self-training is that it

can generate more and more pseudo-labeled data with the

increase of the iterations. On the one hand, if one designs

a classifier with an appropriate number of parameters to fit
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the labeled data at the begin of self-training, the classifier

may not have the capability to fit the increasing pseudo-

labeled data. On the other hand, if one designs a classifier

initialized with a large number of parameters, the overfit-

ting problem could occur due to the limited labeled data. To

remedy these problems, we propose a deep growing learn-

ing framework to fit the increasing pseudo-labeled data by

dynamically adding parameters to the classifier.

3.2. Deep Growing Learning Framework

The proposed deep growing learning framework trains a

shallow network and selects the confident prediction exam-

ples as the next iteration of the loop to train a deeper net-

work. During the training, the pseudo-labeled data set is re-

evaluated each K iterations. Specifically, our architecture

is comprised of four sub-networks: growing sub-network,

fixed sub-network, supervised sub-network, and selection

sub-network (Fig. 1).

Growing sub-network. The growing sub-network con-

sists of a cascade of “building blocks”. Here, each build-

ing block may contain convolutional filtering, pooling, non-

linear activation, and batch normalization. As a start, the

growing sub-network contains only one building block.

This sub-network serves as a seed that can automatically

grows a new building block when the network can not fit

the labeled data and the increasing pseudo-labeled data. We

copy the parameters of the previous growing sub-network

to the new one and then fine-tune the network globally. The

sub-network continues growing up before it goes into over-

fitting.

Fixed sub-network. The growing sub-network is fol-

lowed by two fully connected layers, which are used to re-

duce the dimensionality and compute feature transforma-

tion. In practice, we add some other layers after each fully

connected layer, e.g., dropout and nonlinear activation.

Supervised sub-network. The supervised sub-network

(“SoftmaxWithloss” layer) computes the multinomial logis-

tic loss for a one-of-many classification task, passing real-

valued prediction through a softmax to get a probability dis-

tribution over classes. This sub-network actually encodes

the convolutional features into a one-hot vector using the

stochastic gradient descent algorithm.

Selection sub-network. After renewing the network

structure and updating the parameters by K-iteration train-

ing, all unlabeled examples are fed into this sub-network

(“Softmax” layer) to predict their labels. Because of the

limited classifying ability of the shallow classifier C, some

prediction results are unreliable. To get confident predic-

tions, the selection sub-network aims to compute the prob-

ability distribution over N classes and find out the maximal

value by

l = argmax
i

p(y = i|x,C), 0 ≤ i ≤ N − 1, (1)

where p(y = i|x,C) is the probability of the class label i
given a point x and a classifier C. If the value p(y = l|x,C)
is greater than a threshold value α, then we regard (x, l) as

a pseudo-labeled example. In this way, we can get a set

of pseudo-labeled examples, which is subsequently used to

update the pseudo-labeled data set U
′

.

In our framework, growing learning can be implicitly

explained as an EM-like algorithm, which alternates be-

tween automatically growing network and selecting reliable

pseudo-labeled data. With the increasing pseudo-labeled

data, we can train a deeper network, and we in turn selec-

t more pseudo-labeled data counting on the improved per-

formance of the growing model. Errors of pseudo-labeled

examples could occur but could be corrected due to re-

evaluation of unlabeled data every K iterations. From the

general trend, the network gradually boosts itself up by al-

ternately iterating until the convergence.

3.3. Deep Growing Learing Algorithm Principle

As informally described in Section 3.2, the DGL algo-

rithm makes use of three straightforward and intuitive as-

sumptions: (i) The more pseudo-labeled data we have, the

more accurate classifier we train; (ii) The more accurate

classifier we have, the more pseudo-labeled data we select;

(iii) Using enough data with noise, deeper networks out-

perform shallower ones. Actually, Assumption (i) and (ii)

have been proved by the self-training theory [34, 37]. Many

deep models [14, 12] also present an detailed interpretation

of Assumption (iii).

We first consider a one-layer classifier CL
net1

, which is

trained over the limited labeled data set L. According to

Eq. 1, we select a set of pseudo-labeled data U
′

from a set

of unlabeled data U by

U
′

= {x|p(y = l|x,CL

net1
) > α, x ∈ U} (2)

where p(y = l|x,CL
net1

) represents the probability of the

candidate pseudo-label given a point x and a one-layer clas-

sifier CL
net1

. Using the set L
∪
U

′

, we then train a more

accurate classifier C
L
∪

U
′

net1
based on Assumption (i). We

re-select a new set of pseudo-labeled data U
′′

by

U
′′

= {x|p(y = l|x,C
L
∪

U
′

net1
) > α, x ∈ U} (3)

Because the classifier C
L
∪

U
′

net1
is better than CL

net1
, we

have |U
′′

| > |U
′

| based on Assumption (ii), where | · | rep-

resents the size of a set. We thus have

U
′′′

= {x|p(y = l|x,C
L
∪

U
′′

net1
) > α, x ∈ U} (4)

In this way, we repeat this process until the performance

of this classifier does not improve. At this time, we ob-

tain the set of pseudo-labeled Uo and the one-layer classifi-
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er C
L
∪

U
o

net1
. Using the data set L

∪
Uo, the classifier auto-

matically grows a new layer, denoted by C
L
∪

U
o

net2
, which is

better than C
L
∪

U
o

net1
based on Assumption (iii). The train-

ing process then enters a loop according to Eq. 2, 3, 4. In

this way, the DGL model boosts itself up to automatical-

ly fit the increasing data. During training, the test error of

the validation set firstly goes down and then goes up like a

bowl-shaped curve, corresponding to under-fitting and over-

fitting, respectively. It is easy to find optimal point accord-

ing to each recorded evaluation error. When the error starts

to go up, we stop the growth of DGL. The details of our

model are shown in Algorithm 1.

Algorithm 1: Deep growing learning algorithm

Input: labeled data set L and unlabeled data set U
Output: The network parameters Neto

1 Initialize a shallow net Net1;

2 Initialize a pseudo-labeled data set U
′

with L;

3 i← 1;

4 while Neti does not go into overfitting do

5 while Neti does not go into underfitting do

6 for j = 1 : K do

7 m/2 random samples from L;

8 m/2 random samples from U
′

;

9 Feed m samples into the network;

10 Update parameters;

11 end

12 Select pseudo-labeled examples U
′′

according to Eq. 1;

13 Update U
′

← U
′′

;

14 end

15 Grow a new layer;

16 Copy parameters Neti to Neti+1;

17 Fine-tune Neti+1 globally;

18 i← i+ 1;

19 end

20 Neto ← Neti−1;//Neti has went into overfitting

4. Experiments

In this section, we apply our growing learning method

to two benchmark datasets for evaluation, i.e., MNIST and

CIFAR-10, with regard to digital recognition and image

classification, respectively. In both datasets, we compare

the state-of-the-art methods with our model, showing the

effectiveness of growing learning. We also present abla-

tion studies to reveal the benefits of each main component

of our method, i.e., the growing sub-network and the selec-

tion sub-network. Besides, we study the influence of the

number of labeled examples and the effect of threshold α

value. Finally, we further investigate how growing learning

addresses the overfitting problem.

Experimental setting. In our framework, we use mini-

batch learning in our experiments to reduce the memory re-

quirements. In both datasets, we randomly select a batch of

samples from the original training set, where half of sam-

ples are from labeled data and the other are from pseudo-

labeled data. The initial parameters of the convolutional and

full layers are set by two zero-mean Gaussian distribution-

s, whose standard deviations are 0.01 and 0.1, respectively.

We use a momentum of 0.95 and adopt batch normalization

(BN) right after each convolution and before activation. We

train a shallow convolutional network from scratch and do

not need any pre-training on extra datasets. We use SGD

with a mini-batch size of 100. The learning rate starts from

0.001 and is divided by 10 each 200,000 iterations. The oth-

er specific settings for different datasets are included in the

following sub-sections.

In practice, we empirically predefine an ultimate deep

network architecture and building blocks for a specific

recognition task. After initialization, the shallow network

grows to the ultimate deep network by adding building

blocks one after one. In this paper, we predefine two deep

networks for MNIST and CIFAR-10, respectively. The de-

tails of the networks are shown in Table 1. The building

block of the neural network designed on CIFAR-10 consist-

s of two convolutional layers because CIFAR-10 is more

challenging than MNIST.

4.1. Evaluations on the MNIST Dataset

The MNIST database of handwritten digits [22] consists

of handwritten digit images, 28 × 28 in size, organized in-

to 10 classes (0 to 9) with 60,000 training and 10,000 test

samples. The 60,000 labeled examples are randomly split

into a 10,000-sample validation set and 50,000 samples as

the training set without overlap.

Following precious works [28], we randomly choose 100

labeled data from the training set as labeled set. The num-

ber of examples for different classes is balanced (10 for each

class). The validation set is used for evaluating the model

structure and hyperparameters. All the samples except la-

beled set are used to predict and select pseudo-labeled data,

which does not utilize the actual labels. We repeat each

training 10 times, varying the random seed that is used for

the splits. For the growing neural network, we use a 2-layer

convolutional network, where each layer is followed by a

ReLU non-linear layer and a Max Pooling layer. The net-

work grows up layer after layer during training. The details

of the network are described in Table 1. In our experiment,

all the images are cropped to the size of 24× 24 at the cen-

ter with a small random perturbation. We set the threshold

value α = 0.99.

We compare our approach with a broad range of exist-
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MNIST CIFAR-10

Input: 24× 24 monochrome 24× 24 RGB

Conv-ReLU (16, 5× 5, 1× 1, 1× 1)
Max-Pooling (2× 2, 2× 2, 0× 0)

Conv-ReLU-BN (32, 3× 3, 1× 1, 1× 1)
Conv-ReLU-BN (32, 3× 3, 1× 1, 1× 1)
Max-Pooling (2× 2, 2× 2, 0× 0)
Conv-ReLU-BN (64, 3× 3, 1× 1, 1× 1)
Conv-ReLU-BN (64, 3× 3, 1× 1, 1× 1)
Max-Pooling (2× 2, 2× 2, 0× 0)

Conv-ReLU (16, 5× 5, 1× 1, 1× 1)
Max-Pooling (2× 2, 2× 2, 0× 0)

Conv-ReLU-BN (128, 3× 3, 1× 1, 1× 1)
Conv-ReLU-BN (128, 3× 3, 1× 1, 1× 1)
Max-Pooling (2× 2, 2× 2, 0× 0)
Conv-ReLU-BN (128, 2× 2, 1× 1, 1× 1)
Conv-ReLU-BN (128, 2× 2, 1× 1, 1× 1)
Max-Pooling (2× 2, 1× 1, 0× 0)

FC-ReLU-Dropout (1024) FC-ReLU-Dropout (64)
FC (10) FC (10)

Table 1: The employed network architectures for MNIST and CIFAR-10, respectively. The convolutional layers, pooling lay-

ers and fully connected layers are denoted by (featuremaps, kernel, stride, pad), (kernel, stride, pad), and (channel),
respectively.

ing methods, as shown in Table 2. In particular, the com-

peting methods can be grouped into two categories. The

first group includes the methods using handcrafted features,

such as Support Vector Machines on the labeled set (SVM)

[29], transductive SVM (TSVM) [29], and AtlasRBF [27].

The experimental results on MNIST clearly demonstrate the

effectiveness of our model against the other classifiers with-

out counting on deep feature learning, even though our deep

model only exploits limited labeled data.

The second group of comparing methods includes thir-

teen representative semi-supervised deep learning model-

s: Neural Networks (NN) [29], Neural Networks with

Embedding regularizer (EmbedNN) [33], Convolutional

Neural Network (CNN) [29], Convolutional Neural Net-

work for Embedding (EmbedCNN) [33], Contractive Auto-

Encoders (CAE) [29], Manifold Tangent Classifier (MTC)

[29], Pseudo-Label (+PL) [23], Pseudo-Label using unsu-

pervised pretraining with DAE (+PL+DAE) [23], SWWAE

[36], Deep Generative Networks (DGN) [18], Virtual Ad-

versarial [24], Ladder network [28], and CatGAN [32]. It

is encouraging to see that our approach significantly out-

performs the competing methods. Among the comparing

deep learning models, NN and CNN easily go into over-

fitting and yield steadily worse test error using the labeled

set for training only. EmbedNN, EmbedCNN, and CatGAN

improve the accuracy due to the semi-supervised regulariza-

tion, but not as much. This is because the semi-supervised

embeddings have not yet been learned at the beginning of

the training, and are thus inefficient for the unlabeled exam-

ples to be clustered, leading to an error accumulation prob-

lem. DGN fails to provide a unified mechanism to unsuper-

vised and supervised learning, which may degrade the per-

formance. Our DGL model also outperforms SWWAE and

Ladder networks, which integrate discriminative and gener-

ative pathways to provide a unified approach for unsuper-

vised and supervised learning. The main reason may be the

simple integration of two different learning tasks (i.e., the

former one for image reconstructions while the latter one

for high-level classification). Besides, it is difficult for +PL

and +PL+DAE to address the overfitting problem because

of the fixed-depth networks.

4.2. Evaluations on the CIFAR10 Dataset

CIFAR-10 consists of 60,000 color images in 10 class-

es, with 6,000 images per class. There are 50,000 train-

ing images and 10,000 test images. The 50,000 labeled ex-

amples are randomly split into a 10,000-sample validation

set and 40,000 samples as the training set without overlap.

The classes include airplanes, automobiles, birds, cats, deer,

dogs, frogs, horses, ships, and trucks.

For CIFAR-10, we randomly choose 4,000 labeled data

from the training set as the labeled set (400 for each class).

The validation set is used for evaluating the model structure

and hyperparameters. All the samples except the selected

labeled set are used to be predict and select pseudo-labeled

data. For the growing neural network, we use a convolu-

tional network with 4 building blocks, each of which con-

sists of two convolutional layers. The network grows block

after block during training. The details of the network are

described in Table 1. All the images are also cropped to the

size of 24 × 24 at the center with a small random pertur-

bation. We set the threshold value α = 0.98. The other
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Model Test error %

SVM [29] 23.44

TSVM [29] 16.81

AtlasRBF [27] 8.10(±0.95)
NN [29] 25.81

CNN [29] 22.98

EmbedNN [33] 16.86

EmbedCNN [33] 7.75

CAE [29] 13.47

MTC [29] 12.03

+PL [23] 16.15

+PL+DAE [23] 10.49

SWWAE [36] 9.17

DGN [18] 3.33(±0.14)
Virtual Adversarial [24] 2.12

Ladder network [28] 0.89(±0.50)
CatGAN [32] 1.39(±0.28)
DGL(Ours) 0.76(±0.37)

Table 2: Comparison results on MNIST using 100 labeled

examples.

Model Test error %

Spike-and-Slab Sparse Coding [8] 31.9

View-Invariant k-means [16] 27.4(±0.7)
Exemplar-CNN [5] 23.4(±0.2)
Ladder network [28] 20.04(±0.47)
CatGan [32] 19.58(±0.58)
ImprovedGan [31] 18.63(±2.32)
DGL(Ours) 17.56(±0.31)

Table 3: Comparison results on CIFAR-10 using 4,000 la-

beled examples.

settings are the same as that of MNIST.

We also conduct two kinds of comparison experiments,

as shown in Table 3. First, we compare our DGL method

with the handcraft feature methods, e.g., Spike-and-Slab S-

parse Coding [8] and View-Invariant k-means [16]. Then,

we compare our DGL method with some other semi-

supervised deep methods, e.g., Exemplar-CNN [5], Ladder

network [28], CatGan [32], and ImprovedGan [31]. We can

see that the proposed method outperforms all the previously

reported results.

4.3. Ablation Studies and Further Analysis

In this section, we conduct several experiments to val-

idate the effects of different modules in our framework,

which are evaluated on CIFAR-10.

Effect of growing learning. To show the benefit of our

deep growing learning, we set a baseline model by remov-

Model 4000 10000 20000 40000

baseline 35.38 24.05 16.70 12.39

DGL(Ours) 17.56 12.77 10.41 8.07

Table 4: Comparison between DGL and a baseline on

CIFAR-10 using 4,000, 10,000, 20,000, and 40,000 labeled

examples, respectively.

ing the selection sub-network and replacing the growing

sub-network with a fixed four-block network sub-network.

The dataset varies the size of the labeled data from 4,000

to 40,000. We ensure that all classes are balanced when

doing this, i.e., each class has the same number of labeled

examples. Note that, only the labeled examples are exploit-

ed in the baseline experiment. Our DGL model uses the

same network as the predefined network and grows build-

ing blocks one after one. As can be observed in Table 4,

our DGL model improves the performance from 35.38%

to 17.56%, 24.05% to 12.77%, 16.70% to 10.41%, and

12.39% to 8.07%. And the superiority of our approach a-

gainst them should be attributed to the deployment of both

unlabeled data and the effective growing learning method

for semi-supervised learning.

Effect of growing sub-network. To show the benefit of

the growing sub-network, we conduct an ablation study by

isolating this sub-network, i.e., replacing the growing sub-

network by four fixed-depth networks, respectively. In this

setting, we still use self-training scheme to train these mod-

els for fair comparisons. That is, we select the pseudo-

labeled data each K iterations. Specifically, we design

four fixed-depth convolutional neural networks, i.e., one-

block network, two-block network, three-block network,

and four-block network, as shown in Table 1. The results are

reported in Table 5. It is obvious that without the growing

learning the performance drops by 12.71%, 9.42%, 12.60%,

and 15.87%, respectively. We can see that the shallower net-

works (e.g., one-block network) can fit the labeled data, but

fail to fit the increasing pseudo-labeled data. Conversely,

deeper networks (e.g., four-block network) can fit the in-

creasing pseudo-labeled data, but easily go into overfitting

when training on limited labeled data. The two-block net-

work may gain a slight improvement but is still in a dilem-

ma. The above results clearly demonstrate the effectiveness

of utilizing growing learning for semi-supervised learning.

Effect of selection sub-network. To show the benefit

of the selection sub-network, we conduct an ablation study

by isolating this sub-network. To achieve this, we remove

the selection sub-network, and thus we only use labeled da-

ta to our growing learning model. Note that, we still keep

the growing sub-network. In this case, our growing learn-

ing model is degraded as [30]. It is observed that the per-

formance drops by 8.96% when removing the self-training
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Figure 2: Results of the ablation studies demonstrating the effectiveness of our models.

Model Test error %

one-block network 30.27

two-block network 26.98

three-block network 30.16

four-block network 33.43

DGL(Ours) 17.56

Table 5: Effect of the growing sub-network on CIFAR-10

using 4,000 labeled examples.

scheme, as shown in Fig. 2 (a). From another point of

view, the unlabeled examples provide more information to

describe the details of the data structure. With the network

growing up, the performance of our classifier improves and

thus the labeled examples propagate their labels to the un-

labeled data region gradually. The growth of the pseudo-

labeled data in turn helps the network grow up. At the end,

an effective decision boundary forms.

Effect of the number of labeled examples. To study

the effect of the number of labeled examples, we conduct

a controlled experiment. The only difference from the ex-

perimental setting above is the size of the labeled examples,

which varies from 5,00 to 40,000. The results are shown

in Fig. 2 (b). We can see that the performance improves

significantly from using 500 to 4,000 labeled samples, but

gains a slight increase from 4,000 to 40,000. This is because

the classifier training over few labeled examples is near-

ly degraded as unsupervised learning, which hardly learns

robust feature representations and a discriminant similari-

ty measure. When we have enough labeled examples (e.g.,

4,000), we can train a competitive classifier by utilizing a

large amount of unlabeled examples, compared with super-

vised learning.

Effect of threshold α value. To investigate the impact of

α value on the performance, we conduct a sensitivity anal-

ysis experiment on CIFAR-10 dataset. Fig. 2 (c) shows the

robustness of our model with respect to α value. When α is

in the range of 86-99%, the proposed DGL model achieves

less than 18% test error.

How growing learning addresses the overfitting prob-

lem. To further study how growing learning addresses the

overfitting problem, we conduct an experiment to investi-

gate the relationships between training loss, evaluation er-

ror, test error, the number of the pseudo-labeled examples,

pseudo-labeled error, and the number of the building block-

s. Note that, training error is only the error of the labeled

data, without considering unlabeled one. The results are

shown in Fig. 2 (d). It is demonstrated that 1) although

the training error is reduced to zero, the testing/evaluation

error is still very large. This means that the model easily

goes into overfitting if we only train the model on the la-

beled data; 2) To alleviate the overfitting problem, pseudo-

labeled data is exploited. In the case of keeping the error

of the pseudo-labeled data (serves as a pseudo training er-

ror), the test/evaluation error drops significantly. 3) As the

network grows up, the number of pseudo-labeled data in-

creases, which actually in turn helps train a more accurate

(deeper) classifier. The results, therefore, validate the effec-

tiveness of growing learning for addressing overfitting.

5. Conclusions

In this work, we presented a deep growing learning

framework where the deep network alternately iterates be-

tween automatically growing convolutional layers and se-

lecting reliable pseudo-labeled data for training, so as to

address the overfitting problem for semi-supervised learn-

ing on deep neural network model. We integrated growing

learning into the self-training scheme and achieved com-

petitive results with state-of-the-art on both MNIST and

CIFAR-10 in the semi-supervised regime. Further explo-

ration is needed to extend the proposed DGL to online

learning, where data becomes available in a sequential or-

der, gradually increasing from a small set to a large one,

e.g., video data.
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