
Unsupervised Creation of Parameterized Avatars

Lior Wolf1,2, Yaniv Taigman1, and Adam Polyak1

1Facebook AI Research
2The School of Computer Science, Tel Aviv University

Abstract

We study the problem of mapping an input image to a

tied pair consisting of a vector of parameters and an image

that is created using a graphical engine from the vector of

parameters. The mapping’s objective is to have the output

image as similar as possible to the input image. During

training, no supervision is given in the form of matching

inputs and outputs.

This learning problem extends two literature problems:

unsupervised domain adaptation and cross domain trans-

fer. We define a generalization bound that is based on dis-

crepancy, and employ a GAN to implement a network so-

lution that corresponds to this bound. Experimentally, our

method is shown to solve the problem of automatically cre-

ating avatars.

1. Introduction

We consider the problem of generating computer avatars

based on the user’s appearance. In order to allow the avatars

to be easily manipulated, each avatar is represented by a

set of “switches” (parameters) that select, for example, the

shape of the nose, the color of the eyes and the style of

hair, all from a predefined set of options created by artists.

The visual appearance of the avatar adheres to a set of con-

straints, which are governed by a computer graphics engine

that renders an image based on the set of parameters. More-

over, once this set is set, the avatar can be rendered in many

variations (Fig. 1).

The goal of this work is to learn to map an input image to

two tied outputs: a vector in some parameter space and the

image generated by this vector. While it is sufficient to re-

cover just the vector of parameters and then generate the im-

age, a non-intuitive result of our work is that it is preferable

to recover the analog image first. In any case, the mapping

between the input image and either of the outputs should

be learned in an unsupervised way due to the difficulty of

Figure 1. From the

image on the top left,

our method com-

putes the parameters

of the face caricature

below it, which

can be rendered

at multiple views

and with varying

expressions by the

computer graphics

engine.

obtaining supervised samples that map input images to pa-

rameterized representations. In avatar creation, it is time

consuming for humans to select the parameters that repre-

sent a user, even after considerable training. The selected

parameters are also not guaranteed to be the optimal depic-

tion of that user. Therefore, using unsupervised methods is

both more practical and holds the potential to lead to more

accurate results.

In addition, humans can learn to create parameterized

analogies without using matching samples. Understanding

possible computational processes is, therefore, an objective

of AI, and is the research question addressed. Our contribu-

tions are therefore as follows: (i) we present a highly appli-

cable and, as far as we know, completely unexplored vision

problem; (ii) the new problem is placed in the mathematical

context of other domain shift problems; (iii) a generaliza-

tion bound for the new problem is presented; (iv) an algo-

rithm that matches the terms of the generalization bound is

introduced; (v) the qualitative and quantitative success of

the method further validates the non-intuitive path we take

and (vi) the new method is shown to solve the parameterized

avatar creation problem.

1.1. Background

Generative Adversarial Networks GAN [8] methods train

a generator network G that synthesizes samples from a

11530

target distribution, given noise vectors, by jointly training

a second network d. The specific generative architecture

we employ is based on the architecture of [21]. Since

the image we create is based on an input and not on ran-

dom noise, our method is related to Conditional GANs,

which employ GANs in order to generate samples from a

specific class [18], based on a textual description [22], or

to invert mid-level network activations [3]. The CoGAN

method [15], like our method, generates a pair of tied out-

puts. However, this method generates the two based on a

random vector and not on an input image. More impor-

tantly, the two outputs are assumed to be similar and their

generators (and GAN discriminators) share many of the lay-

ers. In our case, the two outputs are related in a different

way: a vector of parameters and the resulting image. The

solutions are also vastly different.

A recent work, which studied the learning of 3D struc-

ture from images in an unsupervised manner, shares some

of computational characteristics with our problem [11]. The

most similar application to ours, involves a parametrization

of a 3D computer graphics object with 162 vertices, each

moving along a line, a black-box camera projecting from

3D to 2D and a set of 2D images without the corresponding

3D configuration. The system then learns to map 2D im-

ages to the set of vertices. This setting shares with us the

existence of a fixed mapping from the vector of parameters

to the image. In our case, this mapping is given as a neural

network that will be termed e, in their case, it is given as a

black box, which, as discussed in Sec. 5 is a solvable chal-

lenge. A more significant difference is that in their case,

the images generated by the fixed mapping are in the same

domain as the input, while in our case it is from a different

domain. The method employed in [11] completely differs

from ours and is based on sequential generative models [9].

Distances between distributions In unsupervised learning,

where one cannot match between an input sample and its

output, many methods rely on measuring distances between

distributions. Specifically, GANs were recently shown [6]

to implement the theoretical notion of discrepancies.

Definition 1 (Discrepancy distance). Let C be a class of

functions from A to B and let ℓ : B × B → R+ be a

loss function over B. The discrepancy distance discC be-

tween two distributions D1 and D2 over A is defined as

discC(D1, D2) = supc1,c2∈C

∣

∣

∣
RD1

[c1, c2] − RD2
[c1, c2]

∣

∣

∣
,

where RD[c1, c2] = Ex∼D [ℓ(c1(x), c2(x))].

Image synthesis with CNNs The supervised network of [4]

receives as input a one-hot encoding of the desired model as

well as view parameters and a 3D transformation and gener-

ates the desired view of a 3D object. DC-IGN [13] performs

a similar task with less direct supervision. The training set

of this method is stratified but not necessarily fully labeled

and is used to disentangle the image representation in an

encoder-decoder framework. Pix2pix [10] maps an image

to another domain. This methods is fully supervised and

requires pairs of matching samples from the two domains.

Style transfer In these methods [7, 25, 12], new images

are synthesized by minimizing the content loss with respect

to one input sample and the style loss with respect to one or

more input samples. The content loss is typically the encod-

ing of the image by a network training for an image catego-

rization task, similar to our work. The style loss compares

the statistics of the activations in various layers of the neural

network. We do not employ style losses in our method and

more significantly, the problem that we solve differs. This is

not only because style transfer methods cannot capture se-

mantics [23], but also because the image we generate has to

adhere to specific constraints. Similarly, the work that has

been done to automatically generate sketches from images,

e.g., [26, 28], does not apply to our problem since it does

not produce a parameter vector in a semantic configuration

space. The literature of face sketches also typically trains in

a supervised manner that requires correspondences between

sketches and photographs.

2. Problem Formulation

Problems involving domain shift receive an increasing

amount of attention, as the field of machine learning moves

its focus away from the vanilla supervised learning scenar-

ios to new combinations of supervised, unsupervised and

transfer learning. In this section, we formulate the new

computational problem that we pose “Tied Output Synthe-

sis” (TOS) and put it within a theoretical context. In the next

section, we redefine the problem as a concrete deep learning

problem. In order to maximize clarity, the two sections are

kept as independent as possible, and the reader may choose

to skip the derivations and go directly to the architecture as

presented in Sec. 3.

2.1. Related Problems

In the unsupervised domain adaptation problem [2,

17, 1], the algorithm trains a hypothesis on a source domain

and the hypothesis is tested on a different target domain.

The algorithm is aided with a labeled dataset of the source

domain and an unlabeled dataset of the target domain. The

conventional approach to dealing with this problem is to

learn a feature map that (i) enables accurate classification

in the source domain and (ii) captures meaningful invariant

relationships between the source and target domains.

Let X be the input space and Y be the output space (the

mathematical notation is also conveniently tabulated in the

supplementary). The source domain is a distribution DS

over X along with a function yS : X → Y . Similarly, the

target domain is specified by (DT , yT). Given some loss

function ℓ : Y × Y → R+ The goal is to fit a hypothesis h

from some hypothesis space H, which minimizes the Target

1531

Input X Output Y
1st {xi ∼ DT }

2nd {xj ∼ DS} {yS(xj)}

Input X Output Y
1st {xi ∼ D1}

2nd {y(xj)|xj ∼ D2}

Input X Out. Y1 Out. Y2

1st {xi ∼ D1}

2nd e(cj) {cj ∼ D2}

(a) (b) (c)
Figure 2. The domain shift configurations discussed Sec. 2. (a) The unsupervised domain adaptation problem. The algorithm minimizes

the risk in a target domain using training samples {(xj ∼ DS , yS(xj))}
m
j=1 and {xi ∼ DT }

n
i=1. (b) The unsupervised domain transfer

problem. In this case, the algorithm learns a function G and is being tested on D1. The algorithm is aided with two datasets: {xi ∼ D1}
m
i=1

and {y(xj) ∼ D
y
2
}nj=1. For example, in the facial emoji application D1 is the distribution of facial photos and D2 is the (unseen)

distribution of faces from which the observed emoji were generated. (c) The tied output synthesis problem, in which we are give a set of

samples from one input domain {xi ∼ D1}, and matching samples from two tied output domains: {(e(cj), cj)|cj ∼ D2}.

Generalization Risk, RDT
[h, yT]. Where a Generalization

Risk is defined as RD[h1, h2] = Ex∼D [ℓ(h1(x), h2(x))]. The

distributions DS , DT and the target function yT : X → Y
are unknown to the learning algorithm. Instead, the learn-

ing algorithm relies on a training set of labeled samples

{(x, yS(x))}, where x is sampled from DS as well as on

an unlabeled training set of samples x ∼ DT , see Fig. 2(a).

In the cross domain transfer problem, the task is to

learn a function that maps samples from the input domain

X to the output domain Y . It was recently presented in [23],

where a GAN based solution was able to convincingly trans-

form face images into caricatures from a specific domain.

The training data available to the learning algorithm in

the cross domain transfer problem is illustrated in Fig. 2(b).

The problem consists of two distributions, D1 and D2,

and a target function, y. The algorithm has access to

the following two unsupervised datasets: {xi∼D1}
m
i=1 and

{y(xj)|xj∼D2}
n
j=1. The goal is to fit a function h =

g ◦ f ∈ H that optimizes infh∈H RD1
[h, y].

It is assumed that: (i) f is a fixed pre-trained feature

map and, therefore, H =
{

g ◦ f
∣

∣g ∈ H2

}

for some hy-

pothesis class H2; and (ii) y is idempotent, i.e, y ◦ y ≡ y.

For example, in [23], f is the DeepFace representation [24]

and y maps face images to emoji caricatures. In addition,

applying y on an emoji gives the same emoji. Note that

according to the terminology of [23], D1 and D2 are the

source and target distributions respectively. However, the

loss RD1
[h, y] is measured over D1, while in domain adap-

tation, it is measured over the target distribution.

Recently [5], the cross domain transfer problem was an-

alyzed using the theoretical term of discrepancy. Denoting,

for example, y ◦D to be the distribution of the y mappings

of samples x ∼ D, then the following bound is obtained.

Theorem 1 (Domain transfer [5]). If ℓ satisfies the triangle
inequality1 and H2 (the hypothesis class of g) is a universal

1For all y1, y2, y3 ∈ Y it holds that ℓ(y1, y3) ≤ ℓ(y1, y2) +
ℓ(y2, y3). This holds for the absolute loss, and can be relaxed to the square

loss, where it holds up to a multiplicative factor of 3.

Lipschitz hypothesis class2, then for all h = g ◦ f ∈ H,

RD1
[h, y] ≤Ry◦D2

[h, Id] +RD1
[f ◦ h, f]

+ discH(y ◦D2, h ◦D1) + λ
(1)

Here, λ = minh∈H {Ry◦D2
[h, Id] +RD1

[h, y]} and h∗ =
g∗ ◦ f is the corresponding minimizer.

This theorem matches the method of [23], which is

called DTN. It bounds the risk RD1
[h, y], i.e., the expected

loss (using ℓ) between the mappings by the ground truth

function y and the mapping by the learned function h for

samples x ∼ D1. The first term in the R.H.S Ry◦D2
[h, Id]

is the LTID part of the DTN loss, which, for the emoji gen-

eration application, states that emoji caricatures are mapped

to themselves. The second term RD1
[f ◦ h, f] corresponds

to the LCONST term of DTN, which states that the Deep-

Face representations of the input face image and the result-

ing caricature are similar. The theorem shows that his con-

stancy does not need to be assumed and is a result of the

idempotency of y and the structure of h. The third term

discH(y ◦ D2, h ◦ D1) is the GAN element of the DTN

method, which compares generated caricatures (h ◦D1) to

the training dataset of the unlabeled emoji (y ◦D2). Lastly,

the λ factor captures the complexity of the hypothesis class

H, which depends on the chosen architecture of the neural

network that instantiates g. A similar factor in the general-

ization bound of the unsupervised domain adaptation prob-

lem is presented in [1].

2.2. The Tied Output Synthesis Problem

The problem studied in this paper, is a third flavor of do-

main shift, which can be seen as a mix of the two prob-

lems: unsupervised domain adaptation and the cross do-

main transfer problem. Similar to the unsupervised domain

transfer problem, we are given a set of supervised labeled

samples. The samples cj are drawn i.i.d from some distri-

bution D2 in the space Y2 and are given together with their

2A function c ∈ C is Lipschitz with respect to ℓ, if there is a constant

L > 0 such that: ∀a1, a2 ∈ A : ℓ(c(a1), c(a2)) ≤ L · ℓ(a1, a2). A

hypothesis class C is universal Lipschitz with respect to ℓ if all functions

c ∈ C are Lipschitz with some universal constant L > 0. This holds,

for example, for neural networks with leaky ReLU activations and weight

matrices of bounded norms, under the squared or absolute loss.

1532

X Y1 Y2

Face image Emoji Parameter set

D2 e ◦ y ◦ D2 y ◦ D2

D1 f ◦ D1 g ◦ f ◦ D1 c ◦ g ◦ f ◦ D1

e

f g c

y

Figure 3. Tied Output Synthesis. The unknown function y is

learned by the approximation h = c ◦ g ◦ f . f and e are given.

D1 is the distribution of input images at test time. During training,

we observe tied mappings (y(x), e(y(x))) for unknown samples

x ∼ D2 as well unlabeled samples from the other distribution D1.

mappings e(cj) ∈ Y1. In addition, and similar to the cross

domain transfer problem, we are given samples xi ∈ X
drawn i.i.d from another distribution D1. The goal is to

learn a mapping y : X → Y2 that satisfies the following

condition y ◦ e ◦ y = y. The hypothesis class contains func-

tions h of the form c ◦ g ◦ f for some known f for g ∈ H2

and for c ∈ H3. f is a pre-learned function that maps the

input sample in X to some feature space, g maps from this

feature space to the space Y1, and c maps from this space to

the space of parameters Y2, see Fig. 2(c) and Fig. 3.

Our approach assumes that e is prelearned from the

matching samples (cj , e(cj)). However, c is learned to-

gether with g. This makes sense, since while e is a feedfor-

ward transformation from a set of parameters to an output,

c requires the conversion of an input of the form g(f(x))
where x ∼ D1, which is different from the image of e for

inputs in Y2. The theorem below describes our solution.

Theorem 2 (Tied output bound). If ℓ satisfies the triangle
inequality and H2 is a universal Lipschitz hypothesis class
with respect to ℓ, then for all h = c ◦ g ◦ f ∈ H,

RD1
[e ◦ h, e ◦ y] ≤RD1

[e ◦ h, g ◦ f] +Re◦y◦D2
[g ◦ f, Id]

+RD1
[f ◦ g ◦ f, f]

+ discH(e ◦ y ◦D2, g ◦ f ◦D1) + λ,

(2)

where λ = ming∈H2
{Re◦y◦D2

[g ◦ f, Id] +RD1
[g ◦ f, e ◦ y]}

and g∗ is the corresponding minimizer.

Proof. By the triangle inequality, we obtain:

RD1
[e ◦ h, e ◦ y] ≤ RD1

[e ◦ h, g ◦ f] +RD1
[g ◦ f, e ◦ y].

Applying Thm. 1 completes the proof:

RD1
[g ◦ f, e ◦ y] ≤Re◦y◦D2

[g ◦ f, Id] +RD1
[f ◦ g ◦ f, f]

+ discH(e ◦ y ◦D2, g ◦ f ◦D1) + λ

Thm. 2 presents a recursive connection between the tied

output synthesis problem and the cross domain transfer

problem. This relation can be generalized for tying even

more outputs to even more complex relations among parts

of the training data. The importance of having a general-

ization bound to guide our solution stems from the plausi-

bility of many other terms such as Re◦y◦D2
[e ◦ h, g ◦ f] or

RD1
[f ◦ g ◦ f, f ◦ e ◦ h].

Comparing to Unsupervised Cross Domain Transfer

The tied output problem is a specific case of cross domain

transfer with Y of the latter being Y1 × Y2 of the former.

However, this view makes no use of the network e. Com-

paring Thm. 1 and Tmm. 2, there is an additional term in the

second bound: RD1
[e ◦ h, g ◦ f]. It expresses the expected

loss (over samples from D1) when comparing the result of

applying the full cycle of encoding by f , generating an im-

age by g, estimating the parameters in the space Y2 using

c, and synthesizing the image that corresponds to these pa-

rameters using e, to the result of applying the subprocess

that includes only f and g.

Comparing to Unsupervised Domain Adaptation Con-

sider the domain X ∪ Y1 and learn the function e−1 from

this domain to Y2, using the samples {(e(cj), cj)|cj ∼ D2},

adapted to xi ∼ D1. This is a domain adaptation prob-

lem with DS = e ◦ D2 and DT = D1. Our experiments

show that applying this reduction leads to suboptimal re-

sults. This is expected, since this approach does not make

use of the prelearned feature map f . This feature map is

not to be confused with the feature network learned in [6],

which we denote by p. The latter is meant to eliminate the

differences between p ◦DS and p ◦DT . However, the pre-

learned f leads to easily distinguishable f ◦DS and f ◦DT .

The unsupervised domain adaptation and the TOS prob-

lem become more similar, if one identifies p with the condi-

tional function that applies g ◦ f to samples from X and the

identity to samples from Y1. In this case, the label predic-

tor of [6] is identified with our c and the discrepancy terms

(i.e., the GANs) are applied to the same pairs of distribu-

tions. However, the two solutions would still differ since (i)

our solution minimizes RD1
[e ◦ h, g ◦ f], while in unsuper-

vised domain adaptation, the analog term is minimized over

DS = e ◦D2 and (ii) the additional non-discrepancy terms

would not have analogs in the domain adaptation bounds.

3. The Tied Output Synthesis Network

We next reformulate the problem as a neural network

challenge. For clarity, this formulation is purposefully

written to be independent of the mathematical presentation

above. We study the problem of projecting an image in one

domain to an image in another domain, in which the images

follow a set of specifications. Given a domain, X , a map-

ping e and a function f , we would like to learn a generative

function G such that f is invariant under G, i.e., f ◦G = f ,

and that for all samples x ∈ X , there exists a configuration

u ∈ Y2 such that G(x) = e(u). Other than the functions

f and e, the training data is unsupervised and consists of a

set of samples from the source domain X and a second set

from the target domain of e, which we call Y1.

In comparison to the domain transfer method presented

in [23], the domain Y1 is constrained to be the image of a

mapping e. DTN cannot satisfy this requirement, since pre-

1533

senting it with a training set t of samples generated by e is

not a strong enough constraint. Furthermore, the real-world

avataring applications require the recovery of the configu-

ration u itself, which allows the synthesis of novel samples

using an extended engine e∗ that generates new poses, ex-

pressions in the case of face images, etc.

3.1. The interplay between the trained networks

In a general view of GANs, assume a loss function

ℓ(G, d, x), for some function d that receives inputs in the

domain Y1. G, which maps an input x to entities in Y1, min-

imizes the following loss: LGAN = maxd −Ex ℓ(G, d, x).
This optimization is successful, if for every function d, the

expectation of ℓ(G, d, x) is small for the learned G. It is

done by maximizing this expectation with respect to d, and

minimizing it with respect to G. The two learned networks

d and G provide a training signal to each other.

Two networks can also provide a mutual signal by col-

laborating on a shared task. Consider the case in which G

and a second function c work hand-in-hand in order to min-

imize the expectation of some other loss ℓ(G, c, x). In this

case, G “relies” on c and minimizes the following expres-

sion:

Lc = min
c

Ex ℓ(G, c, x). (3)

This optimization succeeds if there exists a function c for

which, post-learning, the expectation Ex ℓ(G, c, x) is small.

In the problem of tied output synthesis, the function e

maps entities u in some configuration space Y2 to the tar-

get space Y1. c maps samples from Y1 to the configuration

space, essentially inverting e. The suitable loss is:

ℓe(G, c, x) = ‖G(x)− e(c(G(x)))‖2. (4)

For such a problem, the optimal c is given by c∗(z) =
argminu ‖z−e(u)‖2. This implicit function is intractable to

compute, and c is learned instead as a deep neural network.

3.2. The complete network solution

The learning algorithm is given, in addition to two map-

pings e and f , a training set s ⊂ X , and a training set

t ⊂ Y1. Similar to [23], we define G to be composed out of

f and a second function g that maps from the output space

of f to T , i.e., G = g ◦ f . The e compliance term (Lc of

Eq. 3 using ℓe of Eq. 4) becomes:

Lc =
∑

x∈s

‖g(f(x))− e(c(g(f(x))))‖2 (5)

In addition, we minimize LCONST, which advocates that for

every input x ∈ s, f remains unchanged as G maps it to Y1:

LCONST =
∑

x∈s

‖f(x)− f(G(x))‖2 (6)

Figure 4. The training constraints of the Tied Output Synthesis

method. The learned functions are c, d, and G = g ◦f , for a given

f . The mapping e is assumed to be known a-priori. Dashed lines

denote loss terms.

Algorithm 1 The TOS training algorithm.

1: Given the function e : Y2 → Y1, an embedding func-

tion f , and S ⊂ X , T ⊂ Y1 training sets.

2: Initialize networks c, g and d

3: while iter < numiters do

4: Sample mini-batches s ⊂ S, t ⊂ T

5: Compute feed-forward d(t), d(g(f(s)))
6: Update d by minimizing ℓ(G, d, x) for x ∈ s ⊲ Eq. 7

7: Update g by maximizing ℓ(G, d, x) for x ∈ s ⊲ Eq. 7

8: Update g by minimizing LTID ⊲ Eq. 8

9: Update g by minimizing LCONST ⊲ Eq. 6

10: Update g by minimizing LTV

11: Compute e(c(z)) by feed-forwarding z := g(f(s))
12: Update c and g by minimizing Lc ⊲ Eq. 5

A GAN term is added to ensure that the samples gener-

ated by G are indistinguishable from the set t. The GAN

employs a binary classifier network d, and makes use of the

training set t. Specifically, the following form of ℓ is used

in LGAN:

ℓ(G, d, x) = log[1− d(G(x))] +
1

|t|

∑

x′∈t

log[d(x′)]. (7)

Like [23], the following term encourages G to be the iden-
tity mapping for samples from t.

LTID =
∑

x∈t

‖x− g(f(x))‖2 (8)

Taken together, d maximizes LGAN , and both g and c mini-
mize Lc+αLGAN+βLCONST+γLTID+δLTV for some non-

negative weights α, β, γ, δ, where LTV, is the total variation

loss, which smooths the resulting image z = [zij] = G(x):

LTV (z) =
∑

i,j

(

(zi,j+1 − zij)
2
+ (zi+1,j − zij)

2
)

1

2

.

The method is illustrated in Fig. 4 and laid out in Alg. 1.

In the context of Thm. 2, the term Lc corresponds to the

risk term RD1
[e ◦ h, g ◦ f] in the theorem and compares

samples transformed by the mapping g ◦ f to the mapping

of the same samples to a configuration in Y2 using c ◦ g ◦ f

1534

and then to Y1 using e. The term LTID corresponds to the

risk Re◦y◦D2
[g ◦ f, Id], which is the expected loss over the

distribution from which t is sampled, when comparing the

samples in this training set to the result of mapping these by

g ◦ f . The discrepancy term discH(e ◦ y ◦D2, g ◦ f ◦D1)
matches the LGAN term, which as explained above, mea-

sures a distance between two distributions, in this case,

e ◦ y ◦D2, which is the distribution from which the training

set t is taken, and the distribution of mappings by g ◦ f of

the samples s which are drawn from D1.

4. Experiments

The Tied Output Synthesis (TOS) method is evaluated

on a toy problem of inverting a polygon synthesizing engine

and on avatar generation from a photograph for two differ-

ent CG engines. The first problem is presented as a mere

illustration of the method, while the second is an unsolved

real-world challenge.

4.1. Polygons

The first experiment studies TOS in a context that is in-

dependent of f constancy. Given a set of images t ∈ Y1,

and a mapping e from some vector space to Y1, learn a map-

ping c and a generative function G that creates random im-

ages in Y1 that are e-compliant (Eq. 4).

We create binary 64× 64 images of regular polygons by

sampling uniformly three parameters: the number of ver-

tices (3-6), the radius of the enclosing circle (15-30), and

a rotation angle in the range [−10, 10]. Some polygons are

shown in Fig. 5(a). 10,000 training images were created and

used in order to train a CNN e that maps the three parame-

ters to the output, with very little loss (MSE of 0.1).

A training set t of a similar size is collected by sampling

in the same way. As a baseline method, we employ DC-

GAN [21], in which the generator function G has four de-

convolution layers (the open code of https://github.

com/soumith/dcgan.torch is used), and in which

the input x is a random vector in [−1, 1]100. The results are

shown in Fig. 5(b). While the generated images are similar

to the class of generated polygons, they are not from this

class and contain visible artifacts such as curved edges.

A TOS is then trained by minimizing Eq. 4 with the

additional GAN constraints. The optimization minimizes

Lc + αLGAN, for α = 1 (LCONST and LTID are irrele-

vant to this experiment), and with the input distribution D1

of random vectors sampled uniformly in the [−1, 1] hyper-

cube in 100D. The results, as depicted in Fig. 5(c), show

that TOS, which enjoys the additional supervision of e, pro-

duces results that better fit the polygon class.

4.2. Face Emoji

The proposed TOS method is evaluated for the task of

generating specification-compliant emoji. In this task, we

(a)

(b)

(c)

Figure 5. Toy problem. (a) Polygon images with three random

parameters: number of vertices, radius of enclosing circle and ro-

tation. (b) GAN generated images mimicking the class of polygon

images. (c) G(x) images created by TOS. The TOS is able to

benefit from the synthesis engine e and produces images that are

noticeably more compliant than the GAN.

transfer an “in-the-wild” facial photograph to a set of pa-

rameters that defines an emoji. As the unlabeled training

data of face images (domain X), we use a set s of one mil-

lion random images without identity information. The set

t consists of assorted facial avatars (emoji) created by an

online service (bitmoji.com). The emoji images were

processed by an automatic process that detects, based on a

set of heuristics, the center of the irises and the tip of the

nose [23]. Based on these coordinates, the emoji were cen-

tered and scaled into 152× 152 RGB images.

The emoji engine of the online service is mostly addi-

tive. In order to train the TOS, we mimic it and have cre-

ated a neural network e that maps properties such as gender,

length of hair, shape of eyes, etc. into an output image. The

architecture is detailed in the supplementary.

As the function f , we employ the representation layer

of the DeepFace network [24]. This representation is 256-

dimensional and was trained on a labeled set of four million

images that does not intersect the set s. Network c maps a

64×64 emoji to a configuration vector. It contains five con-

volutional layers, each followed by batch normalization and

a leaky ReLU with a leakiness coefficient of 0.2. Network

g maps f ’s representations to 64 × 64 RGB images. Fol-

lowing [23], this is done through a network with 9 blocks,

each consisting of a convolution, batch-normalization and

ReLU. The odd blocks 1,3,5,7,9 perform upscaling convo-

lutions. The even ones perform 1 × 1 convolutions [14].

Network d takes 152 × 152 RGB images (either natural or

scaled-up emoji) and consists of 6 blocks, each containing a

convolution with stride 2, batch normalization, and a leaky

ReLU. We set α = 0.01, β = 100, γ = 1, δ = 0.0005 as

the tradeoff hyperparameters, after eyeballing the results of

the first epoch of a very limited set of experiments.

For evaluation purposes only, we employ the benchmark

of [23], which contains manually created emoji of 118 ran-

dom images from the CelebA dataset [16]. The benchmark

was created by a team of professional annotators who used

1535

Method Emoji Avatars

g(f(x)) e(..(x)) g(f(x)) e(..(x))
Manual NA 16,311 NA NA

DANN [6] NA 59,625 NA 52,435

DTN [23] 16 18,079 195 38,805

TOS 30 3,519 758 11,153

TOS fixed c̄ 26 14,990 253 43,160
Table 1. Comparison of median rank for retrieval out of a set of

100,001 face images for either manually created emoji, or emoji

and VR avatars created by DTN or TOS. Results are shown for the

“raw” G(x) as well as for the configuration compliant e(..(x)).
Since DTN does not produce a configuration-compliant emoji, we

obtain the results for the e(..(x)) column by applying to its output

a pretrained network c̄ that maps emoji to configurations. Also

shown are DANN results obtained when training such a mapping

c̄ that is adapted to the samples in s.

the web service that creates the emoji images. Fig. 6 shows

side by side samples of the original image, the human gen-

erated emoji, the emoji generated by the generator function

of DTN [23], and the emoji generated by both the generator

G = g ◦f and the compound generator e◦ c◦G of our TOS

method. As can be seen, the DTN emoji tend to be more in-

formative, albeit less restrictive than the ones created manu-

ally. TOS respects the configuration space and creates emoji

that are similar to the ones created by the human annotators,

but which tend to carry more identity information.

In order to evaluate the identifiability of the resulting

emoji, the authors of [23] have collected a second exam-

ple for each identity in the set of 118 CelebA images and a

set s′ of 100,000 random face images (unsupervised, with-

out identity), which were not included in s. The VGG face

CNN descriptor [20] is then used in order to perform re-

trieval as follows. For each image x in the manually anno-

tated set, a gallery s′ ∪ x′ is created, where x′ is the other

image of the person in x. Retrieval is then performed using

VGG faces and either the manually created emoji, G(x), or

e(c(G(x))) as the probe.

In these experiments, the VGG network is used in order

to avoid a bias that might be caused by using f both for

training the DTN and the TOS methods and for evaluation.

The results are reported in Tab. 1. As can be seen, the G(x)
emoji generated by DTN are extremely discriminative and

obtain a median rank of 16 in cross-domain identification

out of 105 distractors. However, DTNs are not compati-

ble with any configuration vector. In order to demonstrate

this, we trained a network c̄ that maps emoji images to con-

figurations. When applied to the emoji generated by DTN

and transforming the results, using e, back to an emoji, the

obtained images are less identifiable than the emoji created

manually (Tab. 1, under e(..(x))). By comparison, the me-

dian rank of the emoji created by the configuration vector

c(G(x)) of TOS is much better than the result obtained by

the human annotators. As expected, DTN has more iden-

tifiable results than TOS when considering the output of

g(f(x)) directly, since TOS has additional terms and the

role of LCONST in TOS is naturally reduced.

The need to train c and G jointly, as is done in the TOS

framework, is also verified in a second experiment, in which

we fixed the network c of TOS to be the pretrained network

c̄. The results of rendering the configuration vector were

also not as good as those obtained by the unmodified TOS

framework. As expected, querying by G(x) directly, pro-

duces results that are between DTN and TOS.

It should be noted that using the pretrained c̄ directly on

inputs faces, leads to fixed configurations (modes), since c̄

was trained to map from Y1 and not from X . This is also

true when performing the prediction based on f mappings

of the input and when training a mapping from X to Y2

under the f distance on the resulting avatar. This situation

calls for the use of unsupervised domain adaptation (Sec. 2)

to learn a mapping from X to Y2 by adapting a mapping

from Y1. Despite some effort, applying the domain adap-

tation method of [6] did not result in satisfactory results

(Tab. 1 and supplementary). The best architecture found for

this network follows the framework of domain-adversarial

neural networks [6]. Our implementation consists of a fea-

ture network p that resembles our network c - with 4 con-

volution layers, a label predictor l which consists of 3 fully

connected layers, and a discriminative network d that con-

sists of 2 fully connected layers. The latter is preceded by

a gradient reversal layer to ensure that the feature distribu-

tions of both domains are made similar. In both l and d,

each hidden layer is followed by batch normalization.

Human rating Finally, we asked a group of 20 volunteers

to select the better emoji, given a photo from celebA and

two matching emoji: one created by the expert annotators

and one created by TOS (e◦c◦G). The raters were told that

they are presented with the results of two algorithms for au-

tomatically generating emoji and are requested to pick their

favorable emoji for each image. The images were presented

printed out, in random order, and the raters were given an

unlimited amount of time. In 39.53% of the answers, the

TOS emoji was selected. This is remarkable considering

that in a good portion of the celebA emoji, the TOS created

very dark emoji in an unfitting manner (since f is invariant

to illumination and since the configuration has many more

dark skin tones than lighter ones). TOS, therefore, not only

provides more identifiable emoji, but is also very close to be

on par with professional annotators. It is important to note

that we did not compare to DTN in this rating, since DTN

does not create a configuration vector, which is needed for

avatar applications (Fig 1).

Multiple Images Per Person Following [23], we evaluate

the results obtained per person and not just per image on the

Facescrub dataset [19]. For each person q, we considered

the set of their images Xq , and selected the emoji that was

1536

(a) (b) (c)

← Figure 6. Shown, side by side, are (a)

sample images from the CelebA dataset.

(b) emoji, from left to right: the images

created manually using a web interface (for

evaluation only), the result of DTN, and

the two results of our TOS: G(x) and then

e(c(G(x))). (c) VR avatar results: DTN,

the two TOS results, and a 3D render-

ing of the resulting configuration file. See

Tab. 1 for retrieval performance. The re-

sults of DANN [6] are not competitive and

are shown in the supplementary.

↑Figure 7. Multi-image results on Face-

scrub. Shown, side by side, are (i) the

image selected to create the TOS and the

DTN emoji, (ii) the DTN emoji, and (iii)

the TOS emoji, obtained by e ◦ c ◦ g ◦ f .

See also Supplementary.

most similar to their source image, i.e., the one for which:

argminx∈Xq
||f(x) − f(e(c(G(x))))||. The qualitative re-

sults are appealing and are shown in Fig. 7.

4.3. VR Avatars

We next apply the proposed TOS method to a com-

mercial avatar generator engine, see Fig. 6(c). We sam-

ple random parameterizations and automatically align their

frontally-rendered avatars into 64×64 RGB images to form

the training set t. We then train a CNN e to mimic this

engine and generate such images given their parameteriza-

tion. Using the same architectures and configurations as in

Sec. 4.2, including the same training set s, we train g and c

to map natural facial photographs to their engine-compliant

set of parameters. We also repeat the same identification

experiment and report median rankings of the analog exper-

iments, see Tab. 1(right). The 3D avatar engine is by design

not as detailed as the 2D emoji one, with elements such as

facial hair still missing and less part shapes available. In ad-

dition, the avatar model style is more generic and focused

on real time puppeteering and not on cartooning. Therefore,

the overall numbers are lower for all methods, as expected.

TOS seems to be the only method that is able to produce

identifiable configurations, while the other methods lead to

ranking that is close to random.

5. Conclusions

With the advent of better computer graphics engines and

the plethora of available models, and the ability of neu-

ral networks to compare cross-domain entities, the miss-

ing element for bridging between computer vision and com-

puter graphics is the ability to link image data to a suitable

parametrization. The previously presented DTN method

created analogies without explicit supervision. Highly iden-

tifiable emoji were generated; However, emoji applications

call for parametrized characters, which can then be trans-

formed by artists to other views and new expressions. The

TOS method that we present is able to generate identifiable

emoji that are coupled with a valid configuration vector.

While TOS was presented in a way that requires the ren-

dering function e to be differentiable, working with black-

box renderers using gradient estimation techniques is a

common practice, e.g., in Reinforcement Learning, and the

simple REINFORCE [27] method can be readily used.

1537

References

[1] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,

and J. W. Vaughan. A theory of learning from different do-

mains. Machine Learning, 79(1-2):151–175, 2010.

[2] K. Crammer, M. Kearns, and J. Wortman. Learning from

multiple sources. J. Mach. Learn. Res., 9:1757–1774, June

2008.

[3] A. Dosovitskiy and T. Brox. Generating images with per-

ceptual similarity metrics based on deep networks. arXiv

preprint arXiv:1602.02644, 2016.

[4] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning

to generate chairs with convolutional neural networks. In

CVPR, pages 1538–1546, 2015.

[5] T. Galanti and L. Wolf. A theory of output-side unsupervised

domain adaptation. arXiv preprint arXiv:1703.01606, 2017.

[6] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. J. Mach. Learn. Res.,

17(1):2096–2030, 2016.

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, pages 2672–2680. 2014.

[9] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and

D. Wierstra. Draw: A recurrent neural network for image

generation. In ICML, pages 1462–1471, 2015.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017.

[11] D. Jimenez Rezende, S. M. A. Eslami, S. Mohamed,

P. Battaglia, M. Jaderberg, and N. Heess. Unsupervised

learning of 3d structure from images. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems 29,

pages 4996–5004. Curran Associates, Inc., 2016.

[12] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

[13] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.

Deep convolutional inverse graphics network. In NIPS,

pages 2539–2547. 2015.

[14] M. Lin, Q. Chen, and S. Yan. Network In Network. In ICLR,

2014.

[15] M.-Y. Liu and O. Tuzel. Coupled generative adversarial net-

works. In NIPS, pages 469–477. 2016.

[16] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In Proceedings of International Con-

ference on Computer Vision (ICCV), 2015.

[17] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adap-

tation: Learning bounds and algorithms. In COLT - The 22nd

Conference on Learning Theory, 2009.

[18] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014.

[19] H. Ng and S. Winkler. A data-driven approach to cleaning

large face datasets. In ICIP, 2014.

[20] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In British Machine Vision Conference, 2015.

[21] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[22] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text to image synthesis. In

ICML, 2016.

[23] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-

domain image generation. In International Conference on

Learning Representations (ICLR), 2017.

[24] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In CVPR, 2014.

[25] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In ICML, 2016.

[26] N. Wang, D. Tao, X. Gao, X. Li, and J. Li. Transductive

face sketch-photo synthesis. IEEE transactions on neural

networks and learning systems, 24(9):1364–1376, 2013.

[27] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, 8:229–256, 1992.

[28] Y. Zhang, N. Wang, S. Zhang, J. Li, and X. Gao. Fast face

sketch synthesis via kd-tree search. In G. Hua and H. Jégou,

editors, ECCV, 2016.

1538

