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Abstract

Region of Interest (ROI) crowd counting can be formu-

lated as a regression problem of learning a mapping from

an image or a video frame to a crowd density map. Re-

cently, convolutional neural network (CNN) models have

achieved promising results for crowd counting. However,

even when dealing with video data, CNN-based methods

still consider each video frame independently, ignoring the

strong temporal correlation between neighboring frames.

To exploit the otherwise very useful temporal information

in video sequences, we propose a variant of a recent deep

learning model called convolutional LSTM (ConvLSTM) for

crowd counting. Unlike the previous CNN-based methods,

our method fully captures both spatial and temporal depen-

dencies. Furthermore, we extend the ConvLSTM model to

a bidirectional ConvLSTM model which can access long-

range information in both directions. Extensive experiments

using four publicly available datasets demonstrate the reli-

ability of our approach and the effectiveness of incorporat-

ing temporal information to boost the accuracy of crowd

counting. In addition, we also conduct some transfer learn-

ing experiments to show that once our model is trained on

one dataset, its learning experience can be transferred eas-

ily to a new dataset which consists of only very few video

frames for model adaptation.

1. Introduction

Crowd counting is the problem of estimating the num-

ber of people in a still image or a video. It has drawn a

lot of attention due to the need for solving this problem

in many real-world applications such as video surveillance,

traffic control, and emergency management. Proper use of

crowd counting techniques can help to prevent some seri-

ous accidents such as the massive stampede that happened

in Shanghai, China during the 2015 New Year’s Eve fes-

tivities, killing 35 people. Moreover, some crowd count-

ing methods can also be applied to other object count-

ing applications such as cell counting in microscopic im-

ages [15, 29], vehicle counting in public areas [18, 34], and

animal counting in the wild [3].

The methods for crowd counting in videos fall into two

broad categories: (a) Region of Interest (ROI) counting,

which estimates the total number of people in some region

at a certain time; and (b) Line of Interest (LOI) counting,

which counts the number of people crossing a detecting line

in a video during a certain period of time. Since LOI count-

ing is more restrictive in its applications and is much less

studied than ROI counting, we focus on ROI counting in

this paper.

Many methods have been proposed in the past for crowd

counting. Some methods take the approach of tackling

the crowd counting problem in an unsupervised manner

through grouping based on self-similarities [1] or motion

similarities [21]. However, the accuracy of such fully un-

supervised counting methods is limited. Thus more atten-

tion has been paid to the supervised learning approach. Su-

pervised crowd counting methods generally fall into two

categories: detection-based methods and regression-based

methods. In detection-based methods, some given object

detectors [12, 37, 16, 9] are used to detect people individ-

ually. They usually operate in two stages by first produc-

ing a real-valued confidence map and then locating from

the map those peaks that correspond to individual people.

Once the locations of all individuals have been estimated,

the counting problem becomes trivial. However, object de-

tection could be a challenging problem especially under se-

vere occlusion in highly crowded scenes.

In recent years, regression-based methods have achieved

promising counting results in crowded scenes. Regression-

based methods avoid solving the difficult detection prob-

lem. Instead, they regard crowd counting as a regres-

sion problem by learning a regression function or map-

ping from some holistic or local visual features to a crowd

count or a crowd density map. Linear regression, Gaus-

sian process regression, and neural networks are often used

as the regression models. Currently, most methods which

achieve state-of-the-art performance are regression-based

methods [4, 7, 2, 20, 6, 32, 36, 29].
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With the recent resurgence of interest in convolutional

neural network (CNN) models which have reported promis-

ing results for many computer vision tasks [14], in the re-

cent two years some CNN-based methods [32, 36, 29, 26]

have also been proposed for crowd counting, giving state-

of-the-art results on the existing crowd counting datasets

such as UCSD [4] and UCF [11]. Unlike traditional

regression-based methods [4, 7], CNN-based methods do

not need handcrafted features but can learn powerful fea-

tures in an end-to-end manner. However, even when dealing

with video datasets, these CNN-based methods still regard

the data as individual still images and ignore the strong tem-

poral correlation between neighboring video frames.

In this paper, we propose a variant of a recent deep learn-

ing model called convolutional LSTM (ConvLSTM) [24]

for crowd counting. While CNN-based methods exploit

only spatial features by ignoring the otherwise very use-

ful temporal information in video sequences, our method

fully captures both spatial and temporal dependencies. In-

corporating the temporal dimension is important as it is well

known that motion information can help to boost the count-

ing accuracy in complex scenes. Thorough experimental

validation using four publicly available datasets will be re-

ported later in this paper to demonstrate the effectiveness of

incorporating temporal information to boost the accuracy of

crowd counting.

2. Related Work

2.1. Deep learning methods for crowd counting

C. Zhang et al. [32] proposed the first CNN-based

method for crowd counting. Following this work, Y. Zhang

et al. [36] proposed a multi-column CNN architecture

which allows the input image to be of arbitrary size or res-

olution. The multi-column CNN architecture also uses a

different method for computing the crowd density. Walach

and Wolf [29] proposed a stage-wise approach by carrying

out model training in stages. In the spirit of the gradient

boosting approach, CNNs are added one at a time such that

every new CNN is trained to estimate the residual error of

the earlier prediction. After the first CNN has been trained,

the second CNN is trained on the difference between the

current estimate and the learning target. The third CNN is

then added and the process continues. Rubio et al. [19] pro-

posed a framework called Hydra CNN which uses a pyra-

mid of image patches extracted at multiple scales to per-

form the final density prediction. All these methods have

reported good results for the UCSD dataset. However, to

the best of our knowledge, temporal dependencies have not

been explicitly exploited by deep learning models for crowd

counting. These CNN-based methods simply treat the video

sequences in the UCSD dataset as a set of still images with-

out considering their temporal dependencies.

1

2.2. Density map regression for crowd counting

Lempitskey and Zisserman [15] proposed a method to

change the target of regression from a single crowd count to

a crowd density map. We note that crowd density is more in-

formative than crowd count, since the former also includes

location information of the crowd. With a crowd density

map, the crowd count of any given region can be estimated

easily. The crowd count of the whole image is simply the

integral of the density function over the entire image. All

CNN-based methods mentioned above have used the crowd

density map as the regression target.

2.3. ConvLSTM for spatiotemporal modeling

Recurrent neural networks (RNNs) have been applied

successfully to various sequence learning tasks [27]. The

incorporation of long short-term memory (LSTM) cells

enables RNNs to exploit longer-term temporal dependen-

cies. By extending the fully connected LSTM (FC-LSTM)

to have convolutional structures in both the input-to-state

and state-to-state connections, Shi et al. [24] proposed the

ConvLSTM model for precipitation nowcasting which is a

spatiotemporal forecasting problem. The ConvLSTM layer

not only preserves the advantages of FC-LSTM but is also

suitable for spatiotemporal data due to its inherent convolu-

tional structures.

ConvLSTM models have also proven effective for some

other spatiotemporal tasks. Finn et al. [8] employed stacked

ConvLSTMs to generate motion predictions. Villegas et

al. [28] proposed a ConvLSTM-based method to model the

spatiotemporal dynamics for pixel-level prediction in natu-

ral videos. Also, Y. Zhang et al. [35] applied network-in-

network principles, batch normalization, residual connec-

tions, and ConvLSTMs to build very deep recurrent and

convolutional structures for speech recognition.

3. Our Crowd Counting Method

3.1. Crowd density map

Following the previous work [15] as reviewed above, we

also formulate crowd counting as a density map estima-

tion problem. Compared to methods that give an estimated

crowd count of the whole image as output, methods that

give a crowd density map also provide location information

about the crowd distribution which is useful for many ap-

plications.

We assume that each training image Ii is annotated with

a set of 2D points Pi = {P1, . . . , PC(i)}, where C(i) is the

1While preparing the camera-ready paper, it was brought to our atten-

tion that some related papers had been accepted by the same conference,

e.g.,[25, 33].

5152



total number of people annotated. We define the ground-

truth density map for supervised learning as a sum of Gaus-

sian kernels each of which is centered at the location of one

person. The ground-truth density map Fi(p) for image Ii
can be defined as follows:

∀p ∈ Ii, Fi(p) =
∑

P∈Pi

N (p;P, σ2I2×2), (1)

where p denotes a pixel in image Ii, Pi is the set of an-

notated points (usually corresponding to the positions of

the human heads), N (p;P, σ2I2×2) represents a normal-

ized 2D Gaussian kernel evaluated at the pixel position p

with its mean at the head position P and an isotropic 2× 2
covariance matrix I2×2 with variance σ2.

For annotated points which are close to the image bound-

ary, part of their probability mass will reside outside the

image. Consequently, integrating the ground-truth density

map over the entire image will not match the crowd count

exactly. Fortunately, this effect can be neglected for most

applications because the differences are generally small.

Moreover, in many cases, a pedestrian who lies partially

outside the image boundary should not be counted as a

whole person.

Another subtlety that is worth noticing is that the im-

ages are often not captured with a bird’s-eye view and hence

leads to perspective distortion. As a result, the pixels asso-

ciated with different annotated points correspond to regions

of different scales in the actual 3D scene. To overcome the

effects due to perspective distortion, we need to normal-

ize the crowd density map with the perspective map M(p).
The pixel value in the perspective map represents the num-

ber of pixels in the image corresponding to one meter at

that location in the real scene. In our experiments, we set

σ = 0.3M(p) and then normalize the whole distribution to

ensure that the sum of ground-truth density is equal to the

crowd count of the image.

3.2. ConvLSTM model

FC-LSTM has proven powerful for handling temporal

correlations, but it fails to maintain structural locality. To

exploit temporal correlations for video crowd counting, we

propose a model based on ConvLSTM [24] to learn a den-

sity map. As an extension of FC-LSTM, ConvLSTM has

convolutional structures in both the input-to-state and state-

to-state connections. We can regard all the inputs, cell out-

puts, hidden states H1, ...,Ht, and gates it, ft, ot of the

ConvLSTM as 3D tensors whose last two dimensions are

spatial dimensions. The outputs of ConvLSTM cells de-

pend on the inputs and past states of the local neighbors.

The key equations of ConvLSTM are shown in (2) below,

where ‘*’ denotes the convolution operator, ‘◦’ denotes the

Hadamard product, and σ(·) denotes the logistic sigmoid

Figure 1. ConvLSTM model for crowd counting

function:

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi),

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf ),

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc),

ot = σ((Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo),

Ht = ot ◦ tanh(Ct).

(2)

Figure 1 shows our ConvLSTM model for crowd count-

ing where each building block involves a ConvLSTM.

The inputs X 1:t = X1, . . . ,Xt are consecutive frames

of a video and the cell outputs C1, . . . , Ct are the estimated

density maps of the corresponding frames. If we remove

the connections between ConvLSTM cells, we can regard

each ConvLSTM cell as a CNN model with gates. We set

all the input-to-state and state-to-state kernels to size 5 × 5
and the number of layers to 4. To relate the feature maps to

the density map, we adopt filters all of size 1 × 1. We use

the Euclidean distance to measure the difference between

the estimated and ground-truth density maps. So we define

the loss function L(θ) between the estimated density map

F (X 1:t; θ) and the ground-truth density map Dt as follows:

L(θ) =
1

2T

T
∑

t=1

‖F (X 1:t; θ)−Dt‖
2
2 , (3)

where T is the length of the video clip and θ denotes the
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Figure 2. Bidirectional ConvLSTM model for crowd counting

parameter vector.

3.3. From ConvLSTM to bidirectional ConvLSTM

Inspired by [10, 35], we further extend the ConvLSTM

model to a bidirectional ConvLSTM model which can ac-

cess long-range information in both directions.

Figure 2 depicts the bidirectional ConvLSTM model for

crowd counting. Its inputs and outputs are the same as those

in the ConvLSTM model. It works by computing the for-

ward hidden sequence ~h, backward hidden sequence ~h, and

output sequence by iterating backward from t = T to t = 1,

iterating forward from t = 1 to t = T , and then updating

the output layer. If we denote the state updating function

in (2) as Ht, Ct = ConvLSTM(Xt,Ht−1, Ct−1), the equa-

tion of bidirectional ConvLSTM can be written as follows:

~Ht, ~Ct = ConvLSTM(Xt, ~Ht−1, ~Ct−1),

~Ht, ~Ct = ConvLSTM(Xt, ~Ht+1, ~Ct+1),

Yt = concat( ~Ht, ~Ht),

(4)

where Yt is the output at timestamp t.

Y. Zhang et al. [35] found that bidirectional ConvLSTM

consistently outperforms its unidirectional counterpart in

speech recognition. In the next section, we also compare

bidirectional ConvLSTM with the original ConvLSTM for

crowd counting using different datasets.

Figure 3. ConvLSTM-nt model for crowd counting

3.4. ConvLSTM-nt: a degenerate variant of Con-
vLSTM for comparison

To better understand the effectiveness of exploiting tem-

poral information, we propose a degenerate variant of Con-

vLSTM, called ConvLSTM with no temporal information

(ConvLSTM-nt), by removing all connections between the

ConvLSTM cells. ConvLSTM-nt can be seen as a CNN

model with gates. The parameters of ConvLSTM-nt are the

same as those of ConvLSTM introduced above. The struc-

ture of ConvLSTM-nt is shown in Figure 3.

All our three models have 4 layers, with 128, 64, 64 and

64 hidden states respectively in the four ConvLSTM lay-

ers. For the training scheme, we train all models using

the TensorFlow library, optimizing to convergence using

ADAM [13] with the suggested hyperparameters in Tensor-

Flow.

In the experiments to be reported in the next section,

whenever the dataset consists of still images not forming

video sequences, both the original ConvLSTM and our bidi-

rectional extension cannot be used but only ConvLSTM-nt

will be used.

4. Experiments

We conduct comparative study using four annotated

datasets which include the UCF CC 50 dataset [11], UCSD

dataset [4], Mall dataset [7], and WorldExpo’10 dataset [32,

31]. Some statistics of these datasets are summarized in Ta-

ble 1. We also conduct experiments in the transfer learning

setting by using one of the UCSD and Mall datasets as the

source domain and the other one as the target domain.

4.1. Evaluation metric

For crowd counting, the mean absolute error (MAE) and

mean squared error (MSE) are the two most commonly used

evaluation metrics. They are defined as follows:

MAE =
1

N

N
∑

i=1

|pi − p̂i| , MSE =

√

√

√

√

1

N

N
∑

i=1

(pi − p̂i)2,

(5)

where N is the total number of frames used for testing, pi
and p̂i are the true number and estimated number of people

in frame i respectively. As discussed above, p̂i is calculated

by summing over the estimated density map over the entire

image.
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Table 1. Statistics of the four datasets
Dataset Resolution Color Num FPS Max Min Average Total

UCF CC 50 different Grey 50 Images 4543 94 1279.5 63974

UCSD 158 × 238 Grey 2000 10 46 11 24.9 49885

Mall 640 × 480 RGB 2000 - 53 11 31.2 62315

WorldExpo 576 × 720 RGB 3980 50 253 1 50.2 199923

Figure 4. Results for four test images from the UCF CC 50 dataset. For each example, we show the input image (left), ground-truth density

map (middle), and density map obtained by ConvLSTM-nt (right).

4.2. UCF CC 50 dataset

The UCF CC 50 dataset was first introduced by Idress et

al. [11]. It is a very challenging dataset because it contains

only 50 images of different resolutions, different scenes,

and extremely high crowd density. In particular, the number

of pedestrians ranges between 94 and 4,543 with an average

of 1,280. Annotations of all the 63,794 people in all 50 im-

ages are available in the dataset. Since the 50 images have

no temporal correlation between them, we cannot demon-

strate the advantage of exploiting temporal information. So

only the ConvLSTM-nt variant is applied on this dataset.

The goal here is to show that our model can still give very

good results for such extremely dense crowd images even

though temporal information is not available.

Following the setting in [11], we split the dataset ran-

domly and perform 5-fold cross validation. To handle dif-

ferent resolutions, we randomly crop patches of size 72 ×
72 from each image for training and testing. As for the

overlapping patches in the test set, we calculate the density

at each pixel by averaging the overlapping patches.

We compare our method with six existing methods on

the UCF CC 50 dataset. The results are shown in Ta-

ble 2. Rodriguez et al. [22] adopted the density map es-

timation in detection-based methods. Lempitsky et al. [15]

extracted 800 dense SIFT features from the input image and

learned a density map with the proposed MESA distance

(where MESA stands for Maximum Excess over SubAr-

rays). Idress et al. [11] estimated the crowd count by multi-

source features which include SIFT and head detection. The

Table 2. Results of different methods on the UCF CC 50 dataset.

It should be noticed that Shang et al. [23] used additional data

for training, so it is not fair to compare its result with the others

directly.

Method MAE MSE

Head detection [22] 655.7 697.8

Density map + MESA [15] 493.4 487.1

Multi-source features [11] 419.5 541.6

Crowd CNN [32] 467.0 498.5

Multi-column CNN [36] 377.6 509.1

ConvLSTM-nt 284.5 297.1

Shang et al. [23] 270.3 -

methods proposed by C. Zhang et al. [32], Y. Zhang et

al. [36], and Shang et al. [23] are all CNN-based meth-

ods. Shang et al. [23] used a model pre-trained on the

WorldExpo dataset as initial weights and yielded the best

MAE. However, when considering only methods that do not

use additional data for training, our ConvLSTM-nt model

achieves the lowest MAE and MSE.

Some results obtained by ConvLSTM-nt are shown in

Figure 4. Although the images have wide variations in the

background and crowd density, ConvLSTM-nt is quite ro-

bust in producing reasonable density maps and hence the

overall crowd counts.

4.3. UCSD dataset

The UCSD dataset [4] contains a 2,000-frame video of

pedestrians on a walkway of the UCSD campus captured by

a stationary camera. The video was recorded at 10 fps with
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Figure 5. Results for two test video frames from the UCSD dataset. For each example, we show the input video frame, ground-truth density

map, and density maps obtained by the three variants of our method.

dimension 238 × 158. The labeled ground truth marks the

center of each pedestrian. The ROI and the perspective map

are provided in the dataset.

Using the same setting as in [4], we use frames 601–

1,400 as the training data and the remaining 1,200 frames

as test data. The provided perspective map is used to adjust

the ground-truth density map by setting σ = 0.3M(p). The

values of the pixels outside the ROI are set to zero.

The results of different methods are shown in Table 3.

[4, 7, 6] are traditional methods which give the crowd

count for the whole image. [15, 20] are density map re-

gression methods using handcrafted features and regres-

sion algorithms such as linear regression and random for-

est regression. Most state-of-the-art methods are based on

CNNs [29, 32, 19, 36]. Bidirectional ConvLSTM achieves

comparable MAE and MSE with these methods. From the

results of ConvLSTM-nt, unidirectional ConvLSTM, and

bidirectional ConvLSTM , we can draw the conclusion that

temporal information can boost the performance for this

dataset.

Figure 5 shows two illustrative examples. We can see

that bidirectional ConvLSTM produces density maps that

are closest to the ground truth. While ConvLSTM-nt can

give a rough estimation, ConvLSTM and bidirectional Con-

vLSTM are more accurate in the fine details.

4.4. Mall dataset

The Mall dataset was provided by Chen et al. [7] for

crowd counting. It was captured in a shopping mall us-

ing a publicly accessible surveillance camera. This video

contains 2,000 annotated frames of moving and stationary

pedestrians with more challenging lighting conditions and

Table 3. Results of different methods on the UCSD dataset
Method MAE MSE

Gaussian process regression [4] 2.24 7.97

Ridge regression [7] 2.25 7.82

Cumulative attribute regression [6] 2.07 6.90

Density map + MESA [15] 1.70 -

Count forest [20] 1.60 4.40

Crowd CNN [32] 1.60 3.31

Multi-column CNN [36] 1.07 1.35

Hydra CNN [19] 1.65 -

CNN boosting [29] 1.10 -

ConvLSTM-nt 1.73 3.52

ConvLSTM 1.30 1.79

Bidirectional ConvLSTM 1.13 1.43

glass surface reflections. The ROI and the perspective map

are also provided in the dataset.

Following the same setting as [7], we use the first 800

frames for training and the remaining 1,200 frames for test-

ing. We perform comparison against Gaussian process re-

gression [4], ridge regression [7], cumulative attribute ridge

regression [6], and random forest regression [20]. Bidi-

rectional ConvLSTM achieves state-of-the-art performance

with respect to both MAE and MSE. The results are shown

in Table 4, which also demonstrates the effectiveness of ex-

ploiting temporal information.

4.5. WorldExpo dataset

The WorldExpo dataset was introduced by C. Zhang et

al. [32, 31]. This dataset contains 1,132 annotated video se-

quences captured by 108 surveillance cameras, all from the

2010 Shanghai World Expo. The annotations of 199,923
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Table 4. Results of different methods on the Mall dataset
Method MAE MSE

Gaussian process regression [4] 3.72 20.1

Ridge regression [7] 3.59 19.0

Cumulative attribute regression [6] 3.43 17.7

Count forest [20] 2.50 10.0

ConvLSTM-nt 2.53 11.2

ConvLSTM 2.24 8.5

Bidirectional ConvLSTM 2.10 7.6

Figure 6. Density map estimation examples from the WorldExpo

dataset (best viewed in color). In each row, the left one shows

one video frame from the test scene and the right one shows the

estimation results of that scene, where the x-axis represents the

frame index and the y-axis represents the crowd count.

pedestrians in 3,980 frames include the location of the cen-

ter of each human head. The test set contains five separate

video sequences each of which has 120 annotated frames.

The regions of interest (ROIs) are provided for these five

test scenes. The perspective maps are also provided.

For fair comparison, we follow the work of the multi-

Figure 7. A video frame from test scene 3 of the WorldExpo

dataset. The region outlined in green indicates the ROI and the

red dots mark the positions of the heads.

column CNN to generate the density map according to the

perspective map with the relation δ = 0.2M(x), where

M(x) denotes the number of pixels in the image represent-

ing one square meter at location x. Table 5 compares our

model and its variants with the state-of-the-art methods. We

use MAE as the evaluation metric, as suggested by the au-

thor of [32]. On average, bidirectional ConvLSTM achieves

the lowest MAE. It also gives the best result for scene 5.

We show the estimation results for the five test scenes ob-

tained by our models in Figure 6. The crowd count curves

are shown in different colors for the ground truth (black)

and the estimation results of ConvLSTM-nt (red), ConvL-

STM (green), and bidirectional ConvLSTM (blue). We note

that the five scenes differ significantly in the scene type,

crowd density, and change in crowd count over time.

From Table 5 and Figure 6, we can see that bidi-

rectional ConvLSTM outperforms ConvLSTM and Con-

vLSTM outperforms ConvLSTM-nt in most cases (scene

1,2,4,5), which gives evidence to the effectiveness of incor-

porating temporal information for crowd counting. As for

scene 3, a closer investigation reveals a potential problem

with the labels provided in this test scene. Figure 7 illus-

trates the problem. There are in fact many people walk-

ing under the white ceiling of the covered walkway as we

can see their moving legs clearly when playing the video,

but only two red dots are provided in the frame because the

heads of most of the people there are hidden. Spatiotempo-

ral models tend to count them since motion is detected when

exploiting the temporal information, but unfortunately they

are not annotated in the provided labels.

4.6. Transfer learning experiments

To demonstrate the generalization capability of our

model, we conduct some experiments in the transfer learn-

ing setting. Specifically, we compare with some previous

methods that have also been evaluated in the transfer learn-
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Table 5. Results of different methods on the WorldExpo dataset

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

LBP features + ridge regression 13.6 59.8 37.1 21.8 23.4 31.0

Deep CNN [32] 9.8 14.1 14.3 22.2 3.7 12.9

Multi-column CNN [36] 3.4 20.6 12.9 13.0 8.1 11.6

ConvLSTM-nt 8.6 16.9 14.6 15.4 4.0 11.9

ConvLSTM 7.1 15.2 15.2 13.9 3.5 10.9

Bidirectional ConvLSTM 6.8 14.5 14.9 13.5 3.1 10.6

ing setting using the UCSD and Mall datasets, which were

both captured using stationary cameras. As shown in Fig-

ure 8, the two datasets are quite different in terms of the

scene type (outdoor for UCSD but indoor for Mall), crowd

density, frame rate, and camera angle, among others.

We consider two transfer learning tasks by using one

dataset as the source domain and the other one as the tar-

get domain. For each task, 800 frames are used for training

the model and 50 frames of the other dataset are used as the

adaptation set. Following the same setting as [5, 30, 17],

we use MAE as the evaluation metric. Table 6 presents

the results for different methods on the two transfer learn-

ing tasks. Bidirectional ConvLSTM achieves state-of-the-

art performance in both transfer learning tasks. We note

that the performance of our method in the transfer learning

setting is even better than many approaches tested on the

standard, non-transfer-learning setting. For instance, with

800 frames of the UCSD dataset for training and 50 frames

of the Mall dataset for adaptation, bidirectional ConvLSTM

can achieve an MAE of 2.63, which outperforms many al-

gorithms using 800 frames of the Mall dataset for training,

according to Table 4. We can draw the conclusion that

bidirectional ConvLSTM has good generalization capabil-

ity. Once trained on one dataset, the learning experience

can be transferred easily to a new dataset which consists of

only very few video frames for adaptation.

Table 6. Results of transfer learning across datasets with MAE as

evaluation metric. FA: feature alignment; HGP: hierarchical Gaus-

sian process; GPA: Gaussian process adaptation; GPTL: Gaussian

process with transfer learning.

UCSD to Mall to

Method Mall UCSD

FA [5] 7.47 4.44

HGP [30] 4.36 3.32

GPA [17] 4.18 2.79

GPTL [17] 3.55 2.91

Bidirectional ConvLSTM 2.63 1.82

5. Conclusion

In this paper, we have pursued the direction of spatiotem-

poral modeling for improving crowd counting in videos.

By jointly capturing both spatial and temporal dependen-

cies, we overcome a major limitation of the recent CNN-

Figure 8. The UCSD and Mall datasets used for transfer learning

experiments. Left column: UCSD dataset; right column: Mall

dataset. Upper row: input images with annotations; lower row:

density maps.

based crowd counting methods and advance the state of

the art. Specifically, our models outperform existing crowd

counting methods on the UCF CC 50 dataset, Mall dataset,

and WorldExpo dataset, and achieve comparable results on

the UCSD dataset. The superior result on the UCF CC 50

dataset shows that our model can still perform well on ex-

tremely dense crowd images even when temporal informa-

tion is not available. As for the other three datasets, the

results show that explicitly exploiting temporal information

has a clear advantage. Finally, the last set of experiments

shows that our model is robust under the transfer learning

setting to generalize from previous learning experience.

In the future, we are going to extend our model to deal

with the active learning setting for crowd counting. We will

output an additional confidence map and actively query the

labeler to label only the less confident regions, which would

greatly alleviate the expensive labeling effort for crowd

counting in videos.
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