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Abstract

While metric learning is important for Person re-

identification (RE-ID), a significant problem in visual

surveillance for cross-view pedestrian matching, existing

metric models for RE-ID are mostly based on supervised

learning that requires quantities of labeled samples in al-

l pairs of camera views for training. However, this limits

their scalabilities to realistic applications, in which a large

amount of data over multiple disjoint camera views is avail-

able but not labelled. To overcome the problem, we propose

unsupervised asymmetric metric learning for unsupervised

RE-ID. Our model aims to learn an asymmetric metric, i.e.,

specific projection for each view, based on asymmetric clus-

tering on cross-view person images. Our model finds a

shared space where view-specific bias is alleviated and thus

better matching performance can be achieved. Extensive

experiments have been conducted on a baseline and five

large-scale RE-ID datasets to demonstrate the effectiveness

of the proposed model. Through the comparison, we show

that our model works much more suitable for unsupervised

RE-ID compared to classical unsupervised metric learning

models. We also compare with existing unsupervised RE-

ID methods, and our model outperforms them with notable

margins. Specifically, we report the results on large-scale

unlabelled RE-ID dataset, which is important but unfortu-

nately less concerned in literatures.

1. Introduction

Person re-identification (RE-ID) is a challenging prob-

lem focusing on pedestrian matching and ranking across

non-overlapping camera views. It remains an open problem

∗Corresponding author

although it has received considerable exploration recently,

in consideration of its potential significance in security ap-

plications, especially in the case of video surveillance. It

has not been solved yet principally because of the dramat-

ic intra-class variation and the high inter-class similarity.

Existing attempts mainly focus on learning to extract robust

and discriminative representations [33, 23, 19], and learning

matching functions or metrics [38, 14, 18, 22, 19, 20, 26]

in a supervised manner. Recently, deep learning has been

adopted to RE-ID community [1, 32, 28, 27] and has gained

promising results.

However, supervised strategies are intrinsically limited

due to the requirement of manually labeled cross-view train-

ing data, which is very expensive [31]. In the context of

RE-ID, the limitation is even pronounced because (1) man-

ually labeling may not be reliable with a huge number of im-

ages to be checked across multiple camera views, and more

importantly (2) the astronomical cost of time and money

is prohibitive to label the overwhelming amount of data

across disjoint camera views. Therefore, in reality super-

vised methods would be restricted when applied to a new

scenario with a huge number of unlabeled data.

To directly make full use of the cheap and valuable unla-

beled data, some existing efforts on exploring unsupervised

strategies [8, 35, 29, 13, 21, 24, 30, 12] have been reported,

but they are still not very satisfactory. One of the main rea-

sons is that without the help of labeled data, it is rather dif-

ficult to model the dramatic variances across camera views,

such as the variances of illumination and occlusion condi-

tions. Such variances lead to view-specific interference/bias

which can be very disturbing in finding what is more distin-

guishable in matching people across views (see Figure 1).

In particular, existing unsupervised models treat the sam-

ples from different views in the same manner, and thus the

effects of view-specific bias could be overlooked.
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Figure 1. Illustration of view-specific interference/bias and our

idea. Images from different cameras suffer from view-specific in-

terference, such as occlusions in Camera-1, dull illumination in

Camera-2, and the change of viewpoints between them. These

factors introduce bias in the original feature space, and therefore

unsupervised re-identification is extremely challenging. Our mod-

el structures data by clustering and learns view-specific projections

jointly, and thus finds a shared space where view-specific bias is

alleviated and better performance can be achieved. (Best viewed

in color)

In order to better address the problems caused by cam-

era view changes in unsupervised RE-ID scenarios, we pro-

pose a novel unsupervised RE-ID model named Clustering-

based Asymmetric1 MEtric Learning (CAMEL). The ideas

behind are on the two following considerations. First, al-

though conditions can vary among camera views, we as-

sume that there should be some shared space where the data

representations are less affected by view-specific bias. By

projecting original data into the shared space, the distance

between any pair of samples xi and xj is computed as:

d(xi,xj) = ‖UT
xi −U

T
xj‖2 =

√
(xi − xj)TM(xi − xj),

(1)

where U is the transformation matrix and M = UU
T.

However, it can be hard for a universal transformation to

implicitly model the view-specific feature distortion from

different camera views, especially when we lack label in-

formation to guide it. This motivates us to explicitly model

the view-specific bias. Inspired by the supervised asymmet-

ric distance model [4], we propose to embed the asymmetric

metric learning to our unsupervised RE-ID modelling, and

thus modify the symmetric form in Eq. (1) to an asymmetric

one:
d(xp

i ,x
q
j) = ‖UpT

x
p
i −U

qT
x
q
j‖2, (2)

where p and q are indices of camera views.

An asymmetric metric is more acceptable for unsuper-

vised RE-ID scenarios as it explicitly models the variances

among views by treating each view differently. By such

an explicit means, we are able to better alleviate the distur-

bances of view-specific bias.

The other consideration is that since we are not clear

about how to separate similar persons in lack of labeled da-

ta, it is reasonable to pay more attention to better separating

1“Asymmetric” means specific transformations for each camera view.

dissimilar ones. Such consideration motivates us to struc-

ture our data by clustering. Therefore, we develop asymmet-

ric metric clustering that clusters cross-view person images.

By clustering together with asymmetric modelling, the data

can be better characterized in the shared space, contributing

to better matching performance (see Figure 1).

In summary, the proposed CAMEL aims to learn view-

specific projection for each camera view by jointly learning

the asymmetric metric and seeking optimal cluster separa-

tions. In this way, the data from different views is projected

into a shared space where view-specific bias is aligned to an

extent, and thus better performance of cross-view matching

can be achieved.

So far in literatures, the unsupervised RE-ID models

have only been evaluated on small datasets which contain

only hundreds or a few thousands of images. However,

in more realistic scenarios we need evaluations of unsu-

pervised methods on much larger datasets, say, consisting

of hundreds of thousands of samples, to validate their s-

calabilities. In our experiments, we have conducted exten-

sive comparison on datasets with their scales ranging wide-

ly. In particular, we combined two existing RE-ID datasets

[37, 36] to obtain a larger one which contains over 230,000

samples. Experiments on this dataset (see Sec. 4.4) show

empirically that our model is more scalable to problems of

larger scales, which is more realistic and more meaningful

for unsupervised RE-ID models, while some existing unsu-

pervised RE-ID models are not scalable due to the expen-

sive cost in either storage or computation.

2. Related Work

At present, most existing RE-ID models are in a super-

vised manner. They are mainly based on learning distance

metrics or subspace [38, 14, 18, 22, 19, 20, 26], learning

view-invariant and discriminative features [33, 23, 19], and

deep learning frameworks [1, 32, 28, 27]. However, all

these models rely on substantial labeled training data, which

is typically required to be pair-wise for each pair of camer-

a views. Their performance depends highly on the quality

and quantity of labeled training data. In contrast, our mod-

el does not require any labeled data and thus is free from

prohibitively high cost of manually labeling and the risk of

incorrect labeling.

To directly utilize unlabeled data for RE-ID, several un-

supervised RE-ID models [35, 29, 21, 13, 24] have been

proposed. All these models differ from ours in two aspect-

s. On the one hand, these models do not explicitly exploit

the information on view-specific bias, i.e., they treat feature

transformation/quantization in every distinct camera view

in the same manner when modelling. In contrast, our model

tries to learn specific transformation for each camera view,

aiming to find a shared space where view-specific interfer-

ence can be alleviated and thus better performance can be
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achieved. On the other hand, as for the means to learn a

metric or a transformation, existing unsupervised method-

s for RE-ID rarely consider clustering while we introduce

an asymmetric metric clustering to characterize data in the

learned space. While the methods proposed in [4, 2, 3]

could also learn view-specific mappings, they are super-

vised methods and more importantly cannot be generalized

to handle unsupervised RE-ID.

Apart from our model, there have been some clustering-

based metric learning models [34, 25]. However, to our best

knowledge, there is no such attempt in RE-ID community

before. This is potentially because clustering is more sus-

ceptible to view-specific interference and thus data points

from the same view are more inclined to be clustered to-

gether, instead of those of a specific person across views.

Fortunately, by formulating asymmetric learning and fur-

ther limiting the discrepancy between view-specific trans-

forms, this problem can be alleviated in our model. There-

fore, our model is essentially different from these models

not only in formulation but also in that our model is able

to better deal with cross-view matching problem by treating

each view asymmetrically. We will discuss the differences

between our model and the existing ones in detail in Sec.

4.3.

3. Methodology

3.1. Problem Formulation

Under a conventional RE-ID setting, suppose we have

a surveillance camera network that consists of V camer-

a views, from each of which we have collected Np (p =
1, · · · , V ) images and thus there are N = N1 + · · · + NV

images in total as training samples.

Let X = [x1

1
, · · · ,x1

N1
, · · · ,xV

1
, · · · ,xV

NV
] ∈ R

M×N

denote the training set, with each column x
p
i (i =

1, · · · , Np; p = 1, · · · , V ) corresponding to an M -

dimensional representation of the i-th image from the p-

th camera view. Our goal is to learn V mappings i.e.,

U
1, · · · ,UV , where U

p ∈ R
M×T (p = 1, · · · , V ), cor-

responding to each camera view, and thus we can project

the original representation x
p
i from the original space R

M

into a shared space RT in order to alleviate the view-specific

interference.

3.2. Modelling

Now we are looking for some transformations to map

our data into a shared space where we can better separate

the images of one person from those of different person-

s. Naturally, this goal can be achieved by narrowing intra-

class discrepancy and meanwhile pulling the centers of all

classes away from each other. In an unsupervised scenario,

however, we have no labeled data to tell our model how it

can exactly distinguish one person from another who has a

confusingly similar appearance with him. Therefore, it is

acceptable to relax the original idea: we focus on gathering

similar person images together, and hence separating rela-

tively dissimilar ones. Such goal can be modelled by mini-

mizing an objective function like that of k-means clustering

[10]:

min
U

Fintra =
K∑

k=1

∑

i∈Ck

‖UT
xi − ck‖2, (3)

where K is the number of clusters, ck denotes the centroid

of the k-th cluster and Ck = {i|UTxi ∈ k-th cluster}.

However, clustering results may be affected extremely

by view-specific bias when applied in cross-view problem-

s. In the context of RE-ID, the feature distortion could be

view-sensitive due to view-specific interference like differ-

ent lighting conditions and occlusions [4]. Such interfer-

ence might be disturbing or even dominating in searching

the similar person images across views during clustering

procedure. To address this cross-view problem, we learn

specific projection for each view rather than a universal one

to explicitly model the effect of view-specific interference

and to alleviate it. Therefore, the idea can be further formu-

lated by minimizing an objective function below:

min
U1,··· ,UV

Fintra =
K∑

k=1

∑

i∈Ck

‖UpT
x
p
i − ck‖2

s.t. U
pT

Σ
p
U

p = I (p = 1, · · · , V ),

(4)

where the notation is similar to Eq. (3), with p denotes the

view index, Σp = X
p
X

pT/Np + αI and I represents the

identity matrix which avoids singularity of the covariance

matrix. The transformation U
p that corresponds to each

instance x
p
i is determined by the camera view which x

p
i

comes from. The quasi-orthogonal constraints on U
p en-

sure that the model will not simply give zero matrices. By

combining the asymmetric metric learning, we actually re-

alize an asymmetric metric clustering on RE-ID data across

camera views.

Intuitively, if we minimize this objective function direct-

ly, Up will largely depend on the data distribution from the

p-th view. Now that there is specific bias on each view,

any U
p and U

q could be arbitrarily different. This result is

very natural, but large inconsistencies among the learned

transformations are not what we exactly expect, because

the transformations are with respect to person images from

different views: they are inherently correlated and homo-

geneous. More critically, largely different projection ba-

sis pairs would fail to capture the discriminative nature of

cross-view images, producing an even worse matching re-

sult.

Hence, to strike a balance between the ability to capture

discriminative nature and the capability to alleviate view-

specific bias, we embed a cross-view consistency regular-

ization term into our objective function. And then, in con-
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(a) Original (b) Symmetric (c) Asymmetric

Figure 2. Illustration of how symmetric and asymmetric metric

clustering structure data using our method for the unsupervised

RE-ID problem. The samples are from the SYSU dataset [4]. We

performed PCA for visualization. One shape (triangle or circle)

stands for samples from one view, while one color indicates sam-

ples of one person. (a) Original distribution (b) distribution in the

common space learned by symmetric metric clustering (c) distri-

bution in the shared space learned by asymmetric metric cluster-

ing. (Best viewed in color)

sideration of better tractability, we divide the intra-class ter-

m by its scale N , so that the regulating parameter would

not be sensitive to the number of training samples. Thus,

our optimization task becomes

min
U1,··· ,UV

Fobj =
1

N
Fintra + λFconsistency

=
1

N

K∑

k=1

∑

i∈Ck

‖UpT
x
p
i − ck‖2 + λ

∑

p �=q

‖Up −U
q‖2F

s.t. U
pT

Σ
p
U

p = I (p = 1, · · · , V ),
(5)

where λ is the cross-view regularizer and ‖·‖F denotes the

Frobenius norm of a matrix. We call the above model the

Clustering-based Asymmetric MEtric Learning (CAMEL).

To illustrate the differences between symmetric and

asymmetric metric clustering in structuring data in the RE-

ID problem, we further show the data distributions in Figure

2. We can observe from Figure 2 that the view-specific bias

is obvious in the original space: triangles in the upper left

and circles in the lower right. In the common space learned

by symmetric metric clustering, the bias is still obvious. In

contrast, in the shared space learned by asymmetric metric

clustering, the bias is alleviated and thus the data is bet-

ter characterized according to the identities of the persons,

i.e., samples of one person (one color) gather together into

a cluster.2

3.3. Optimization

For convenience, we denote yi = U
pTx

p
i . Then we have

Y ∈ R
T×N , where each column yi corresponds to the pro-

jected new representation of that from X . For optimization,

we rewrite our objective function in a more compact form.

2More distribution illustrations for gradual stages of CAMEL can be

found in the supplementary.

The first term can be rewritten as follow [6]:

1

N

K∑

k=1

∑

i∈Ck

‖yi − ck‖2 =
1

N
[Tr(Y T

Y )− Tr(HT
Y

T
Y H)],

(6)

where

H =
[
h1, ...,hK

]
, h

T

khl =

{
0 k �= l

1 k = l
(7)

hk =
[
0, · · · , 0, 1, · · · , 1, 0, · · · , 0, 1, · · ·

]T
/
√
nk (8)

is an indicator vector with the i-th entry corresponding to

the instance yi, indicating that yi is in the k-th cluster if the

corresponding entry does not equal zero. Then we construct

X̃ =

⎡
⎢⎢⎢⎣

x1

1 · · · x1

N1
0 · · · 0 · · · 0

0 · · · 0 x2

1 · · · x2

N2
· · · 0

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · xV
NV

⎤
⎥⎥⎥⎦ (9)

Ũ =
[
U

1T, · · · ,UV T
]T

, (10)

so that

Y = Ũ
T
X̃, (11)

and thus Eq. (6) becomes

1

N

K∑

k=1

∑

i∈Ck

‖yi − ck‖2

=
1

N
Tr(X̃T

ŨŨ
T
X̃)− 1

N
Tr(HT

X̃
T
ŨŨ

T
X̃H).

(12)

As for the second term, we can also rewrite it as follow:

λ
∑

p �=q

‖Up −U
q‖2F = λTr(ŨT

DŨ), (13)

where

D =

⎡
⎢⎢⎢⎣

(V − 1)I −I −I · · · −I

−I (V − 1)I −I · · · −I

...
...

...
...

...

−I −I −I · · · (V − 1)I

⎤
⎥⎥⎥⎦ . (14)

Then, it is reasonable to relax the constraints

U
pT

Σ
p
U

p = I (p = 1, · · · , V ) (15)

to
V∑

p=1

U
pT

Σ
p
U

p = Ũ
T
Σ̃Ũ = V I, (16)

where Σ̃ = diag(Σ1, · · · ,ΣV ) because what we expect

is to prevent each U
p from shrinking to a zero matrix. The

relaxed version of constraints is able to satisfy our need, and

it bypasses trivial computations.
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By now we can rewrite our optimization task as follow:

min
Ũ

Fobj =
1

N
Tr(X̃T

ŨŨ
T
X̃) + λTr(ŨT

DŨ)

− 1

N
Tr(HT

X̃
T
ŨŨ

T
X̃H)

s.t. Ũ
T
Σ̃Ũ = V I.

(17)

It is easy to realize from Eq. (5) that our objective func-

tion is highly non-linear and non-convex. Fortunately, in

the form of Eq. (17) we can find that once H is fixed, La-

grange’s method can be applied to our optimization task.

And again from Eq. (5), it is exactly the objective of k-

means clustering once Ũ is fixed [10]. Thus, we can adopt

an alternating algorithm to solve the optimization problem.

Fix H and optimize Ũ . Now we see how we optimize

Ũ . After fixing H and applying the method of Lagrange

multiplier, our optimization task (17) is transformed into an

eigen-decomposition problem as follow:

Gu = γu, (18)

where γ is the Lagrange multiplier (and also is the eigen-

value here) and

G = Σ̃
−1(λD +

1

N
X̃X̃

T − 1

N
X̃HH

T
X̃

T). (19)

Then, Ũ can be obtained by solving this eigen-

decomposition problem.

Fix Ũ and optimize H . As for the optimization of H ,

we can simply fix Ũ and conduct k-means clustering in the

learned space. Each column of H , hk, is thus constructed

according to the clustering result.

Based on the analysis above, we can now propose the

main algorithm of CAMEL in Algorithm 1. We set maxi-

mum iteration to 100. After obtaining Ũ , we decompose it

back into {U1, · · · ,UV }. The algorithm is guaranteed to

convergence, as given in the following proposition:

Proposition 1. In Algorithm 1, Fobj is guaranteed to con-

vergence.

Proof. In each iteration, when Ũ is fixed, if H is the lo-

cal minimizer, k-means remains H unchanged, otherwise

it seeks the local minimizer. When H is fixed, Ũ has a

closed-form solution which is the global minimizer. There-

fore, the Fobj decreases step by step. As Fobj ≥ 0 has a

lower bound 0, it is guaranteed to convergence.

4. Experiments

4.1. Datasets

Since unsupervised models are more meaningful when

the scale of problem is larger, our experiments were con-

ducted on relatively big datasets except VIPeR [9] which

Algorithm 1: CAMEL

Input : X̃, K, ǫ = 10
−8

Output: Ũ

1 Conduct k-means clustering with respect to each column of X̃ to initialize

H according to Eq. (7) and (8).

2 Fix H and solve the eigen-decomposition problem described by Eq. (18) and

(19) to construct Ũ .

3 while decrement of Fobj > ǫ & maximum iteration unreached do

• Construct Y according to Eq. (11).

• Fix Ũ and conduct k-means clustering with respect to each column

of Y to update H according to Eq. (7) and (8).

• Fix H and solve the eigen-decomposition problem described by

Eq. (18) and (19) to update Ũ .

4 end

(a) (b) (c) (d) (e) (f)

Figure 3. Samples of the datasets. Every two images in a column

are from one identity across two disjoint camera views. (a) VIPeR

(b) CUHK01 (c) CUHK03 (d) SYSU (e) Market (f) ExMarket.

(Best viewed in color)

Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket

# Samples 1,264 3,884 13,164 24,448 32,668 236,696

# Views 2 2 6 2 6 6

Table 1. Overview of dataset scales. “#” means “the number of”.

is small but widely used. Various degrees of view-specific

bias can be observed in all these datasets (see Figure 3).

The VIPeR dataset contains 632 identities, with two im-

ages captured from two camera views of each identity.

The CUHK01 dataset [16] contains 3,884 images of 971

identities captured from two disjoint views. There are two

images of every identity from each view.

The CUHK03 dataset [17] contains 13,164 images of

1,360 pedestrians captured from six surveillance camera

views. Besides hand-cropped images, samples detected by

a state-of-the-art pedestrian detector are provided.

The SYSU dataset [4] includes 24,448 RGB images of 502

persons under two surveillance cameras. One camera view

mainly captured the frontal or back views of persons, while

the other observed mostly the side views.

The Market-1501 dataset [37] (Market) contains 32,668

images of 1,501 pedestrians, each of which was captured

by at most six cameras. All of the images were cropped by

a pedestrian detector. There are some bad-detected samples
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in this datasets as distractors as well.

The ExMarket dataset3. In order to evaluate unsupervised

RE-ID methods on even larger scale, which is more real-

istic, we further combined the MARS dataset [36] with

Market. MARS is a video-based RE-ID dataset which con-

tains 20,715 tracklets of 1,261 pedestrians. All the identities

from MARS are of a subset of those from Market. We then

took 20% frames (each one in every five successive frames)

from the tracklets and combined them with Market to obtain

an extended version of Market (ExMarket). The imbalance

between the numbers of samples from the 1,261 persons and

other 240 persons makes this dataset more challenging and

realistic. There are 236,696 images in ExMarket in total,

and 112,351 images of them are of training set. A brief

overview of the dataset scales can be found in Table 1.

4.2. Settings

Experimental protocols: A widely adopted protocol was

followed on VIPeR in our experiments [19], i.e., random-

ly dividing the 632 pairs of images into two halves, one of

which was used as training set and the other as testing set.

This procedure was repeated 10 times to offer average per-

formance. Only single-shot experiments were conducted.

The experimental protocol for CUHK01 was the same as

that in [19]. We randomly selected 485 persons as train-

ing set and the other 486 ones as testing set. The evaluat-

ing procedure was repeated 10 times. Both multi-shot and

single-shot settings were conducted.

The CUHK03 dataset was provided together with its rec-

ommended evaluating protocol [17]. We followed the pro-

vided protocol, where images of 1,160 persons were chosen

as training set, images of another 100 persons as validation

set and the remainders as testing set. This procedure was re-

peated 20 times. In our experiments, detected samples were

adopted since they are closer to real-world settings. Both

multi-shot and single-shot experiments were conducted.

As for the SYSU dataset, we randomly picked 251

pedestrians’ images as training set and the others as testing

set. In the testing stage, we basically followed the protocol

as in [4]. That is, we randomly chose one and three images

of each pedestrian as gallery for single-shot and multi-shot

experiments, respectively. We repeated the testing proce-

dure by 10 times.

Market is somewhat different from others. The evalua-

tion protocol was also provided along with the data [37].

Since the images of one person came from at most six

views, single-shot experiments were not suitable. Instead,

multi-shot experiments were conducted and both cumula-

tive matching characteristic (CMC) and mean average pre-

cision (MAP) were adopted for evaluation [37]. The pro-

tocol of ExMarket was identical to that of Market since the

3Demo code for the model and the ExMarket dataset can be found on

http://isee.sysu.edu.cn/project/CAMEL.html.

identities were completely the same as we mentioned above.

Data representation: In our experiments we used the deep-

learning-based JSTL feature proposed in [32]. We imple-

mented it using the 56-layer ResNet [11], which produced

64-D features. The original JSTL was adopted to our imple-

mentation to extract features on SYSU, Market and ExMar-

ket. Note that the training set of the original JSTL contained

VIPeR, CUHK01 and CUHK03, violating the unsupervised

setting. So we trained a new JSTL model without VIPeR

in its training set to extract features on VIPeR. The similar

procedures were done for CUHK01 and CUHK03.

Parameters: We set λ, the cross-view consistency regular-

izer, to 0.01. We also evaluated the situation when λ goes

to infinite, i.e., the symmetric version of our model in Sec.

4.4, to show how important the asymmetric modelling is.

Regarding the parameter T which is the feature dimen-

sion after the transformation learned by CAMEL, we set T
equal to original feature dimension i.e., 64, for simplicity.

In our experiments, we found that CAMEL can align data

distributions across camera views even without performing

any further dimension reduction. This may be due to the

fact that, unlike conventional subspace learning models, the

transformations learned by CAMEL are view-specific for d-

ifferent camera views and always non-orthogonal. Hence,

the learned view-specific transformations can already re-

duce the discrepancy between the data distributions of d-

ifferent camera views.

As for K, we found that our model was not sensitive to

K when N � K and K was not too small (see Sec. 4.4),

so we set K = 500. These parameters were fixed for all

datasets.

4.3. Comparison

Unsupervised models are more significant when applied

on larger datasets. In order to make comprehensive and fair

comparisons, in this section we compare CAMEL with the

most comparable unsupervised models on six datasets with

their scale orders varying from hundreds to hundreds of t-

housands. We show the comparative results measured by

the rank-1 accuracies of CMC and MAP (%) in Table 2.

Comparison to Related Unsupervised RE-ID Models. In

this subsection we compare CAMEL with the sparse dictio-

nary learning model (denoted as Dic) [13], sparse represen-

tation learning model ISR [21], kernel subspace learning

model RKSL [30] and sparse auto-encoder (SAE) [15, 5].

We tried several sets of parameters for them, and report the

best ones. We also adopt the Euclidean distance which is

adopted in the original JSTL paper [32] as a baseline (de-

noted as JSTL).

From Table 2 we can observe that CAMEL outperforms

other models on all the datasets on both settings. In addi-

tion, we can further see from Figure 4 that CAMEL outper-

forms other models at any rank. One of the main reasons
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Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket

Setting SS SS/MS SS/MS SS/MS MS MS

Dic [13] 29.9 49.3/52.9 27.4/36.5 21.3/28.6 50.2(22.7) 52.2(21.2)

ISR [21] 27.5 53.2/55.7 31.1/38.5 23.2/33.8 40.3(14.3) -

RKSL [30] 25.8 45.4/50.1 25.8/34.8 17.6/23.0 34.0(11.0) -

SAE [15] 20.7 45.3/49.9 21.2/30.5 18.0/24.2 42.4(16.2) 44.0(15.1)

JSTL [32] 25.7 46.3/50.6 24.7/33.2 19.9/25.6 44.7(18.4) 46.4(16.7)

AML [34] 23.1 46.8/51.1 22.2/31.4 20.9/26.4 44.7(18.4) 46.2(16.2)

UsNCA [25] 24.3 47.0/51.7 19.8/29.6 21.1/27.2 45.2(18.9) -

CAMEL 30.9 57.3/61.9 31.9/39.4 30.8/36.8 54.5(26.3) 55.9(23.9)

Table 2. Comparative results of unsupervised models on the six

datasets, measured by rank-1 accuracies and MAP (%). “-” mean-

s prohibitive time consumption due to time complexities of the

models. “SS” represents single-shot setting and “MS” represents

multi-shot setting. For Market and ExMarket, MAP is also provid-

ed in the parentheses due to the requirement in the protocol [37].

Such a format is also applied in the following tables.

is that the view-specific interference is noticeable in these

datasets. For example, we can see in Figure 3(b) that on

CUHK01, the changes of illumination are extremely severe

and even human beings may have difficulties in recognizing

the identities in those images across views. This impedes

other symmetric models from achieving higher accuracies,

because they potentially hold an assumption that the invari-

ant and discriminative information can be retained and ex-

ploited through a universal transformation for all views. But

CAMEL relaxes this assumption by learning an asymmetric

metric and then can outperform other models significantly.

In Sec. 4.4 we will see the performance of CAMEL would

drop much when it degrades to a symmetric model.

Comparison to Clustering-based Metric Learning Mod-

els. In this subsection we compare CAMEL with a typical

model AML [34] and a recently proposed model UsNCA

[25]. We can see from Fig. 4 and Table 2 that compared

to them, CAMEL achieves noticeable improvements on all

the six datasets. One of the major reasons is that they do not

consider the view-specific bias which can be very disturb-

ing in clustering, making them unsuitable for RE-ID prob-

lem. In comparison, CAMEL alleviates such disturbances

by asymmetrically modelling. This factor contributes to the

much better performance of CAMEL.

Comparison to the State-of-the-Art. In the last sub-

sections, we compared with existing unsupervised RE-ID

methods using the same features. In this part, we also com-

pare with the results reported in literatures. Note that most

existing unsupervised RE-ID methods have not been eval-

uated on large datasets like CUHK03, SYSU, or Market,

so Table 3 only reports the comparative results on VIPeR

and CUHK01. We additionally compared existing unsuper-

vised RE-ID models, including the hand-craft-feature-based

SDALF [8] and CPS [7], the transfer-learning-based UDML

[24], graph-learning-based model (denoted as GL) [12], and

local-salience-learning-based GTS [29] and SDC [35]. We

Rank

5 10 15 20

M
a
tc

h
in

g
 A

c
c
u
ra

c
y
 (

%
)

20

30

40

50

60

70

DIC

ISR

UsNCA

AML

SAE

RKSL

JSTL

CAMEL

(a) VIPeR

Rank

5 10 15 20

M
a

tc
h

in
g

 A
c
c
u

ra
c
y
 (

%
)

45

50

55

60

65

70

75

80

85

90

95

DIC

ISR

UsNCA

AML

SAE

RKSL

JSTL

CAMEL

(b) CUHK01

Rank

5 10 15 20

M
a
tc

h
in

g
 A

c
c
u
ra

c
y
 (

%
)

20

30

40

50

60

70

80

DIC

ISR

UsNCA

AML

SAE

RKSL

JSTL

CAMEL

(c) CUHK03

Rank

5 10 15 20

M
a
tc

h
in

g
 A

c
c
u
ra

c
y
 (

%
)

20

30

40

50

60

70

DIC

ISR

UsNCA

AML

SAE

RKSL

JSTL

CAMEL

(d) SYSU

Rank

5 10 15 20

M
a
tc

h
in

g
 A

c
c
u
ra

c
y
 (

%
)

40

45

50

55

60

65

70

75

80

85

DIC

ISR

UsNCA

AML

SAE

RKSL

JSTL

CAMEL

(e) Market

Rank

5 10 15 20

M
a
tc

h
in

g
 A

c
c
u
ra

c
y
 (

%
)

45

50

55

60

65

70

75

80

DIC

AML

SAE

JSTL

CAMEL

(f) ExMarket

Figure 4. CMC curves. For CUHK01, CUHK03 and SYSU, we

take the results under single-shot setting as examples. Similar pat-

terns can be observed on multi-shot setting.

Model SDALF CPS UDML GL GTS SDC CAMEL

[8] [7] [24] [12] [29] [35]

VIPeR 19.9 22.0 31.5 33.5 25.2 25.8 30.9

CUHK01 9.9 - 27.1 41.0 - 26.6 57.3

Table 3. Results compared to the state-of-the-art reported in liter-

atures, measured by rank-1 accuracies (%). “-” means no reported

result.

can observe from Table 3 that our model CAMEL can out-

perform the state-of-the-art by large margins on CUHK01.

Comparison to Supervised Models. Finally, in order to

see how well CAMEL can approximate the performance of

supervised RE-ID, we additionally compare CAMEL with

its supervised version (denoted as CAMELs) which is easily

derived by substituting the clustering results by true labels,

and three standard supervised models, including the widely

used KISSME [14], XQDA [19], the asymmetric distance

model CVDCA [4]. The results are shown in Table 4. We

can see that CAMELs outperforms CAMEL by various de-

grees, indicating that label information can further improve

CAMEL’s performance. Also from Table 4, we notice that

CAMEL can be comparable to other standard supervised

models on some datasets like CUHK01, and even outper-
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Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket

Setting SS SS/MS SS/MS SS/MS MS MS

KISSME [14] 28.4 53.0/57.1 37.8/45.4 24.7/31.8 51.1(24.5) 48.0(18.3)

XQDA [19] 28.9 54.3/58.2 36.7/43.7 25.2/31.7 50.8(24.4) 47.4(18.1)

CVDCA [4] 37.6 57.1/60.9 37.0/44.6 31.1/38.9 52.6(25.3) 51.5(22.6)

CAMELs 33.7 58.5/62.7 45.1/53.5 31.6/37.6 55.0(27.1) 56.1(24.1)

CAMEL 30.9 57.3/61.9 31.9/39.4 30.8/36.8 54.5(26.3) 55.9(23.9)

Table 4. Results compared to supervised models using the same

JSTL features.

form some of them. It is probably because the used JSTL

model had not been fine-tuned on the target datasets: this

was for a fair comparison with unsupervised models which

work on completely unlabelled training data. Nevertheless,

this suggests that the performance of CAMEL may not be

far below the standard supervised RE-ID models.

4.4. Further Evaluations

The Role of Asymmetric Modeling. We show what is go-

ing to happen if CAMEL degrades to a common symmetric

model in Table 5. Apparently, without asymmetrically mod-

elling each camera view, our model would be worsen large-

ly, indicating that the asymmetric modeling for clustering

is rather important for addressing the cross-view matching

problem in RE-ID as well as in our model.

Sensitivity to the Number of Clustering Centroids. We

take CUHK01, Market and ExMarket datasets as examples

of different scales (see Table 1) for this evaluation. Table 6

shows how the performance varies with different numbers

of clustering centroids, K. It is obvious that the perfor-

mance only fluctuates mildly when N � K and K is not

too small. Therefore CAMEL is not very sensitive to K e-

specially when applied to large-scale problems. To further

explore the reason behind, we show in Table 7 the rate of

clusters which contain more than one persons, in the initial

stage and convergence stage in Algorithm 1. We can see

that (1) in spite of that K is varying, there is always a num-

ber of clusters containing more than one persons in both

the initial stage and convergence stage. This indicates that

our model works without the requirement of perfect clus-

tering results. And (2), although the number is various, in

the convergence stage the number is consistently decreased

compared to initialization stage. This shows that the cluster

results are improved consistently. These two observations

suggests that the clustering should be a mean to learn the

asymmetric metric, rather than an ultimate objective.

Adaptation Ability to Different Features. At last, we

show that CAMEL can be effective not only when adopting

deep-learning-based JSTL features. We additionally adopt-

ed the hand-crafted LOMO feature proposed in [19]. We

performed PCA to produce 512-D LOMO features, and the

results are shown in Table 8. Among all the models, the

results of Dic and ISR are the most comparable (Dic and

Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket

Setting SS SS/MS SS/MS SS/MS MS MS

CMEL 27.5 52.5/54.9 29.8/37.5 25.4/30.9 47.6(21.5) 48.7(20.0)

CAMEL 30.9 57.3/61.9 31.9/39.4 30.8/36.8 54.5(26.3) 55.9(23.9)

Table 5. Performances of CAMEL compared to its symmetric ver-

sion, denoted as CMEL.

K 250 500 750 1000 1250

CUHK01 56.59 57.35 56.26 55.12 52.75

Market 54.48 54.45 54.54 54.48 54.48

ExMarket 55.49 55.87 56.17 55.93 55.67

Table 6. Performances of CAMEL when the number of cluster-

s, K, varies. Measured by single-shot rank-1 accuracies (%) for

CUHK01 and multi-shot for Market and ExMarket.

K 250 500 750 1000 1250

Initial Stage 77.6% 57.0% 26.3% 11.6% 6.0%

Convergence Stage 55.8% 34.3% 18.2% 7.2% 4.8%

Table 7. Rate of clusters containing similar persons on CUHK01.

Similar trend can be observed on other datasets.

Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket

Setting SS SS/MS SS/MS SS/MS MS MS

Dic [13] 15.8 19.6/23.6 8.6/13.4 14.2/24.4 32.8(12.2) 33.8(12.2)

ISR [21] 20.8 22.2/27.1 16.7/20.7 11.7/21.6 29.7(11.0) -

L2 11.6 14.0/18.6 7.6/11.6 10.8/18.9 27.4(8.3) 27.7(8.0)

CAMEL 26.4 30.0/36.2 17.3/23.4 23.6/35.6 41.4(14.1) 42.2(13.7)

Table 8. Results using 512-D LOMO features.

ISR take all second places). So for clarity, we only compare

CAMEL with them and L2 distance as baseline. From the

table we can see that CAMEL can outperform them.

5. Conclusion

In this work, we have shown that metric learning can be

effective for unsupervised RE-ID by proposing clustering-

based asymmetric metric learning called CAMEL. CAMEL

learns view-specific projections to deal with view-specific

interference, and this is based on existing clustering (e.g.,

the k-means model demonstrated in this work) on RE-ID

unlabelled data, resulting in an asymmetric metric cluster-

ing. Extensive experiments show that our model can out-

perform existing ones in general, especially on large-scale

unlabelled RE-ID datasets.
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