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Abstract

In this paper, we investigate a weakly-supervised ob-

ject detection framework. Most existing frameworks focus

on using static images to learn object detectors. However,

these detectors often fail to generalize to videos because of

the existing domain shift. Therefore, we investigate learning

these detectors directly from boring videos of daily activi-

ties. Instead of using bounding boxes, we explore the use of

action descriptions as supervision since they are relatively

easy to gather. A common issue, however, is that objects

of interest that are not involved in human actions are of-

ten absent in global action descriptions known as “missing

label”. To tackle this problem, we propose a novel tempo-

ral dynamic graph Long Short-Term Memory network (TD-

Graph LSTM). TD-Graph LSTM enables global temporal

reasoning by constructing a dynamic graph that is based

on temporal correlations of object proposals and spans the

entire video. The missing label issue for each individual

frame can thus be significantly alleviated by transferring

knowledge across correlated objects proposals in the whole

video. Extensive evaluations on a large-scale daily-life ac-

tion dataset (i.e., Charades) demonstrates the superiority of

our proposed method. We also release object bounding-box

annotations for more than 5,000 frames in Charades. We

believe this annotated data can also benefit other research

on video-based object recognition in the future.

1. Introduction

With the recent success of data-driven approaches in

recognition, there has been a growing interest in scaling

up object detection systems [38]. However, unlike clas-

sification, exhaustively annotating object instances with

diverse classes and bounding boxes is hardly scalable.

Therefore, there has been a surge in exploring in unsu-

pervised and weakly-supervised approaches for object de-

tection. However, fully unsupervised approaches [30, 17]

without any annotations currently give considerably inferior

performance on similar tasks, while conventional weakly-

supervised methods [2, 16, 42] use static images to learn

the detectors. These object detectors, however, fail to gen-

eralize to videos due to shift in domain. One alternative is

to use these weakly-supervised approaches but using video

frames themselves. However, current approaches rely heav-

ily on the accuracy of image-level labels and are vulnerable

to missing labels (as shown in Figure 1). Can we design a

learning framework that is robust to these missing labels ?

In this paper, we explore a novel slightly-supervised

video object detection pipeline that uses human action la-

bels as supervision for object detection. As illustrated in

Figure 1, the coarse human action labels spanning multi-

ple frames (e.g., watching a laptop or sitting in a chair)

help indicate the presence of participating object instances

(e.g., laptop and chair). Compared to prior works, our in-

vestigated setting has two major merits: 1) the textual ac-

tion descriptions for videos are much cheaper to collect,

e.g., through text tags, search queries and action recogni-

tion datasets [32, 10, 36]; and 2) the intrinsic temporal co-

herence in video domain provides more cues to facilitate the

recognition of each object instance and help overcome the

missing label problem.

Action-driven supervision for object detection is much

more challenging since it can only access object labels for

some specific frames, while a considerable number of un-

involved object labels are unknown. As shown in the right

column of Figure 1, four action categories are labeled for

different periods in the given video. In each period, the ac-

tion label (e.g., tidying a shelf ) only points out the shelf

category and misses the rest of the categories such as lap-

top, table, chair and refrigerator. On the other hand, the

missed categories (e.g., laptop) may appear in other labeled

actions in the same video. Inspired by this observation, we

propose to alleviate the missing label issue by exploiting the

rich temporal correlations of object instances in the video.

The core idea is that action labels in a different period may

help to infer the presence of some objects in this current pe-

riod. Specifically, a novel temporal dynamic graph LSTM

(TD-Graph LSTM) framework is introduced to model the

complex and dynamic temporal graph structure for object

proposals in the whole video and thus enable the joint rea-

soning for all frames. The knowledge of all action labels in
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Figure 1. (Left) shows the traditional weakly-supervised object detection setting. Each training image has an accurate image-level an-

notation about object categories. (Right) shows our action-driven weakly-supervised video detection setting. Video-level action labels

are provided for each video, indicating what and when (the start and end) the action happened in the video. For each frame, the object

categories in its left-below are the participating objects in the action label, while those in its right-below are all objects appearing in the

frame.

the video can thus be effectively transfered into all frames

to enhance their frame-level categorizations.

To incorporate the temporal correlation of object propos-

als for global reasoning, we resort to the family of recurrent

neural networks [11] due to their good sequential modeling

capability. However, existing recurrent networks are largely

limited in the constrained information propagation on fixed

nodes following predefined routes such as tree-LSTM [39],

graph-LSTM [20] and structural-RNN [12, 18]. In con-

trast, due to the unknown object localizations and temporal

motion, it is difficult to find an optimal structure that con-

nects object proposals for routed information propagation

to achieve weakly-supervised video object detection. The

proposed TD-Graph LSTM, posed as a general dynamic re-

current structure, overcomes these limitations by perform-

ing the dynamic information propagation based on an adap-

tive temporal graph that varies over both time periods in the

video and model status in each updating step.

Specifically, the dynamic temporal graph is constructed

based on the visual correlation of object proposals across

neighboring frames. The set of graph nodes denotes the en-

tire collection of object proposals in all the frames, while

graph edges are adaptively specified for consecutive frames

in distinct learning steps. At each iteration, given the up-

dated feature representation of object proposals, we only ac-

tivate the edge connections with object proposals that have

highest similarities with each current proposal. The adap-

tive graph topology can thus be constructed where different

proposals are connected with different temporal correlated

neighbors. TD-Graph LSTM alternatively performs the in-

formation propagation through each temporal graph topol-

ogy and updates the graph topology at each iteration. In

this way, our model enables the joint optimization of feature

learning and temporal inference towards a robust slightly-

supervised detection framework.

The contributions of this paper are summarized as 1)

We explore a new slightly-supervised video object detec-

tion pipeline that leverages convenient action descriptions

as the supervision; 2) A novel TD-Graph LSTM frame-

work alleviates the missing label issue by enabling global

reasoning over the whole video; 3) TD-Graph LSTM is

posed as a general dynamic recurrent structure that per-

forms temporal information propagation on an adaptively

updated graph topology at each iteration; 4) We collect and

release 5,000 frame annotations with object-level bounding

boxes on daily-life videos, with the goal of evaluating our

model and also helping advance the object detection com-

munity.

2. Related Works

Weakly-Supervised Object Detection. Though recent

state-of-the-art fully-supervised detection pipelines [9, 28,

8, 27, 23] have achieved great progress, they heavily rely

on large-scale bounding-box annotations. To alleviate this

expensive annotation labor, weakly-supervised methods [6,

34, 1, 35, 41, 4, 13, 46] have recently attracted a lot of in-

terest. These approaches use cheaper image-level object la-

bels rather than bounding boxes. Beyond the image domain,

another line of research [43, 19, 33, 26, 25, 14, 17, 45]

attempts to exploit the temporal information embedded in

videos to facilitate the weakly-supervised object detection.

Different from all the existing pipelines, we investigate a

much cheaper action-driven object detection setting that

aims to detect all object instances given only action descrip-

tions. In addition, instead of employing multiple separate

steps (e.g., detection and tracking) [15, 17, 43, 19, 33] to

capture motion patterns, our TD-graph LSTM is an end-to-

end framework that incorporates the intrinsic temporal co-

herence with a designed dynamic recurrent network struc-

ture into the action-driven slightly-supervised detection.

Sequential Modeling. Recurrent neural networks, espe-
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Figure 2. Our TD-Graph LSTM. Each frame is first passed into a spatial ConvNet to extract region-level features. A temporal graph

structure is then constructed by dynamic edge connections between regions in two consecutive frames. TD-Graph LSTM then recurrently

propagates information over the updated graph to generate temporal-aware feature representations for all regions. A region-level classifica-

tion module is then adopted to produce category confidences of all regions in each frame, which are aggregated to obtain frame-level action

predictions. The final action-driven loss for each frame is used to feedback signals into the whole model. After each gradient updating, the

temporal graph is dynamically updated based on new visual features. For clarity, some edges in the graph are omitted.

cially Long Short-Term Memory (LSTM) [11], have been

adopted to address many video processing tasks such as

action recognition [24], action detection [44], video pre-

diction [37, 31], and video summarization [47]. However,

limited by the fixed propagation route of existing LSTM

structures [11], most of the previous works [24, 44, 37] can

only learn the temporal interdependency between the holis-

tic frames rather than more fine-grained object-level motion

patterns. Some recent approaches develop more compli-

cated recurrent network structures. For instance, structural-

RNN [12] develops a scalable method for casting an arbi-

trary spatio-temporal graph as a rich RNN mixture. A more

recent Graph LSTM [21] defined over a pre-defined graph

topology enables the inference for more complex structured

data. However, both of them require a pre-fixed network

structure for information propagation, which is impractical

for weakly-supervised/slightly-supervised object detection

without the knowledge of object localizations and precise

object class labels. To handle the propagation over dynami-

cally specified graph structures, we thus propose a new tem-

poral dynamic network structure that supports the inference

over the constantly changing graph topologies in different

training steps.

3. The proposed TD-Graph LSTM

Overview. We establish a fully-differentiable tempo-

ral dynamic graph LSTM (TD-Graph LSTM) framework

for the action-driven video object detection task. For each

video, the provided annotations are a set of action labels

Y = {y1, . . . , yN}, each of which describes the action

yi =< ai, ci > appearing within a consecutive sequence of

frames {Ids
i
, . . . , Ide

i
}, where dsi and dei indicate the action

starting and ending frame index. ai denotes the correspond-

ing action noun while ci denotes the object noun. For ex-

ample, the action tidying a shelf is comprised of the action

Tidying and object a shelf. To achieve weakly-supervised

object detection, we only extract the object nouns {ci} of

action labels in all videos and eliminate the prepositions

(e.g., a, the) to produce an object category corpus (e.g.,

shelf, door, cup) with C classes. Each frame I can be

thus assigned with several participating object classes. For

example, frames with two actions will be assigned with

more than one participating object class, as shown in Fig-

ure 1. The action-driven object detection is thus posed as a

multi-class weakly-supervised video object detection prob-

lem. For simplicity, we eliminate the subscript i of action

labels in the following.

Figure 2 gives an overview of our TD-Graph LSTM.

Each frame in the input video is first passed through a

spatial ConvNet to obtain spatial visual features for re-

gion proposals. Based on visual features, similar regions

in two consecutive frames are discovered and associated

to indicate the same object across the temporal domain.

A temporal graph structure is constructed by connecting

all of the semantically similar regions in two consecutive

frames, where graph nodes are represented by region pro-

posals. The TD-Graph LSTM unit is then employed to re-

currently propagate information over the whole temporal

graph, where LSTM units take the spatial visual features

as the input states. Benefiting from the graph topology, TD-

Graph LSTM is capable of incorporating temporal motion

patterns for participating objects in the action in a more ef-

ficient and meaningful way. TD-Graph LSTM outputs the

enhanced temporal-aware features of all regions. Region-

level classification is then employed to produce classifica-

tion confidences. These region-level predictions can finally

be aggregated to generate frame-level object class predic-

tion, supervised by the object classes from action labels.

The action-driven object categorization loss thus enables

the holistic back-propagation into all regions in the video,
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Figure 3. Illustration of the TD-Graph LSTM layer at t-th gradient updating. Given the constructed temporal graph Gt, the TD-Graph

LSTM recurrently updates the hidden states of each frame Ii, i ∈ {1, . . . , N} as the enhanced temporal-aware visual feature, and then

feeds these features into a region-level classification module to compute final category confidences of all regions. Specially, each LSTM

unit takes the shared frame-level hidden states h̄
t
i−1 and memory states m̄

t
i−1, and input features for all regions as the inputs. Then the

updated hidden states and memory states for all regions are produced, which are then averaged to generate the new frame-level hidden

states h̄
t
i and memory states m̄

t
i for updating next frame Ii+1. The input features of each region consist of the visual features f

t
i,j and

temporal context features f̂ ti,j that are aggregated by its connected regions with edge weights in the preceding frame.

where the prediction of each frame can mutually benefit

from each other.

3.1. TDGraph LSTM Optimization

The proposed TD-Graph LSTM is comprised by three

parametrized modules: spatial ConvNet Φ(·) for visual fea-

ture extraction, TD-Graph LSTM unit Ψ(·) for recurrent

temporal information propagation, and region-level classi-

fication module ϕ(·). These three modules are iteratively

updated, targeted at the action-driven object detection.

At each model updating step t, a temporal graph struc-

ture Gt =< V, Et > for each video is constructed based

on the updated spatial visual features f t of all regions r in

the videos, defined as Gt = β(Φt(r)). β(·) is a function

to calculate the dynamic edge connections Et conditioning

on the updated visual features f t = Φt(r). The TD-Graph

LSTM unit Ψt recurrently functions on the visual features

f t of all frames and propagates temporal information over

the graph Gt to obtain the enhanced temporal-aware fea-

tures f̂ t = Ψt(f t|Gt) of all regions in the video. Based

on the enhanced f̂ t, the region-level classification module

ϕ produces classification confidences rct for all regions, as

rct = ϕ(f̂ t). These region-level category confidences rct

can be aggregated to produce frame-level category confi-

dences pct = γ(rct) of all frames by summing the cate-

gory confidences of all regions of each frame.

During training, we define the action-driven loss for each

frame as a hinge loss function and train a multi-label image

classification objective for all frames in the videos:

L(Φ,Ψ, ϕ) =
1

CN

C∑

c=1

N∑

i=1

max(0, 1− yc,ipcc,i)

=
1

CN

C∑

c=1

N∑

i=1

max(0, 1− yc,iγ(ϕ(Ψ(fi|G)))),

(1)

where C is the number of classes and yc,i, i ∈ {1, . . . , N}
represents action-driven object labels for each frame. For

each frame Ii, yc,i = 1 only if the action-driven object la-

bel c is assigned to the frame Ii, otherwise as -1. The ob-

jective function defined in Eq. 1 can be optimized by the

Stochastic Gradient Descent (SGD) back-propagation. At

each t-th gradient updating, the temporal graph structure Gt

is accordingly updated by β(Φt(r)) for each video. Thus,

the TD-Graph LSTM unit optimizes over a dynamically up-

dated graph structure Gt. In the following sections, we in-

troduce the above-defined parametrized modules.

3.2. Spatial ConvNet

Given each frame Ii, we first extract category-agnostic

region proposals and then extract their visual features by

passing them into a spatial ConvNet Φ(·) following [8].

To provide a fair comparison on action-driven object de-

tection, we adopt the EdgeBoxes [40] proposal genera-

tion method which does not require any object annota-

tions for pretraining. We select the top M = 500 pro-

posals ri = {ri,1, ri,2, ..., ri,M} for the frame Ii with the

highest objectness scores, considering the computation ef-

ficiency. At the t-th updating step, visual features f ti =
{f t

i,1, f
t
i,2, ..., f

t
i,M} ∈ R

M×D of all regions ri are extracted

using the updated spatial ConvNet model, i.e., f ti = Φt(ri).
The spatial ConvNet Φ(·) consists of several convolutional

layers from the base net and one ROI-pooling layer [8], and

two fully-connected layers.

3.3. TDGraph LSTM Unit

Dynamic Graph Updating. Given the updated visual

features f ti of each frame Ii, the temporal graph structure

Gt =< V, Et > can be accordingly constructed by learn-

ing the dynamic edge connections Et. The graph node

1804



V = {vi,j}, j = {1, . . . ,M} is represented by visual fea-

tures {f ti,j} of all regions in all frames; that is, M×N nodes

for M region proposals of N frames. Each node vi,j is con-

nected with nodes in the preceding frame Ii−1 and the nodes

in subsequent frame Ii+1. To incorporate the motion depen-

dency in consecutive frames, the edge connections Et
i,i−1

between nodes in Ii and Ii−1 are mined by considering

their appearance similarities in visual features. Specifically,

the edge weight between each pair of nodes (vi,j , vi−1,j′)
is first calculated as 1

2 exp(−||f ti,j − f ti−1,j′ ||2). To make

the model inference efficient and alleviate the missing is-

sue, each node vi,j is only connected to K nodes vi−1,j′

with the top-K highest edge weights in preceding frame

Ii−1, and these activated edge weights are normalized to

be summed as 1. We denote the normalized edge weight as

ωt
i,i−1,j,j′ . Thus, the updated temporal graph structure Gt

can be regarded as an undirected K-neighbor graph where

each node vi,j is connected with at most K nodes in previ-

ous frames.

TD-Graph LSTM. TD-Graph LSTM layer propagates

temporal context over graph and recurrently updates the

hidden states {ht
i,j} of all regions in each frame Ii to

construct enhanced temporal-aware feature representations.

These features are fed into the region-level classification

module to compute the category-level confidences of each

region. TD-Graph LSTM updates hidden state of frame i

by incorporating information from frame-level hidden state

h̄t
i−1 and memory state m̄t

i−1. The usage of the shared

frame-level hidden state and memory state enables the pro-

vision of a compact memorization of temporal patterns in

the previous frame and is more suitable for massive and

possibly missing graph nodes (e.g., 500 in our setting) in

a large temporal graph. After performing N updating steps

for all frames, our model effectively embeds the rich tem-

poral dependency to obtain the enhanced temporal-aware

feature representations of all regions in all frames. For up-

dating the features of each node vi,j in the frame Ii, the

TD-Graph LSTM unit takes as the input its own visual fea-

tures f ti,j , temporal context features f̂ ti,j , frame-level hid-

den states h̄t
i−1 and memory states m̄t

i−1, and outputs the

new hidden states ht
i,j . Given the dynamic edge connec-

tions ei,j = {< vi,j , vi−1,j′ >}, j′ ∈ NG(vi,j), the tempo-

ral context features f̂ ti,j can be calculated by performing a

weighted summation of features of connected regions:

f̂ ti,j =
∑

j′∈NG(vi,j)

ωt
i,i−1,j,j′f

t
i−1,j′ . (2)

And the shared frame-level hidden states h̄t
i−1 and memory

states m̄t
i−1 can be computed as

h̄t
i−1 =

1

M

M∑

j=1

ht
i−1,j , m̄t

i−1 =
1

M

M∑

j=1

mt
i−1,j . (3)

The TD-Graph LSTM unit consists of four gates for each

node vi,j : the input gate gut
i,j , the forget gate gf ti,j ,

the memory gate gcti,j , and the output gate got
i,j . The

Wu
t ,W

f
t ,W

c
t ,W

o
t are the recurrent gate weight matrices

specified for input visual features and Wut
t ,W

ft
t ,W ct

t ,W ot
t

are those for temporal context features. Uu
t , U

f
t , U

c
t , U

o
t

are the weight parameters specified for frame-level hidden

states. The new hidden states and memory states in the

graph Gt can be calculated as follows:

gut
i,j =δ(Wu

t f
t
i,j +Wut

t f̂ ti,j + Uu
t h̄

t
i−1 + but ),

gf ti,j =δ(W f
t f

t
i,j +W

ft
t f̂ ti,j + U

f
t h̄

t
i−1 + b

f
t ),

got
i,j =δ(W o

t f
t
i,j +W ot

t f̂ ti,j + Uo
t h̄

t
i−1 + bot ),

gcti,j =tanh(W c
t f

t
i,j +W ct

t f̂ ti,j + U c
t h̄

t
i−1 + bct),

mt
i,j =gf ti,j ⊙ m̄t

i−1 + gut
i,j ⊙ gcti,j ,

ht
i,j =got

i,j ⊙ tanh(mt
i,j).

(4)

Here δ is a logistic sigmoid function, and ⊙ indicates a

point-wise product. Given the updated hidden states {ht
i,j}

and memory states {mt
i,j} of all regions in frame Ii, we can

obtain new frame-level hidden states h̄t
i and memory states

m̄t
i for updating the states of regions in frame Ii+1. The

TD-LSTM unit recurrently updates the states of all regions

in each frame, and thus the past temporal information in

preceding frames can be utilized for updating each frame.

The TD-Graph LSTM layer is illustrated in Figure 3.

3.4. Regionlevel Classification Module

Given the updated hidden states ht
i,j for each node vi,j ,

we use a region-level classification module to obtain the cat-

egory confidences of all regions, that is, rcti = ϕ(ht
i) of all

M regions. Following the two-stream architecture of WS-

DDN [2], the region-level classification module contains a

detection stream and a classification stream, and produces

final classification scores by performing element-wise mul-

tiplication between them. The classification stream takes

the region-level feature vectors ht
i of all regions as the input

and feeds it to a linear layer that outputs a set of class scores

St
i ∈ R

M×C for C classes of all M regions. Here, we use

the reproduced WSDDN in [16] that does not employ an ad-

ditional softmax in the classification stream. These differ-

ences have a minor effect on the detection accuracy as has

been discussed in [16]. The detection stream also takes ht
i

as the input and feeds it to another linear layer that outputs

a set of class scores, giving a matrix of scores Lt
i ∈ R

M×C .

Lt
i is then fed to another softmax layer to normalize the

scores over the regions in the frame. The final scores of all

regions rcti are obtained by taking the element-wise multi-

plication of the two scoring matrices St
i and Lt

i. We sum all

the region-level class scores rcti to obtain the frame-level

class prediction scores pcti.
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4. Experiments

4.1. Dataset and Evaluation Measures

Dataset Analysis. We evaluate the action-drive weakly-

supervised object detection performance on the Charades

dataset [32]. The Charades video dataset is composed of

daily indoor activities collected through Amazon Mechan-

ical Turk. There are 157 action classes and on average 6.8

actions in each video, which occur in various orders and

contexts. In order to detect objects in videos by using action

labels, we only consider the action labels that are related

to objects for training. Therefore, there are 66 action la-

bels that are related to 17 object classes in our experiments.

We show distribution of object classes (in a random subset

of videos) in Figure 5 (a). The training set contains 7,542

videos. Videos are down-sampled to 1 fps and we only sam-

ple the frames assigned with action labels in each video.

During training, only frame-level action labels are provided

for each video.

In order to evaluate the video object detection perfor-

mance over 17 daily object classes, we collect the bounding

box annotations for 5,000 test frames from 200 videos in

the Charades test set. The bounding box number distribu-

tion in each frame is shown in Figure 5 (b), ranging from 1

to 23 boxes appearing in the frame. More than 60% frames

have more than 4 bounding boxes and most video frames

exhibit severe motion blurs and low resolution. This poses

more challenges for the object detection model compared to

an image-based object detection dataset, such as the most

popular PASCAL VOC [7] that is widely used in existing

weakly-based object detection methods. Figure 4 further

shows example frames with action labels on the Charades

dataset. It can be seen that each action label only provides

one piece of object class information for the frame that may

contain several object classes, which can be regarded as the

missing label issue for training a model under this action-

driven setting. Moreover, the video frames often appear

with a very cluttered background, blurry objects and diverse

viewpoints, which are more challenging and realistic com-

pared to existing image datasets (e.g., MS COCO[22] and

ImageNet[29]) and video datasets (e.g., UCF101[36]).

Evaluation Measures. We evaluate the performance of

both object detection and image classification tasks on Cha-

rades. For detection, we report the average precision (AP)

at 50% intersection-over-union (IOU) of the detected boxes

with the ground truth boxes. For classification, we also re-

port the AP on frame-level object classification.

4.2. Implementation Details

Our TD-Graph LSTM adopts the VGG-CNN-F

model [3] pre-trained on ImageNet ILSVRC 2012 chal-

lenge data [29] as the base model, and replaces the last

pooling layer pool5 with an SPP layer [9] to be compatible

Holding a cup Throwing a towel

Sitting at a table Lying on a sofa Putting a towel Holding a laptop Putting a towel

Lying on a sofa Pour something into a cup Taking a broom

broom

towellaptop

cupsofa

towelsofatable

towelcup

Figure 4. Several samples of key frames from videos in Charades.

The action labels are given at the bottom of the image and the

related objects are listed at the top of the image.

with the first fully connected layer. We use the EdgeBoxes

algorithm [48] to generate the top 500 regions that have

width and height larger than 20 pixels as candidate regions

for each frame. To balance the performance and time

cost, we set the number of edges linked to each node K to

100. For training, we use stochastic gradient descent with

momentum 0.9 and weight decay 5 × 10−4. All weight

matrices used in the TD-Graph LSTM units are randomly

initialized from a uniform distribution of [−0.1, 0.1].
TD-Graph LSTM predicts the hidden and memory states

with the same dimension as the previous region-level CNN

features. Each mini-batch contains at most 6 consecutive

sampled frames in a video. The network is trained on

the Charades training set by using fine-tuning on all

layers, including those of the pre-trained base CNN model.

The experiments are run for 30 epochs for the model

convergence. The learning rates are set to 10−5 for the

first ten epochs, then decreased to 10−6. All our models

are implemented on the public Torch [5] platform, and all

experiments are conducted on a single NVIDIA GeForce

GTX TITAN X GPU with 12 GB memory. The runtime is

2.5 fps and 3.9 fps for training and testing respectively.

4.3. Results and Comparisons

We compare the proposed TD-Graph LSTM model with

two state-of-the-art weakly-supervised learning methods

on the Charades dataset, WSDDN [2] and ContextLoc-

Net [16]. As both of the two methods were proposed

for image-based weakly-supervised image object detection,

here we run the source code of ContextLocNet [16] and

their reproduced WSDDN1 on the Charades dataset to

make a fair comparison with our method. Their models

are trained by treating the action-related object labels in

each frame as the supervision information and are evaluated

on each video frame. The difference between our model

and WSDDN [2] is our usage of TD-Graph LSTM layers

to leverage rich temporal correlations in the whole video.

Similar to WSDDN, ContextLocNet is also a two stream

model with an enhanced localization module using various

1https://github.com/vadimkantorov/contextlocnet
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Figure 5. (a) The distribution of object classes appearing in the action labels of the training set. (b) The distribution of the ground truth

bounding box numbers in each image of the test set.

Table 1. Per-class performance comparison of our proposed models with two state-of-the-art weakly-supervised learning methods when

evaluating on the Charades dataset[32], test classification average precision (%).

Method bed broom chair cup dish door laptop mirror pillow refri shelf sofa table tv towel vacuum window mAP

WSDDN [2] 39.8 5.85 36.1 21 16.3 11.6 30.5 4.7 2.8 6.5 8.1 14.8 37.8 5 12.5 8.2 4.8 15.67

ContextLocNet [16] 43.37 5.65 38.95 16.62 12.46 8.67 27.75 4.5 3.51 11.12 9.79 15.67 37.44 14.39 9.72 16.36 3.97 16.47

TD-Graph LSTM w/o LSTM 32.54 5.875 31.69 27.9 15.79 14.19 18.81 6.15 8.35 4.5 9.3 24.33 33 8.26 14.7 7.68 6.72 15.89

TD-Graph LSTM w/o graph 25.04 6.51 43.79 21.54 15.6 15.86 19.57 5.61 9.32 6.2 9.02 25.95 39.2 8.85 15.27 18.18 5.63 17.13

TD-Graph LSTM 47.62 12.26 45.07 23.55 16.7 15.6 30.9 5.05 17.64 7.43 9.53 19.52 43.29 4.23 12.47 15.03 5.91 19.52

Table 2. Per-class performance comparison of our proposed models with two state-of-the-art weakly-supervised learning methods when

evaluating on the Charades dataset[32], test detection average precision (%).

Method bed broom chair cup dish door laptop mirror pillow refri shelf sofa table tv towel vacuum window mAP

WSDDN [2] 2.38 0.04 1.17 0.03 0.13 0.31 2.81 0.28 0.02 0.12 0.03 0.41 1.74 1.18 0.07 0.08 0.22 0.65

ContextLocNet [16] 7.4 0.03 0.55 0.02 0.01 0.17 1.11 0.66 0 0.07 1.75 4.12 0.63 0.99 0.03 0.75 0.78 1.12

TD-Graph LSTM w/o LSTM 7.41 0.05 3 0.05 0.02 0.56 0.11 0.65 0.04 0.16 0.25 1.67 2.46 1.24 0.11 0.46 1.46 1.16

TD-Graph LSTM w/o graph 9.69 0.02 2.85 0.34 0.05 0.87 1.95 0.69 0.05 0.44 2.11 3.34 1.91 1.05 0.05 0.29 0.69 1.55

TD-Graph LSTM 9.19 0.04 4.18 0.49 0.11 1.17 2.91 0.3 0.08 0.29 3.21 5.86 3.35 1.27 0.09 0.6 0.47 1.98

Frame 217 Frame 223 Frame 229 

Figure 6. Our TD-Graph LSTM addresses well the missing label

issue. It can successfully detect the refrigerator that is not referred

to by any action labels (A green box shows the detection result and

yellow box the ground truth.)

surrounding context. Specifically, we use the contrastive-S

setup of ContextLocNet. All of these models use the same

base model and region proposal method, i.e., VGG-CNN-F

model [3] and EdgeBoxes [48].

We report the comparisons with two state-of-the-art on

classification mAP and detection mAP in Table 1 and Ta-

ble 2, respectively. It can be observed that our TD-Graph

LSTM model substantially outperforms two baselines on

both classification mAP and detection mAP, particularly,

3.05% higher than ContextLocNet [16] and 3.85% than

WSDDN [2] in terms of classification mAP. Especially, our

TD-Graph LSTM surpasses two baselines in small objects,

e.g., over 14.13% for pillow class and 6.93% for cup class.

Although our model and two baselines all obtain low de-

tection mAP under this challenging setting, our TD-Graph

LSTM still surpasses two baselines on detecting crowded

and small objects in the video. The superiority of our TD-

Graph LSTM clearly demonstrates its effectiveness in chal-

lenging action-driven weakly-supervised object detection

where the missing label issue is quite severe and a con-

siderable number of bounding boxes appear in each frame

with very low quality. We further show the qualitative com-

parison with two state-of-the-arts in Figure 7. Our model

is able to produce more precise object detection for even

very small objects (e.g., the cup in the middle row) and

objects with heavy occlusion (e.g., the sofa in the bottom

row). Our TD-Graph LSTM takes the advantage of exploit-

ing complex temporal correlations between region propos-

als by propagating knowledge into a whole dynamic tem-

poral graph, which effectively alleviates the critical missing

label issue, as shown in Figure 6.
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TD-Graph LSTMWSDDN ContextLocNet

laptop

cup

sofa

Figure 7. Qualitative comparisons with two state-of-the-arts on video object detection. The green boxes indicate detection results and

yellow ones are the ground truth.

Table 3. Performance comparison of using different graph topolo-

gies when evaluating on the Charades dataset, test detection mAP

(%) and classification mAP (%).

Method det mAP cls mAP

Ours w/o Graph 1.55 17.13

Ours w/ Mean Graph 1.41 16.92

Ours w/ Static Graph 1.89 17.97

Ours 1.98 19.52

4.4. Ablation Study

The results of model variants are reported in Table 1,

Table 2 and Table 3.

The effectiveness of incorporating graph. The main

difference between our TD-Graph with a conventional

LSTM structure for sequential modeling is in propagating

information over a dynamic graph structure. To verify its

effectiveness, we thus compare our full model with the vari-

ant “TD-Graph LSTM w/o graph” that eliminates the edge

connections between regions in consecutive frames, and up-

dates the frame-level hidden and memory states with the

original region-level features. Our TD-Graph LSTM con-

sistently obtains better results over “TD-Graph LSTM w/o

graph”, which speaks to the advantage of incorporating a

graph for the challenging action-driven object detection.

The effectiveness of temporal LSTM. We further ver-

ify that recurrent sequential modeling by the LSTM units

over the temporal graph is beneficial for exploiting complex

object motion patterns in daily videos. “TD-Graph LSTM

w/o LSTM” indicates removing the LSTM units and di-

rectly aggregating the temporal context features to enhance

features of each region. The performance gap between our

full model and “TD-Graph LSTM w/o LSTM” verifies the

benefits of adopting LSTM.

Dynamic graph vs Static graph vs Mean graph. Be-

sides the proposed dynamic graph, another commonly used

alternative is the fully-connected graph where each region is

densely connected with all regions in the preceding frame;

that is, “Ours w/ Static Graph” and “Ours w/ Mean Graph”.

“Ours w/ Static Graph” uses the adaptive edge weights sim-

ilar to TD-Graph LSTM while “Ours w/ Mean Graph” uses

the same weights for all edge connections. It can be seen

that applying a dynamic graph structure can help signifi-

cantly boost both detection and classification performance

over other fully-connected graphs. The reason is that mean-

ingful temporal correlations between regions can be discov-

ered by the dynamic graph and leveraged to transfer motion

context into the whole video.

5. Conclusion

In this paper, we propose a novel temporal dynamic

graph LSTM architecture to address action-driven weakly-

supervised object detection. It recurrently propagates the

temporal context on a constructed dynamic graph structure

for each frame. The global action knowledge in the whole

video can be effectively leveraged for object detection in

each frame, which helps alleviate the missing label prob-

lem. Extensive experiments on a large-scale daily-life ac-

tion dataset Charades demonstrate the superiority of our

model over the state-of-the-arts.
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