Learning Uncertain Convolutional Features for Accurate Saliency Detection Supplementary Document

1. The UCF architecture

Tab. 1 shows the whole architecture of our proposed UCF model. The entire network forms an encoder-decoder FCN. All convolutional layers (Conv) are followed with batch normalization (BN) and ReLU activation layers. **#Kernel** refers to the number of kernels in each layer. **Output size** column shows the output size of each building block. We employ R-Dropout after several convolutional layers, i.e., Conv1-2, Conv2-2, Conv3-3, Conv4-3, Conv5-3, Conv5-1-D, Conv4-1-D, Conv3-1-D, Conv2-1-D, Conv1-1-D layers. The hybrid upsampling is obtained by three steps: (1) the low resolution feature maps are first up-scaled as *Deconv* by 4×4 deconvolution with padding 1 and stride 2; (2) the low resolution feature maps are also up-scaled as *Inter* by the bilinear interpolation; (3) *Deconv* and *Inter* are combined by element-wise summation.

2. Parameters for training the UCF model

We train the above UCF network on the augmented MSRA10K dataset [3] using the min-batch stochastic gradient descent (SGD) with a momentum, learning rate decay schedule. Tab. 2 shows the detailed parameter configurations.

3. Performance on other datasets

Tab. 3 and Tab. 4 show the results on all compared datasets in terms of Precision, Recall, F-measure and MAE. We also report the PR curves on the DUT-OMRON [6], HKU-IS [7], PASCAL-S [4] and SOD [5] in Fig. 1.

4. More samples on saliency detection

In this section, we report more saliency maps of our proposed algorithm and other saliency detection algorithms. Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Fig. 8 show more examples from the DUT-OMRON [6], ECSSD [5], HKU-IS [7], PASCAL-S [4], SED1 [2], SED2 [1] and SOD [5], respectively.

5. More samples on upsampling methods

Fig. 2 shows more saliency maps generated by different upsampling methods.

References

- [1] A. Borji. What is a salient object? a dataset and a baseline model for salient object detection. *IEEE Transactions on Image Processing*, 24(2):742–756, 2015. 1
- [2] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object detection: A benchmark. *IEEE Transactions on Image Processing*, 24(12):5706–5722, 2015. 1
- [3] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu. Global contrast based salient region detection. *IEEE TPAMI*, 37(3):569–582, 2015. 1
- [4] Y. Li, X. Hou, C. Koch, J. Rehg, and A. Yuille. The secrets of salient object segmentation. In CVPR, pages 280–287, 2014. 1
- [5] Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical saliency detection. In CVPR, pages 1155–1162, 2013. 1
- [6] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In CVPR, pages 3166– 3173, 2013. 1
- [7] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-context deep learning. In CVPR, pages 1265–1274, 2015. 1

Figure 1. Performance of the proposed algorithm compared with other state-of-the-art methods.

Name	Туре	#Kernel	Kernel size	Padding size	Stride	Output size	
Input						448x448x3	
Conv1-1	Conv+BN+ReLU	64	3x3	1	1	448x448x64	
Conv1-2	Conv+BN+ReLU	64	3x3	1	1	448x448x64	
Drop1-2	R-Dropout					448x448x64	
Pool1	Pooling		2x2		2	224x224x64	
Conv2-1	Conv+BN+ReLU	128	3x3	1	1	224x224x128	
Conv2-2	Conv+BN+ReLU	128	3x3	1	1	224x224x128	
Drop2-2	R-Dropout					224x224x128	
Pool2	Pooling		2x2		2	112x112x128	
Conv3-1	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Conv3-2	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Conv3-3	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Drop3-3	R-Dropout					112x112x256	
Pool3	Pooling		2x2		2	56x56x256	
Conv4-1	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Conv4-2	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Conv4-3	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Drop4-3	R-Dropout					56x56x512	
Pool4	Pooling		2x2		2	28x28x512	
Conv5-1	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Conv5-2	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Conv5-3	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Drop5-3	R-Dropout					28x28x512	
Pool5	Pooling		2x2		2	14x14x512	
Upsample5	Hybrid upsampling	512	4x4	1	2	28x28x512	
Conv5-3-D	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Conv5-2-D	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Conv5-1-D	Conv+BN+ReLU	512	3x3	1	1	28x28x512	
Drop5-1-D	R-Dropout					28x28x512	
Upsample4	Hybrid upsampling	512	4x4	1	2	56x56x512	
Conv4-3-D	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Conv4-2-D	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Conv4-1-D	Conv+BN+ReLU	512	3x3	1	1	56x56x512	
Drop4-1-D	R-Dropout					56x56x512	
Upsample3	Hybrid upsampling	256	4x4	1	2	112x112x256	
Conv3-3-D	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Conv3-2-D	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Conv3-1-D	Conv+BN+ReLU	256	3x3	1	1	112x112x256	
Drop3-1-D	R-Dropout					112x112x56	
Upsample2	Hybrid upsampling	128	4x4	1	2	224x224x128	
Conv2-2-D	Conv+BN+ReLU	128	3x3	1	1	224x224x128	
Conv2-1-D	Conv+BN+ReLU	128	3x3	1	1	224x224x128	
Drop2-1-D	R-Dropout					224x224x128	
Upsample1	Hybrid upsampling	64	4x4	1	2	448x448x64	
Conv1-2-D	Conv+BN+ReLU	64	3x3	1	1	448x448x64	
Conv1-1-D	Conv+BN+ReLU	64	3x3	1	1	448x448x64	
Drop1-1-D	R-Dropout					448x448x64	
Softmax	Conv	2	3x3	1	1	448x448x2	

Table 1. The proposed UCF architecture. Output sizes are given for an example input of 448×448 .

Name	Value									
max iter	220000									
momentum	0.9									
weight decay	0.0001									
batch size	8									
learning rate										
type	step									
base	1e-9									
step size	122000									

Table 2. Parameter configurations for fine-tuning the UCF network.

	DUT-OMRON				ECSSD				HKU-IS				PASCAL-S			
Methods	Precis	Recall	F	MAE	Precis	Recall	F	MAE	Precis	Recall	F	MAE	Precis	Recall	F	MAE
UCF	0.6302	0.8476	0.6283	0.1203	0.8760	0.8698	0.8517	0.0689	0.8171	0.9205	0.8232	0.0620	0.7671	0.8107	0.7413	0.1160
RFCN	0.6190	0.8292	0.6265	0.1105	0.8654	0.8223	0.8340	0.1069	0.8449	0.8677	0.8349	0.0889	0.7897	0.7795	0.7512	0.1324
DCL	0.7199	0.7296	0.6842	0.1573	0.9083	0.7772	0.8293	0.1495	0.8933	0.8211	0.8533	0.1359	0.8103	0.7021	0.7141	0.1807
DS	0.5953	0.8237	0.6028	0.1204	0.8569	0.8177	0.8255	0.1216	0.7775	0.8895	0.7851	0.0780	0.7118	0.7383	0.6590	0.1760
LEGS	0.5997	0.7157	0.5915	0.1335	0.8330	0.7372	0.7853	0.1180	0.7557	0.7235	0.7228	0.1193	-	-	-	-
MDF	0.6759	0.7026	0.6442	0.0916	0.8688	0.7332	0.8070	0.1049	0.8506	0.7581	0.8006	0.0957	0.8198	0.6200	0.7087	0.1458
ELD	0.5958	0.8285	0.6109	0.0924	0.8164	0.8581	0.8102	0.0796	0.7633	0.8643	0.7694	0.0741	0.7372	0.7795	0.7180	0.1232
BL	0.5280	0.6253	0.4988	0.2388	0.7579	0.6529	0.6841	0.2159	0.7034	0.6838	0.6597	0.2071	0.6649	0.5798	0.5742	0.2487
BSCA	0.5172	0.6713	0.5091	0.1902	0.7529	0.6920	0.7048	0.1821	0.6808	0.6951	0.6544	0.1748	0.6691	0.5899	0.6006	0.2229
DRFI	0.5536	0.7343	0.5504	0.1378	0.7803	0.7238	0.7331	0.1642	0.7492	0.7497	0.7218	0.1445	0.6869	0.6277	0.6182	0.2065
DSR	0.5354	0.6779	0.5242	0.1389	0.7260	0.6098	0.6621	0.1784	0.7138	0.6861	0.6772	0.1422	0.6300	0.5311	0.5575	0.2149

Table 3. The Precision, Recall, F-measure and MAE of different saliency detection methods on the DUT-OMRON, ECSSD, HKU-IS and PASCAL-S datasets. The best three results are shown in red, green and blue, respectively. The proposed methods rank first and second on these datasets.

		SE	D1			SE	D2		SOD				
Methods	Precis	Recall	F	MAE	Precis	Recall	F	MAE	Precis	Recall	F	MAE	
UCF	0.9011	0.8627	0.8647	0.0631	0.8233	0.8760	0.8102	0.0680	0.8030	0.7197	0.7375	0.1478	
RFCN	0.9044	0.7712	0.8502	0.1166	0.8125	0.7878	0.7667	0.1131	0.8260	0.6631	0.7426	0.1692	
DCL	0.9442	0.7403	0.8546	0.1513	0.9310	0.6554	0.7946	0.1565	0.8875	0.6079	0.7413	0.1938	
DS	0.8745	0.8213	0.8445	0.0931	0.7965	0.7832	0.7541	0.1233	0.7820	0.6608	0.6981	0.1889	
LEGS	0.9206	0.7571	0.8542	0.1034	0.8050	0.6838	0.7358	0.1236	0.7811	0.5796	0.6834	0.1955	
MDF	0.8991	0.8009	0.8419	0.0989	0.8645	0.7488	0.8003	0.1014	0.8650	0.5694	0.7205	0.1639	
ELD	0.8960	0.8425	0.8715	0.0670	0.8027	0.7396	0.7591	0.1028	0.7830	0.6608	0.7116	0.1545	
BL	0.8765	0.6838	0.7675	0.1849	0.7723	0.7182	0.7047	0.1856	0.7064	0.5125	0.5798	0.2668	
BSCA	0.8771	0.7008	0.8048	0.1535	0.7611	0.6779	0.7062	0.1578	0.6729	0.5383	0.5835	0.2514	
DRFI	0.8770	0.7357	0.8068	0.1480	0.7739	0.7393	0.7341	0.1334	0.7415	0.5494	0.6343	0.2238	
DSR	0.8732	0.6697	0.7909	0.1579	0.7626	0.6887	0.7116	0.1406	0.6893	0.5298	0.5962	0.2339	

Table 4. The Precision, Recall, F-measure and MAE of different saliency detection methods on the SED1, SED2 and SOD datasets. The best three results are shown in red, green and blue, respectively. The proposed methods rank first and second on these datasets.

Figure 2. Comparison of saliency maps on the DUT-OMRON dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 3. Comparison of saliency maps on the ECSSD dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 4. Comparison of saliency maps on the HKU-IS dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 5. Comparison of saliency maps on the PASCAL-S dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 6. Comparison of saliency maps on the SED1 dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 7. Comparison of saliency maps on the SED2 dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 8. Comparison of saliency maps on the SOD dataset. (a) Input images; (b) Ground truth; (c) Our UCF method; (d) RFCN; (e) DCL; (f) DS; (g) LEGS; (h) MDF; (i) ELD; (j) BL; (k) BSCA; (l) DRFI; (m) DSR.

Figure 9. Comparison of different upsampling algorithms. (a) Input image; (b) Regular deconvolution; (c) Bilinear interpolation; (d) Our hybrid upsampling method; (e) Ground truth.