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Abstract

Existing synthetic datasets (FigureQA, DVQA) for rea-

soning over plots do not contain variability in data labels,

real-valued data, or complex reasoning questions. Con-

sequently, proposed models for these datasets do not fully

address the challenge of reasoning over plots. In particu-

lar, they assume that the answer comes either from a small

fixed size vocabulary or from a bounding box within the im-

age. However, in practice, this is an unrealistic assumption

because many questions require reasoning and thus have

real-valued answers which appear neither in a small fixed

size vocabulary nor in the image. In this work, we aim to

bridge this gap between existing datasets and real-world

plots. Specifically, we propose PlotQA with 28.9 million

question-answer pairs over 224,377 plots on data from real-

world sources and questions based on crowd-sourced ques-

tion templates. Further, 80.76% of the out-of-vocabulary

(OOV) questions in PlotQA have answers that are not in a

fixed vocabulary. Analysis of existing models on PlotQA re-

veals that they cannot deal with OOV questions: their over-

all accuracy on our dataset is in single digits. This is not

surprising given that these models were not designed for

such questions. As a step towards a more holistic model

which can address fixed vocabulary as well as OOV ques-

tions, we propose a hybrid approach: Specific questions are

answered by choosing the answer from a fixed vocabulary

or by extracting it from a predicted bounding box in the plot,

while other questions are answered with a table question-

answering engine which is fed with a structured table gen-

erated by detecting visual elements from the image. On the

existing DVQA dataset, our model has an accuracy of 58%,

significantly improving on the highest reported accuracy of

46%. On PlotQA, our model has an accuracy of 22.52%,

which is significantly better than state of the art models.

∗The first two authors have contributed equally

1. Introduction

Data plots such as bar charts, line graphs, scatter plots,

etc. provide an efficient way of summarizing numerical

information. Recently, in [13, 12] two datasets contain-

ing plots and deep neural models for question answering

over the generated plots have been proposed. In both the

datasets, the plots are synthetically generated with data val-

ues and labels drawn from a custom set. In the FigureQA

dataset [13], all questions are binary wherein answers are ei-

ther Yes or No, (see Figure 1a for an example). The DVQA

dataset [12], generalizes this to include questions which can

be answered either by (a) fixed vocabulary of 1000 words,

or (b) extracting text (such as tick labels) from the plot. An

example question could seek the numeric value represented

by a bar of a specific label in a bar plot (see Figure 1b).

Given that all data values in the DVQA dataset are chosen

to be integers and from a fixed range, the answer to this

question can be extracted from the appropriate tick label.

While these datasets have initiated the research questions

on plot reasoning, realistic questions over plots are much

more complex. For instance, consider the question in Fig-

ure 1c, where we are to compute the average of floating

point numbers represented by three bars of a color speci-

fied by the label. The answer to this question is neither in a

fixed vocabulary nor can it be extracted from the plot itself.

Answering such questions requires a combination of per-

ception, language understanding, and reasoning, and thus

poses a significant challenge to existing systems. Further-

more, this task is harder if the training set is not synthetic,

but instead is sourced from real-world data with large vari-

ability in floating-point values, large diversity in axis and

tick labels, and natural complexity in question templates.

To address this gap between existing datasets and real-

world plots, we introduce the PlotQA 1 dataset with 28.9

million question-answer pairs grounded over 224,377 plots.

PlotQA improves on existing datasets on three fronts. First,

1The dataset can downloaded from bit.ly/PlotQA
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Q: Is Light Green the minimum?

A: 1

(a) FigureQA

Q: What is the value of mad in drop?

A: 7

(b) DVQA

Q: What is the average number of Hispanic stu-

dents in schools? A: 51.67

(c) PlotQA

Figure 1: A sample {plot, question, answer} triplet from FigureQA, DVQA, and PlotQA (our) datasets.

Question Type

Answer Type Structure Data Retrieval Reasoning

Yes/No
Does the graph

contain grids?

Does the price of diesel in

Barbados monotonically

increase over the years?

Is the difference between the price of diesel in Angola in 2002 and 2004

greater than the difference between the price of diesel

in Lebanon in 2002 and 2004?

Fixed vocabulary
How are the legend

labels stacked?

What is the label or title of

the X-axis ?
In how many years, is the price of diesel greater than 0.6 units?

Open vocabulary -
What is the price of diesel in

Lebanon in the year 2008?
What is the ratio of the price of diesel in Lebanon in 2010 to that in 2014?

Table 1: Sample questions for 9 different question-answer types in PlotQA. The example questions are with respect to the

plot in Figure 2b. Note that there are no open vocabulary answers for Structural Understanding questions.

roughly 80.76% of the questions have answers which are

not present in the plot or in a fixed vocabulary. Second, the

plots are generated from data sourced from World Bank,

government sites, etc., thereby having a large vocabulary of

axis and tick labels, and a wide range in data values. Third,

the questions are complex as they are generated based on

74 templates extracted from 7,000 crowd-sourced questions

asked by workers on a sampled set of 1,400 plots. Questions

are categorized into 9 (=3x3) cells based on the question

type: ‘Structural Understanding’, ‘Data Retrieval’, or ‘Rea-

soning’ and and the answer type: ‘Yes/No’, ‘From Fixed

Vocabulary’, or ‘Out Of Vocabulary (OOV)’ (see Table 1).

We first evaluate three state of the art models on PlotQA,

viz., SAN-VQA[36], Bilinear attention network (BAN) [16]

and LoRRA [33]. Note that, by design none of these mod-

els are capable of answering OOV questions. In particular,

SAN-VQA and BAN treat plot reasoning as a classifica-

tion task and expect the answer to lie in a small vocabu-

lary whereas in our dataset the answer vocabulary is pro-

hibitively large (∼5M words). Similarly, LoRRA assumes

that the answer is present in the image itself as a text and

the task is to just extract this region containing the text fol-

lowed by OCR (optical character recognition). Again, such

a model will be unable to answer questions such as the one

shown in Figure 1c, which form a significant segment of

real-world use-cases and our dataset. As a result, these these

models give an accuracy of less than 8% on our dataset. On

the other hand, existing models (in particular, SAN) per-

form well on questions with answers from a fixed vocabu-

lary, which was the intended purpose of these models.

Based on the above observations, we propose a hybrid

model with a binary classifier which given a question de-

cides if the answer would lie in a small top-k vocabulary or

if the answer is OOV. For the former, the question is passed

through a classification pipeline which predicts a distribu-

tion over the top-k vocabulary and selects the most proba-

ble answer. For the latter (arguably harder questions), we

pass the question through a pipeline of four modules: Vi-

sual element detection, Optical character recognition, Ex-

traction into a structured table, and Structured table ques-

tion answering. This proposed hybrid model significantly

outperforms the existing models and has an aggregate accu-

racy of 22.52% on the PlotQA dataset. We also evaluate our

model on the DVQA dataset where it gives an accuracy of

58%, improving on the best-reported result of SANDY [12]

of 46%. In summary, we make two major contributions:
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(1) We propose PlotQA dataset with plots on data sourced

from the real-world and questions based on templates

sourced from manually curated questions. The dataset ex-

poses the need to train models for questions that have an-

swers from an Open Vocabulary.

(2) We propose a hybrid model with perception and QA

modules for questions that have answers from an Open Vo-

cabulary. This model gives the best performance not only

on our dataset but also on the existing DVQA dataset.

2. Related Work

Datasets: Over the past few years several large scale

datasets for Visual Question Answering have been released.

These include datasets such as COCO-QA [28], DAQUAR

[23], VQA [1, 7] which contain questions asked over natu-

ral images. On the other hand, datasets such as CLEVR [11]

and NVLR [35] contain complex reasoning based questions

on synthetic images having 2D and 3D geometric objects.

There are some datasets [14, 15] which contain questions

asked over diagrams found in text books but these datasets

are smaller and contain multiple-choice questions. Fig-

ureSeer [31] is another dataset which contains images ex-

tracted from research papers but this is also a relatively

small (60,000 images) dataset. Further, FigureSeer focuses

on answering questions based on line plots as opposed to

other types of plots such as bar charts, scatter plots, etc. as

seen in FigureQA [13] and DVQA [12]. There is also the re-

cent TextVQA [33] dataset which contains questions which

require models to read the text present in natural images.

This dataset does not contain questions requiring numeric

reasoning. Further, the answer is contained as a text in the

image itself. Thus, no existing dataset contains plot images

with complex questions which require reasoning and have

answers from an Open Vocabulary.

Models: The availability of the above mentioned datasets

has facilitated the development of complex end-to-end neu-

ral network based models ([36], [22], [37], [25], [30], [12],

[33]). These end-to-end networks contain (a) encoders to

compute a representation for the image and the question,

(b) attention mechanisms to focus on important parts of the

question and image, (c) interaction components to capture

the interactions between the question and the image, (d)

OCR module to extract the image specific text and (e) a

classification layer for selecting the answer either from a

fixed vocabulary or from a OCR appended vocabulary.

3. The PlotQA dataset

In this section, we describe the PlotQA dataset and the

process to build it. Specifically, we discuss the four main

stages, viz., (i) curating data such as year-wise rainfall

statistics, country-wise mortality rates, etc., (ii) creating dif-

ferent types of plots with a variation in the number of ele-

ments, legend positions, fonts, etc., (iii) crowd-sourcing to

generate questions, and (iv) extracting templates from the

crowd-sourced questions and instantiating these templates

using appropriate phrasing suggested by human annotators.

3.1. Data Collection and Curation

We considered online data sources such as World Bank

Open Data, Open Government Data, Global Terrorism

Database, etc. which contain statistics about various indica-

tor variables such as fertility rate, rainfall, coal production,

etc. across years, countries, districts, etc. We crawled data

from these sources to extract different variables whose rela-

tions could then be plotted (for example, rainfall v/s years

across countries, or movie v/s budget, or carbohydrates v/s

food item). There are a total of 841 unique indicator vari-

ables (CO2 emission, Air Quality Index, Fertility Rate, Rev-

enue generated, etc.) with 160 unique entities (cities, states,

districts, countries, movies, food, etc.). The data ranges

from 1960 to 2016, though not all indicator variables have

data items for all years. The data contains positive integers,

floating point values, percentages, and values on a linear

scale. These values range from 0 to 3.50e+15.

3.2. Plot Generation

We included 3 different types of plots in this dataset,

viz., bar plots, line plots, and scatter plots. Within bar

plots, we have grouped them by orientation as either hor-

izontal or vertical. Figure 2 shows one sample of each

plot type. Each of these plot types can compactly repre-

sent 3-dimensional data. For instance, in Figure 2b, the plot

compares the diesel prices across years for differ-

ent countries. To enable the development of supervised

modules for various sub-tasks, we provide bounding box

annotations for legend boxes, legend names, legend mark-

ers, axes titles, axes ticks, bars, lines, and title. By using

different combinations of indicator variables and entities

(years, countries, etc.) we created a total of 224, 377 plots.

To ensure variety in the plots, we randomly chose the

following parameters: grid lines (present/absent), font size,

notation used for tick labels (scientific-E notation or stan-

dard notation), line style (solid, dashed, dotted, dash-dot),

marker styles for marking data points (asterisk, circle,

diamond, square, triangle, inverted triangle), position of

legends (bottom-left, bottom-centre, bottom-right, center-

right, top-right), and colors for the lines and bars from a set

of 73 colors. The number of discrete elements on the x-axis

varies from 2 to 12 and the number of entries in the legend

box varies from 1 to 4.

3.3. Sample Question Collection by Crowdsourcing

As the source data of PlotQA dataset is significantly

richer in comparison to FigureQA and DVQA, we found

1529



(a) Horizontal bar graph (b) Line plot (c) Dot-Line graph

Figure 2: Sample plots of different types in the PlotQA dataset.

Question (Q) Type

Answer (A) Type Structure Data Retrieval Reasoning

Yes/No 36.99% 5.19% 2.05%

Fixed vocabulary 63.01% 18.52% 15.92%

Open vocabulary 0.00% 76.29% 82.03%

Table 2: Distribution of Q and A types in PlotQA.

it necessary to ask a larger set of annotators to create ques-

tions over these plots. However, creating questions for all

the plots in our dataset would have been prohibitively ex-

pensive. We sampled 1, 400 plots across different types and

asked workers on Amazon Mechanical Turk to create ques-

tions for these plots. We showed each plot to 5 different

workers resulting in a total of 7, 000 questions. We specifi-

cally instructed the workers to ask complex reasoning ques-

tions which involved reference to multiple plot elements in

the plots. We paid the workers USD 0.1 for each question.

3.4. Question Template Extraction & Instantiation

We manually analyzed the questions collected by crowd-

sourcing and divided them into a total of 74 templates.

These templates were divided into 3 question categories.

These question categories along with a few sample tem-

plates are shown below. See Table 2 for statistics of dif-

ferent question and answer types in our dataset (please refer

to the Supplementary material for further details).

Structural Understanding: These are questions about the

overall structure of the plot and do not require any quantita-

tive reasoning. Example: “How many bars are there?”.

Data Retrieval: These questions seek data item for a single

element in the plot. Example: “What is the number of tax

payers in Myanmar in 2015?”.

Reasoning: These questions either require numeric reason-

ing over multiple plot elements or a comparative analysis

of different elements of the plot, or a combination of both

to answer the question. Example: “What is the median ba-

nana production?”. We abstracted the questions into tem-

plates such as “In how many <plural form of X label>, is

the <Y label> of/in <legend label> greater than the aver-

age <Y label> of/in <legend label> taken over all <plural

form of X label>?”. We could then generate multiple ques-

tions for each template by replacing X label, Y label, leg-

end label, etc. by indicator variables, years, cities etc. from

our curated data. However, this was a tedious task requiring

a lot of manual intervention. For example, consider the in-

dicator variable “Race of students” in Figure 1c. If we sub-

stitute this indicator variable as it is in the above template, it

would result in a question, “In how many cities, is the race

of the students(%) of Asian greater than the average race

of the students (%) of Asian taken over all cities?”, which

sounds unnatural. To avoid this, we asked in-house anno-

tators to carefully paraphrase these indicator variables and

question templates. The paraphrased version of the above

example was “In how many cities, is the percentage of

Asian students greater than the average percentage of Asian

students taken over all cities?”. Using this semi-automated

process we generated a total of 28, 952, 641 questions. This

approach of creating questions on real-world plot data with

carefully curated question templates followed by manual

paraphrasing is a key contribution of our work. The resul-

tant PlotQA dataset is much closer to the real-world chal-

lenge of reasoning over plots, significantly improving on

existing datasets. Table 3 summarizes the differences be-

tween PlotQA and existing datasets (FigureQA, DVQA).

Note that (a) the number of unique answers in PlotQA is

very large, (b) the questions in PlotQA are much longer,

and (c) the vocabulary of PlotQA is more realistic than Fig-

ureQA or DVQA.

4. Proposed Model

Existing models for VQA are of two types: (i) read the

answer from the image (as in LoRRA) or (ii) pick the an-

swer from a fixed vocabulary (as in SAN and BAN). Such

1530



Datasets
#Plot

types

#Plot

images

#QA

pairs
Vocabulary

Avg. question

length
#Templates

#Unique

answers

Open

vocab.

FigureQA 4 180,000 2,388,698
100 colours from

X11 colour set
7.5

15

(no variations)
2 Not present

DVQA 1 300,000 3,487,194
1K nouns from

Brown corpus
12.30

26

(without paraphrasing)
1576 Not present

PlotQA 3 224,377 28,952,641
Real-world axes variables

and floating point numbers
43.54

74

(with paraphrasing)
5,701,618 Present

Table 3: Comparison between the existing datasets (FigureQA and DVQA) and our proposed dataset (PlotQA).

models work well for datasets such as DVQA where indeed

all answers come from a fixed vocabulary (global or plot

specific) but are not suited for PlotQA with a large num-

ber of OOV questions. Answering such questions involves

various sub-tasks: (i) detect all the elements in the plot

(bars, legend names, tick labels, etc), (ii) read the values of

these elements, (iii) establish relations between the plot el-

ements, e.g., creating tuples of the form {country=Angola,

year=2006, price of diesel = 0.4 }, and (iv) reason over this

structured data. Expecting a single end-to-end model to be

able to do all of this is unreasonable. Hence, we propose a

multi-staged pipeline to address each of the sub-tasks.

We further note that for simpler questions which do not

require reasoning and can be answered from a small fixed

size vocabulary, such an elaborate pipeline is an overkill.

As an illustration consider the question “How many bars are

there in the image?”. This does not require reasoning and

can be answered based on visual properties of the image.

For such questions, we have a simpler QA-as-classification

pipeline. As shown in Figure 3, our overall model is thus

a hybrid model containing the following elements: (i) a bi-

nary classifier for deciding whether the given question can

be answered from a small fixed vocabulary or needs more

complex reasoning, and (ii) a simpler QA-as-classification

model to answer questions of the former type, and (iii)

a multi-staged model containing four components as de-

scribed below to deal with complex reasoning questions.

4.1. Visual Elements Detection (VED)

The data bearing elements of a plot are of 10 distinct

classes: the title, the labels of the x and y axes, the tick la-

bels (e.g., countries) on the x and y axis, the data markers

in the legend box, the legend names, and finally the bars

and lines in the graph. Following existing literature ([4],

[12]), we refer to these elements as the visual elements of

the graph. The first task is to extract all these visual ele-

ments by drawing bounding boxes around them and classi-

fying them into the appropriate class. To this end, we can ei-

ther apply object detection models such as Fast-RCNN [6],

YOLO [27], SSD [21], Mask-RCNN [9], etc. Upon com-

paring all methods, we found that Faster R-CNN [29] model

along with Feature Pyramid Network(FPN) [20] performed

the best and hence we used it as our VED module.

4.2. Object Character Recognition (OCR)

Some of the visual elements such as title, legends, tick

labels, etc. contain numeric and textual data. For extracting

this data from within these bounding boxes, we use a state-

of-the-art OCR model [34]. We crop the detected visual

element to its bounding box, convert the cropped textual

image into gray-scale, resize and deskew it, and then pass

it to an OCR module. Existing OCR modules perform well

for machine-written English text, and indeed we found that

a pre-trained OCR module2 works well on our dataset.

4.3. SemiStructured Information Extraction (SIE)

The next stage of extracting the data into a semi-

structured table is explained with the help of the plot im-

age in Figure 3. The desired output of SIE is a table where

the rows correspond to the ticks on the x-axis (2002, 2003,

2004, 2005), the columns correspond to the different ele-

ments listed in the legend (Bulgaria, Cuba) and the i,j-th

cell contains the value corresponding to the x-th tick and the

y-th legend. The values of the x-tick labels and the legend

names are available from the OCR module. The mapping

of legend name to legend marker or color is done by associ-

ating a legend name to the marker or color whose bounding

box is closest to the bounding box of the legend name. Sim-

ilarly, we associate each tick label to the tick marker whose

bounding box is closest to the bounding box of the tick la-

bel. For example, we associate the legend name Cuba to the

color “Purple” and the tick label 2004 to the corresponding

tick mark on the x-axis. With this we have the 4 row and 2

column headers. To fill the 8 values in the table, there are

again two smaller steps. First, we associate each of the 8

bounding boxes of the 8 bars to their corresponding x-ticks

and legend names. A bar is associated with an x-tick label

whose bounding box is closest to the bounding box of the

bar. To associate a bar to a legend name, we find the domi-

nant color in the bounding box of the bar and match it with

a legend name corresponding to that color. Second, to find

the value represented by each bar, we extract the height of

the bar using bounding box information and then search for

2https://github.com/tesseract-ocr/tesseract
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Q:	How	many	bars	are	there	in	the
image?

Q:	What	is	the	average	number	of
neonatal	deaths	in	Cuba	per	year?

Question	Embeddings

A:	8

Visual
Elements
Detection
(VED)

Optical
Character
Recognition
(OCR)

Semi-
structured
information
extraction	

(SIE)

Table
Question
Answering	

(QA)

A:	514.95

A
T
T
N

S
O
F
T
M
A
X

LSTM

Question
classifier

CNN

Image	Feature	Vectors
QA	as	classification

Multi-staged	model

Figure 3: Our proposed model containing (i) a question classifier for deciding whether the question can be answered from a

fixed vocabulary (orange) or needs more complex reasoning (green), (ii) QA-as-classification model to answer questions of

the former type, and (iii) multi-staged model as a pipeline of perception and QA modules for answering complex questions.

the y-tick labels immediately above and below that height.

We then interpolate the value of the bar based on the values

of these bounding ticks. With this we extracted the infor-

mation from the plot into a semi-structured table.

4.4. Table Question Answering (QA)

The final stage of the pipeline is to answer questions

on the semi-structured table. As this is similar to answer-

ing questions from the WikiTableQuestions dataset [26],

we adopt the same methodology as proposed in [26]. In

this method, the table is converted to a knowledge graph

and the question is converted to a set of candidate logical

forms by applying compositional semantic parsing. These

logical forms are then ranked using a log-linear model and

the highest ranking logical form is applied to the knowl-

edge graph to get the answer. Note that with this approach

the output is computed by a logical form that operates on

the numerical data. This supports complex reasoning ques-

tions and also avoids the limitation of using a small answer

vocabulary for multi-class classification as is done in ex-

isting work on VQA. There are recent neural approaches

for answering questions over semi-structured tables such as

[24, 8]. Individually these models do not outperform the

relatively simpler model of [26], but as an ensemble they

show a small improvement of only (1-2%). To the best of

our knowledge, there is only one neural method [19] which

outperforms [26], but the code for this model is not avail-

able which makes it hard to reproduce the results.

5. Experiments

In this section we detail the data splits, baseline models,

hyperparameter tuning and evaluation metrics.

Dataset Split #Images #QA pairs

Train 157,070 20,249,479

Validation 33,650 4,360,648

Test 33,657 4,342,514

Total 224,377 28,952,641

Table 4: PlotQA Dataset Statistics

5.1. TrainValidTest Splits

By using different combinations of 841 indicator vari-

ables and 160 entities (years, countries, etc), we created a

total of 224, 377 plots. Depending on the context and type

of the plot, we instantiated the 74 templates to create mean-

ingful {question, answer} pairs for each of the plots. We

created train (70%), valid (15%) and test (15%) splits (Ta-

ble 4). The dataset and the crowd-sourced questions can be

downloaded from the link: bit.ly/PlotQA.

5.2. Models Compared

- IMG-only: This is a simple baseline where we just pass

the image through a VGG19 and use the embedding of the

image to predict the answer from a fixed vocabulary.

- QUES-only: This is a simple baseline where we just pass

the question through a LSTM and use the embedding of the

question to predict the answer from a fixed vocabulary.

- SAN [36]: This is an encoder-decoder model with a multi-

layer stacked attention [2] mechanism. It obtains a repre-

sentation for the image using a deep CNN and a representa-

tion for the query using LSTM. It then uses the query rep-

resentation to locate relevant regions in the image and uses

this to pick an answer from a fixed vocabulary.

- SANDY [12]: This is the best performing model on the

DVQA dataset and is a variant of SAN. Unfortunately, the
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code for this model is not available and the description in

the paper was not detailed enough for us to reimplement

it.3 Hence, we report the numbers for this model only on

DVQA (from the original paper).

- LoRRA [33]: This is the recently proposed model on the

TextVQA dataset. It concatenates the image features ex-

tracted from pre-trained ResNet-152 [10] model with the re-

gion based features extracted from Faster-RCNN [5] model.

It then reads the text present in the image using a pre-trained

OCR module and incorporates an attention mechanism to

reason about the image and the text. Finally, it does multi-

class classification where the answer either comes from a

fixed vocabulary or is copied from the text in the image.

- BAN [16]: This model exploits bilinear interactions be-

tween two groups of input channels, i.e., between every

question word (GRU [3] features) and every image region

(pre-trained Faster-RCNN [29] object features). It then uses

low-rank bilinear pooling [17] to extract the joint distribu-

tion for each pair of channels. BAN accumulates 8 such

bilinear attention maps which are then fed to a two-layer

perceptron classifier to get the final joint distribution over

answers from a fixed vocabulary.

- Our Model: This proposed model shown in Figure 3 with

two model paths. The training data for the binary classi-

fication is generated by comparing the performance of the

individual models: For a given question, the label is set to

1 if the performance of QA-as-classification model is bet-

ter than the multi-stage pipeline, and 0 otherwise. We use

an LSTM to represent the input question and then perform

binary classification on this representation.

5.3. Training Details

SAN: We used an existing implementation of SAN4 for the

initial baseline results. Image features are extracted from

the last pooling layer of VGG19 network. Question fea-

tures are the last hidden state of the LSTM. Both the LSTM

hidden state and 512-d image feature vector at each location

are transferred to a 1024-d vector by a fully connected layer,

and added and passed through a non-linearity (tanh). The

model was trained using Adam [18] with an initial learning

rate of 0.0003 and a batch size of 128 for 25,000 iterations.

Our model: The binary question classifier in the proposed

model contains a 50-dimensional word embedding layer

followed by an LSTM with 128 hidden units. The output

of the LSTM is projected to 256 dimensions and this is then

fed to the output layer. The model is trained for 10 epochs

using RMSProp with an initial learning rate of 0.001. Ac-

curacy on the validation set is 87.3%. Of the 4 stages of the

multi-stage pipeline, only two require training, viz., Visual

Elements Detection (VED) and Table Question Answering

3We have contacted the authors and while they are helpful in sharing

various details, they do not have access to the original code now.
4https://github.com/TingAnChien/san-vqa-tensorflow

(QA). As mentioned earlier, for VED we train a variant of

Faster R-CNN [20] with FPN using the bounding box an-

notations available in PlotQA. We trained the model with a

batch size of 32 for 200, 000 steps. We used RMSProp with

an initial learning rate of 0.004. For Table QA, we trained

the model proposed in [26] using questions from our dataset

and the corresponding ground truth tables.

5.4. Evaluation Metric

We used accuracy as the evaluation metric. Specifically,

for textual answers (such as India, CO2, etc.) the model’s

output was considered to be correct only if the predicted

answer exactly matches the true answer. However, for nu-

meric answers with floating point values, an exact match is

a very strict metric We relax the measure to consider an an-

swer to be correct as if it is within 5% of the correct answer.

5.5. Human Accuracy on PlotQA dataset

To assess the difficulty of the PlotQA dataset, we report

human accuracy on a small subset of the Test split of the

dataset. With the help of in-house annotators, we were able

to evaluate 5, 860 questions grounded in 160 images. Hu-

man accuracy on this subset is found to be 80.47%. We used

the evaluation metric as defined in section 5.4. Most human

errors were due to numerical precision as it is difficult to

find the exact value from the plot even with a 5% margin.

6. Observations and Results

1. Evaluating models on PlotQA dataset (Table 6):

The baselines IMG-only and QUES-only performed poorly

with an accuracy of 4.84% and 5.35% respectively. Exist-

ing models (SAN, BAN, LoRRA) perform poorly on this

dataset. In particular, BAN and LoRRA have an abysmal

accuracy of less than 1%. This is not surprising given

that both models are not designed to answer OOV ques-

tions. Further, the original VQA tasks for which BAN was

proposed does not have any complex numerical reasoning

questions as found in PlotQA. Similarly, LoRRA was de-

signed only for text based answers and not for questions

requiring numeric reasoning. Note that we have used the

original code [32] released by the authors of these models.

Given the specific focus and limited capabilities of these

existing models it may even seem unfair to evaluate these

models on our dataset but we still do so for the sake of com-

pleteness and to highlight the need for better models. Lastly,

our model gives the best performance of 22.52% on the

PlotQA dataset. Supplementary material contains details

on the performance of each question type (structural, data

retrieval, reasoning) and each answer type (binary, fixed vo-

cabulary, OOV). We acknowledge that the accuracy is sig-

nificantly lower than human performance. This establishes

that the dataset is challenging and raises open questions on

models for visual reasoning.
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2. Analysis of the pipeline We analyze the performance of

VED, OCR and SIE modules in the pipeline.

VED: Table 7 shows that the VED module performs reason-

ably well at an Intersection Over Union (IOU) of 0.5. For

higher IOUs of 0.75 and 0.9, the accuracy falls drastically.

For instance, at IOU of 0.9, dotlines are detected with an

accuracy of under 20%. This brings out an interesting dif-

ference between this task and other instance segmentation

tasks where the margin of error is higher (where IOU of 0.5

is accepted). A small error in visual element detection as in-

dicated by mAP scores of 75% is considered negligible for

VQA tasks, however for PlotQA small errors can cause sig-

nificantly misaligned table generation and subsequent QA.

We illustrate this with an example given in Figure 4. The

predicted red box having an IOU of 0.58 estimates the bar

size as 760 as opposed to ground truth of 680, significantly

impacting downstream QA accuracy.

Figure 4: Ground-truth (cyan) and predicted (red) boxes.

OCR: We evaluate the OCR module in standalone/oracle

mode and pipeline mode. In the oracle mode, we feed

ground truth boxes to the OCR model whereas in the

pipeline model we perform OCR on the output of the VED

module. We observe only a small drop in performance from

97.06% (oracle) to 93.10% (after VED), which indicates

that the OCR module is robust to the reduction in VED

module’s accuracy at higher IOU as it does not depend on

the class label or the exact position of bounding boxes.

SIE: We now evaluate the performance of the SIE module.

We consider each cell in the table to be a tuple of the form

{row header, column header, value } (e.g., {Poland, 1964,

10000 tractors). We consider all the tuples extracted by the

SIE module with the tuples present in the ground truth ta-

ble to compute the F1-score. Even though Table 7 suggests

that the VED model is very accurate with a mAP@0.5 of

96.43%, we observe that the F1-score for table extraction

is only 0.68. This indicates that many values are not be-

ing extracted accurately due to the kind of errors shown in

Figure 4 where the bounding box has a high overlap with

the true box. We thus need better plot VED modules which

can predict tighter bounding boxes (higher mAP at IOU of

0.9) around the plot’s visual and textual elements. Inaccu-

rate VED module generates erroneous tables which further

affects the downstream QA accuracy.

- In summary, a highly accurate VED for structured images

is an open challenge to improve reasoning over plots.

3. Evaluating new models on the existing DVQA dataset

Model DVQA (TEST) DVQA (TEST-NOVEL)

SAN 32.1% 30.98%

SANDY-OCR 45.77% 45.81%

Our Model 57.99% 59.54%

Table 5: Accuracy of different models on DVQA dataset.

Models IMG QUES BAN LoRRA SAN
Our

Model

Accuracy 4.84 5.35 0.01 0.02 7.76 22.52

Table 6: Accuracy (in %) of different models on PlotQA.

Class AP@0.5 AP@0.75 AP@0.9

Title 100.00% 78.83% 0.22%

Bar 95.84% 94.30% 85.54%

Line 72.25% 62.04% 37.65%

Dotline 96.30% 95.14% 18.07%

X-axis Label 99.99% 99.99% 99.09%

Y-axis Label 99.90% 99.90% 99.46%

X-tick Label 99.92% 99.74% 96.04%

Y-tick Label 99.99% 99.97% 96.80%

Legend Label 99.99% 99.96% 93.68%

Legend Preview 99.95% 99.94% 96.30%

mAP 96.43% 92.98% 72.29%

Table 7: VED Module’s Accuracy on PlotQA dataset

(Table 5): The proposed model performs better than the ex-

isting models (SAN and SANDY-OCR) establishing a new

SOTA result on DVQA. The higher performance of the pro-

posed hybrid model in comparison to SAN (in contrast to

the PlotQA results) suggests that the extraction of the struc-

tured table is more accurate on the DVQA dataset. This is

because of the limited variability in the axis and tick labels

and shorter length (one word only) of labels.

7. Conclusion

We introduce the PlotQA dataset to reduce the gap be-

tween existing synthetic plot datasets and real-world plots

and question templates. Analysis of existing VQA models

on PlotQA reveals that they perform poorly for Open Vo-

cabulary questions. This is not surprising as these models

were not designed to handle complex questions which re-

quire numeric reasoning and OOV answers. We propose a

hybrid model with separate pipelines for handling (i) sim-

pler questions which can be answered from a fixed vocab-

ulary and (ii) complex questions with OOV answers. For

OOV questions, we propose a pipelined approach that com-

bines visual element detection and OCR with QA over ta-

bles. The proposed model gives state-of-the-art results on

both the DVQA and PlotQA datasets. Further analysis of

our pipeline reveals the need for more accurate visual ele-

ment detection to improve reasoning over plots.
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