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Figure 1 further illustrates how ViP method can be ap-
plied to applications, such as a face detector in a mobile
camera system. In mobile phone cameras, a face detector
can not only show where the faces are, but also help camera
auto-focus for taking better pictures with people in sharp
imaging. Therefore, in this case lower accuracy can be tol-
erated as long as some of the faces, if not all, are detected.
At the same time, there is also a speed requirement for cam-
era to focus as fast as possible. For such applications, we
can generate a set of models using the ViP method. We start
from a pre-defined or pre-trained model, e.g., Faster-RCNN,
and a pre-collected dataset for human faces. Then we per-
form Per-layer Sensitivity Analysis (PSA) to determine the
sensitivity of each conv layer in the network. Based on the
sensitivity, we can perform either grouped or per-layer fine-
tuning to generate new models with higher speedup until
we obtain the model that best satisfies the requirement on
speedup-accuracy trade-off.

We also tried out our ViP method on the All-CNN net-
work (Network All-CNN-C from [2]) which consists of
nine convolution layers without a fully-connected layer and
delivers high accuracy on CIFAR-10 dataset. With three
rounds of ViP insertion and fine-tuning, we obtain three
models with different speedup-accuracy trade-offs, as illus-
trated in Figure 2. We are able to achieve 1.77x speedup
on the Titan X GPU and up to 3.03x speedup on the mo-
bile CPU, with desktop CPU and mobile GPU in between,
while the top-1 accuracy drop is within 4%. Also, with less
than 1% accuracy degradation, we obtain a 1.36x speedup
on Titan X GPU and 1.54x speedup on mobile CPU.

We port both Caffe and our custom ViP layer to Jetson
TX1. We use the on-board sensor to measure the power con-
sumption of CNNs with and without ViP technique, and ob-
tain the energy consumption by multiplying power by CNN

Figure 1. An example of applying ViP to the mobile phone camera
face detector. ViP progressively generates new models with higher
speedup until we obtain the model that best satisfies the require-
ment on speedup-accuracy trade-off.

latency. We can see that, in terms of power, All-CNN has
almost the same power on both CPU and GPU across all dif-
ferent ViP configurations. In terms of energy consumption,
All-CNN achieves up to 46% and 70% energy reduction
on mobile GPU and CPU, respectively.

To speedup the network, the upsampling overhead must
be small so it does not offset the latency decrease resulting
from the larger-stride convolution. ViP indeed works as an
upsampling method and is thus similar to transposed con-
volution (Deconv) in terms of functionality. However, ViP
is very fast with low runtime overhead (on average 4.7% of
the network) and hence can achieve high speedup for the



Figure 2. Speedup-Accuracy trade-off obtained by applying ViP
on All-CNN model with CIFAR-10 dataset.

Figure 3. Power/Energy-Accuracy trade-off obtained by applying
ViP on All-CNN model with CIFAR-10 dataset.

overall network. FCN [1] uses Deconv to upsample, and its
major drawback is its expensive computation. For example,
consider a conv layer of input size H ∗W ∗ C (H = W =
224, C = 3) and N = 64 filters of size M∗M∗C (M = 3).
The MAC count for linear interpolation (after a stride 2
conv) is (H/2 ∗W/2) ∗ 2 ∗C ∗ 2+ (H/2 ∗W/2) ∗C ∗ 4 =
301, 056 (last three cases in Eq.5). The MAC count of De-
conv (after a stride 2 conv) is H ∗W ∗M ∗M ∗N ∗N =
1, 849, 688, 064 (We have two Ns since the number of out-
put channels after Deconv when used as upsampling should
be the same as its input, which is N = 64 after stride 2
conv). We note that ViPs computation is only 0.016% of
transposed convolution.

To apply ViP on Faster-RCNN, we analyze the sensitiv-
ity of each layers to ViP and the results are shown in Fig.4.
Notice that, other than the conv layers from VGG16, we
also have one layer from the region proposal network, and
this layer turns out to be among the least sensitive layers
that we need to insert ViP in early finetuning rounds. The
mAP degradation from per-layer ViP ranges from −0.23 ∼
−0.27, however, the recovered mAP degradation after fine-
tuning is only −0.024. Besides, we again observe that lay-
ers immediately followed by pooling are the most robust to
ViP operation, as already discussed in the section of image

classication.

Proof for Proposition 1 is presented here.

Proof. We prove this bound by first bounding the error of
the ViP layer O(ls), and then bounding the error accumu-
lated to higher layers.

For the ViP layerO(ls), ∀c, h, w, the ViP error ofO(ls)
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can be bounded:
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where Nh,w is the set of neighbor locations of (h,w) that
are averaged to compute the ViP value for pixel (h,w),
and dmax is the maximum l2-norm distance of the location
(c, h, w) and a neighbor location (c, hk, wk), which is

√
2

in ViP.

Then, we bound the error accumulated from layer l − 1

to l, i.e., |O(l)V iP
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where (.)+ is the ReLU activation function. Due to the fact
that ∀x, y ∈ R, |(x)+ − (y)+| ≤ |x− y|, we have:
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Figure 4. ViP sensitivity analysis of faster-rcnn with VGG16 backbone under PASCAL VOC 2007 dataset. For each of the conv layers, we
insert ViP immediately after it, and evaluate the accuracy without finetuning. The sensitivity is measured as the accuracy degradation.

Using Cauchy-Schwarz inequality, we have:
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Therefore, accumulating the error from the ViP layer ls
to layer le, we have:
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Thus, the l2-norm of the output error is bounded by:
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