
Supplementary Material

Varun Khare1∗, Divyat Mahajan2∗†, Homanga Bharadhwaj3†, Vinay Kumar Verma1, Piyush Rai1
1IIT Kanpur 2Microsoft Research, India 3University of Toronto

varunkhare1234@gmail.com, t-dimaha@microsoft.com, homanga@cs.toronto.edu
vkverma@iitk.ac.in , piyush@iitk.ac.in

1. Implementation Details

1.1. Generative Framework

In this section, we describe the architecture that
yields our reported results in the ZSL setting wherein
there are no images from seen classes in test samples.
For the SUN dataset, both the networks used for mod-
eling mean and co-variance have linear (1800 and 2048
nodes), batch normalization and Relu layers. Addition-
ally, the co-variance is restricted to be in the range of
0.5 to 1.5 for numerical stability via sigmoid activation.
Both the networks are trained with ADAM optimizer
[3] using 0.001 and 0.1 as regularizer coefficients for
means and covariance respectively.

For the AWA dataset, the generator networks have
an architecture similar to SUN but consist of an addi-
tional dropout layer with probability 0.1. The param-
eters of the means are regularized with the coefficient
103 while the parameters of covariance are regularized
with the coefficient 104.

For the CUB dataset, the generator networks have
three linear layers (1200, 1800, 2048 nodes), 2 Relu, 2
batch normalization and 2 dropout layers. Their regu-
larization coefficients are 0.01 and 0.1 for mean and
covariance respectively. All the above networks are
trained with a learning rate of 0.00001. The training
of these networks was additionally regularized via early
stopping

1.2. Adversarial Domain Adaption

As described above, ADA model comprises two dis-
criminators (DS,T), two classifiers (CS,T) and two gen-
erators (GS,T).

The discriminators DS,T are 5 layered neural net-
works comprising of 2 Linear layers of 1600 nodes and 1
node respectively, a single leaky Relu layer with a neg-
ative slope of 0.2 and batch normalization. The clas-
sifiers are single-layered networks with the number of

∗VK and DM contributed equally
†DM and HB contributed while being part of IIT Kanpur

nodes equal to the number of classes. log(softmax(x))
is used as activation function for the classifiers CS,T .
The generators GS,T consist of three linear layers
(1200,1200 and 2048 nodes), dropout layers, batch nor-
malization and leaky Relu.

The overall objective is minimized using RMSprop
([2]) optimizer with a learning rate of 0.00001. A man-
ual seed of 100 has been used for all the ADA experi-
ments.

2. Training Procedures

For brevity, we provide the training algorithms for
our base ZSL model and the ADA ZSL model. We use
the following loss definition for adversarial training as
described in the paper

L = LTadv + LSadv + χLcyc + ξLTclf + ξLSclf (1)

where L{T,S}adv = {LG + LD}{T,S} with

LTG = E
c∼pc

[β‖GT (xnc)− xnc‖p −DT
w ◦GT (ync)] (2)

LSG = E
c∼pc

[β‖GS(ync)− ync‖p −DS
w ◦GS(xnc)] (3)

LTD = Ec∼pc [DT
w ◦GT (ync)]− Ec∼pc [DT

w(xnc)](4)

LSD = Ec∼pc [DS
w ◦GS(xnc)]− Ec∼pc [DS

w(ync)] (5)

Here, Dw is the Wasserstein loss [1] and c denotes the
class label.

Lcyc(GT , GS) = Ec∼pc [‖GS ◦GT (ync)− xnc‖p]
+ Ec∼pc [‖GT ◦GS(xnc)− ync‖p]. (6)

Here, || · ||p denotes the Lp norm.

LTclf = Ec∼pc [L(CTclf ◦GT (ync), Y
T)]

+Ec∼pc [L(CTclf (xnc), Ȳ
U)] (7)

1

LSclf = Ec∼pc [L(CSclf ◦GS(xnc), Y
S)]

+Ec∼pc [L(CSclf (ync), Ȳ
U)] (8)

Algorithm 1 Superficial Training Scheme

1: Train ResNet101 on Imagenet
2: Randomly initialize model parameters
3: Initialize dataset Dada ← ∅
4: Train the generative model to describe data from

class c by p(x|c,Θ) ∀c ∈ [1, ...C]
5: Source←− data sampled from generative model
6: Target←− unlabelled test data
7: Initialize weights of GT : S −→ T ,GS : T −→ S,
DS , DT

8: Augment class labels to GT and GS

9: for epoch i = 1 : K do
10: Randomly sample osi ∼ Source, oti ∼ Target
11: Perform ADA

Algorithm 2 All the notations have same meaning as
that in the running text. Params() return the param-
eters of the model in (.)

1: Input:Maximum iterations Nstep, batch size n,
the iteration number of discriminator in a loop
nd, RMSprop hyperparameters α, class attributes
{ac}S+U

c=1 , ADAM hyperparameters α2, β1, β2

2: // Pre-training
3: for c = 1...S + U do
4: ζc = fΘ(ac)

5: for iter = 1, ..., Nstep do
6: Sample minibatch of examples x1, x2, ...xn

7: L =

S∑
c=1

∑
n:yn=c

(xn − fµ(ac))
T

[fΣ(ac)] (xn − fµ(ac))

8: Θ← Adam(
`

Θ L,Θ, α2, β1, β2)

9: // Adversarial Domain Adaptation
10: Initialize {G,D,C}T,S
11: λd = Params(DT , DS , CT , CS)
12: λg = Params(GT , GS)
13: for iter = 1, ..., Nstep do
14: Sample minibatch x1, x2, ...xn from test data

for training GT

15: Sample minibatch x′1, x
′
2, ...x

′
n from class condi-

tional distributions for training GS

16: Compute the overall loss L using Eq.1
17: λg ← RMSprop(

`
λg
L, λg, α)

18: for t = 1, ..., nd do
19: Sample minibatch of examples x
20: Compute the overall loss L using Eq.1
21: ζd ← RMSprop(

`
λd
L, λd, α)

References

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
gan. arXiv preprint arXiv:1701.07875, 2017.

[2] G. Hinton, N. Srivastava, and K. Swersky. Neural net-
works for machine learning lecture 6a overview of mini-
batch gradient descent. Cited on, 14:8, 2012.

[3] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

	. Implementation Details
	. Generative Framework
	. Adversarial Domain Adaption

	. Training Procedures

