Appendix A
Blended Convolution and Synthesis for Efficient Discrimination of 3D Shapes

A. The derived (),,; polynomials up to n=>5, m=>5:

Qn1 polynomials up to n = 5 and m = 5 are shown in Table 6.

Table 6: The derived ),,; polynomials up to n = 5, m = 5.

Polynomial Expression

Qoo 0

Q10 1.4+ 22

Q11 —1. -1z

Q20 —9.79 — 10.65x + 922

Q21 5.29 + 6.29z — 422

Q22 —1.99 — 3.63x + (E2

Q30 —123.58 — 158.11x + 87.4622 + 3223

Q31 70.26 + 89.41x — 50.31z2 — 13.523

Q32 15.86 4 22.272 — 11.0622 — 0.5z

Q33 —768.81 — 1006.25z + 512.652% + 139.102° + 104.162*

Q10 —35.86 — 46.15x + 25.5922 + 43

Qu 422.87 + 550.70x — 287.8122 — 73.522°% — 42.662*

Qa2 —768.81 — 1014.25z + 480.652% + 73.772z> + 13.5x*

Qus —776.81 — 1034.25z + 454.652% + 50.43z° — 2.66x*

Qus —768.81 — 1022.25z + 464.652% + 56.43z> + 0.16x*

Q50 —3683.18 — 4855.97x + 2342.20z2 + 509.59z3 + 340.362* + 3242°
Qs1 1960.80 + 2578.79x — 1263.6422 — 280.0223 — 167.77z* — 130.202°
Qs2 —981.80 — 1286.88x + 643.53x2 + 141.74x> + 72.232* + 42.662°
Qs3 463.12 + 604.69x — 309.1322 — 64.522% — 25.87z* — 10.122°
Qs4 —208.26 — 272.17x + 140.8122 4 25.87x> + 7.442* 4 1.332°

Qs5 91.29 + 122.33z — 61.7022 — 9.53z3 — 2.07z* — 0.042°

B. Combined latent space projection and Volumetric Convolution with Roto-Translataional Ker-
nels

Theorem 1: Suppose f,g : X — R3 are square integrable complex functions defined in B so that (f, f) < oo and
(9,9) < oo. Further, suppose g is symmetric around north pole and T(c, ) = Ry(o)R.(83) where R € SO(3) and T, is
translation of each point by r'. Then,
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where Qn,l’m(f),f)nglﬁo(g) and Y, ., (0,¢) are (n,l,m)*" spectral moment of f, (n’,1,0)" spectral moment of g, and
spherical harmonics function respectively. P{-} is the projection to a latent space, T(, 8) = Ry(a)R, () where R € SO(3)
and T, is translation of each point by r'.

Proof: The input function f is projected to the latent space shape f by,
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where spectral moment Qn 1,m(f) can be obtained using,
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where ¢ € [0, 7] is the polar angle, 6 € [0, 27 is the azimuth angle, | € Z™ is a non-negative integer, m € Z is an integer,
|m|< [, and P)"(-) is the associated Legendre function,
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In Eq. 17, the set { W, k., } denotes trainable weights. Using this result, we can rewrite f * g(r’, o, 8) as
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Using the properties of inner product, this can be rewritten as,
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I" can be decomposed into its angular and linear components as,
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First, consider the angular component,
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Since g(0, ¢, r) is symmetric around y, using the properties of spherical harmonics, Eq. 25 can be rewritten as,
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where D! is the Wigner-D matrix. But D% ,,; = Yy ,,,, and hence,
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Since spherical harmonics are orthogonal,
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where Cypg is a constant. Consider the linear component of Eq. 24. It is important to note that for simplicity, we derive
equations for the orthogonal case and use the same results for non-orthogonal case. In practice, this step does not reduce
accuracy.
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Also, we have derived that [ = I’ from the result in Eq. 28. Applying this result and Eq. 30 to Eq. 29 gives,
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Since Q. and Q,,/; are orthogonal,
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Combining Eq. 28 and Eq. 35 for Eq. 22 and choosing the normalization constant to be %’T (since the integration is over unit
ball) gives,
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Table 7: Ablation study on the input point cloud density. We sample the input points on a grid (r= 25, 6 = 36, ¢ = 18) before
feeding to the network.

Original point cloud sampling Accuracy

(r=250, 6 =200, ¢ =200) 94.22%
(r=300, 6 = 250, ¢ = 250) 94.21%
(r=400, 6 =300, ¢ = 300) 94.23%
(r= 500, 6 = 400, ¢ = 400) 94.20%

C. Ablation study on input point cloud density

A critical problem associated with directly consuming point clouds, in order to learn features, is the redundancy of
information. This property hampers optimal feature learning using neural network based models, by imposing an additional
overhead. To verify this, we conduct an ablation study on the density of the input point cloud, and observe the performance
variations of our model. The obtained results are reported in Table 7. As the results suggest, there is no clear variation of
classification performance, although the input sampling density is increased. Therefore, it can be empirically concluded
that input point clouds are not optimal to be directly fed to learning networks, due to their inherent redundancy. As a result,
significant reduction in their density could still lead to comparable performance with that of the original point cloud.



