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Abstract

We propose a method to expand the visual coverage
of training sets that consist of a small number of labeled
examples using learned attributes. Our optimization for-
mulation discovers category specific attributes as well as
the images that have high confidence in terms of the at-
tributes. In addition, we propose a method to stably cap-
ture example-specific attributes for a small sized training
set. Our method adds images to a category from a large
unlabeled image pool, and leads to significant improvement
in category recognition accuracy evaluated on a large-scale
dataset, ImageNet.

1. Introduction

Designing generalizable classifiers for visual categories
is an active research area and has led to the development of
many sophisticated classifiers in vision and machine learn-
ing [20]. Building a good training set with minimal super-
vision is a core problem in training visual category recogni-
tion algorithms [1].

A good training set should span the appearance variabil-
ity of its category. While the internet provides a nearly
boundless set of potentially useful images for training many
categories, a challenge is to select the relevant ones – those
that help to change the decision boundary of a classifier to
be closer to the best achievable. So, given a relatively small
initial set of labeled samples from a category, we want to
mine a large pool of unlabeled samples to identify visually
different examples without human intervention.

This problem has been studied by two research commu-
nities: active learning and semi-supervised learning. In ac-
tive learning, the goal is to add visually different samples
using human intervention, but to minimize human effort
and cost by choosing informative samples for people to la-
bel [6, 13, 16]. Even though the amount of human interven-
tion is minimized and its cost is getting cheaper via crowd
sourcing, e.g., Amazon Mechanical Turk, it is still prefer-
able to not have humans in the loop because of issues like
quality control and time [16].

Semi-supervised learning (SSL) aims at labeling unla-
beled images based on their underlying distribution shared
with a few labeled samples [5,17,21]. In SSL, it is assumed
that the unlabeled images that are distributed around the la-
beled samples are highly likely to be members of the labeled
category. However, if we need to dramatically change the
decision boundary of a category to achieve good classifica-
tion performance, it is unlikely that this can be done just by
adding samples that are similar in the space in which the
original classifier is constructed.

To expand the boundary of a category to an unseen re-
gion, we propose a method that selects unlabeled sam-
ples based on their attributes. The selected unlabeled sam-
ples are not always instances from the same category, but
they can still improve category recognition accuracy, simi-
lar to [7,10]. We use two types of attributes: category-wide
attributes and example-specific attributes. The category-
wide attributes find samples that share a large number of
discriminative attributes with the preponderance of training
data. The example-specific attributes find samples that are
highly predictive of the hard examples from a category - the
ones poorly predicted by a leave one out protocol.

We demonstrate that our augmented training set can sig-
nificantly improve the recognition accuracy over a very
small initial labeled training set, where the unlabeled sam-
ples are selected from a very large unlabeled image pool,
e.g., ImageNet. Our contributions are summarized as fol-
lows:

1. We show the effectiveness of using attributes learned
with auxiliary data to label unlabeled images without
annotated attributes.

2. We propose a framework that jointly identifies the un-
labeled images and category wide attributes through an
optimization that seeks high classification accuracy in
both the original feature space and the attribute space.

3. We propose a method to learn example specific at-
tributes with a small sized training set, used with the
proposed framework. We then combine the category
wide and the example specific attributes to further im-
prove the quality of image selection by diversifying the
variations of selected images.
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The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 presents the overview of
our approach. Section 4 describes our optimization frame-
work for discovering category wide attributes and the unla-
beled images as well as a method to capture exemplar spe-
cific attributes. Section 5 describes the details of the dataset
configurations used in our experiments. Experimental re-
sults that demonstrate the effectiveness of our method is
presented in Section 6. Section 7 concludes the paper.

2. Related Work
Our work is related to active learning, semi-supervised

learning, transfer learning and recent work about borrowing
examples from other categories.
Active Learning The goal of active learning is to add ex-
amples with minimal human supervision [6]. [16] provides
a comprehensive survey. Recently, Parkash et al. proposed
a novel active learning framework based on interactive com-
munication between learners and supervisors (teachers) via
attributes [13]. It requires fairly extensive human supervi-
sion with rich information.
Semi-Supervised Learning Semi-supervised learning
(SSL) adds unlabeled examples to a training set by mod-
eling the distribution of features without supervision. [21]
is a detailed review of the SSL literature. Fergus et al. pro-
posed a computationally efficient SSL technique for large
datasets [5]. Our approach also uses a large dataset and
scales linearly in the size of that dataset; it differs from
conventional SSL approaches because we do not use the
distribution of sample in the original feature space, but in
an attribute space. Recently, Shrivastava et al. proposed
a SSL based scene category recognition framework using
attributes, constrained by a category ontology [17]. They
leverage the inter-class relationships as constraints for SSL
using semantic attributes given by a category ontology as
a priori. Our approach is similar to their work in terms of
using attributes, but aims to discover attributes without any
structured semantic prior.
Transfer Learning and Borrowing Examples Our work
is related to recent work on transfer learning [12] and bor-
rowing examples [7, 10, 15].

Ruslan et al. [15] proposed building a hierarchical model
from categories to borrow images of a useful category for
detection and classification. They assume that the images
in a category are not diverse and adding all images from
some selected category will help to build a better model for
the target category. The assumption, however, is bound to
be violated by visually diverse categories.

Instead, Lim et al. [10] propose a max-margin formula-
tion to borrow some samples from other categories based on
a symmetric borrowing constraints.

Kim and Grauman [7] propose a shape sharing method
to improve segmentation based on the insight that shapes
are often shared between objects of different categories.

Attributes Research on attributes recently has been draw-
ing a lot of attention in the computer vision community be-
cause of their robustness to visual variations [4, 8, 9]. At-
tributes can, in principle, be used to construct models of new
objects without training data - zero shot learning [9]. Re-
cently, Rastegari et al. [14] propose discovering implicit at-
tributes that are not necessarily semantic for category recog-
nition. The discovered attributes preserve category-specific
traits as well as their visual similarity by an iterative al-
gorithm that learns discriminative hyperplanes with max-
margin and locality sensitive hashing criteria.

3. Approach Overview

Given a handful of labeled training examples per cate-
gory, it is difficult to build a generalizable visual model of a
category even with sophisticated classifiers [20]. To address
the lack of variations of the few labeled examples, we ex-
pand the visual boundary of a category by adding unlabeled
samples based on their attributes. The attribute description
allows us to find examples that are visually different but
similar in traits or characteristics [4, 8, 9].

Based on recent work on automatic discovery of at-
tributes [14] and large scale category-labeled image datasets
[2], we discover a rich set of attributes. These attributes
are leaned using an auxiliary category-labeled dataset to
avoid biasing the attribute models towards the few labeled
examples. The motivation here is similar to what under-
lies the successful Classemes representation [18] which
achieved good category recognition performance by rep-
resenting samples by external data that consists of a large
number of samples from various categories.

Across the original visual feature space and the attribute
space, we propose a framework that jointly selects the un-
labeled images to be assigned to each category and the dis-
criminative attribute representations of the categories based
on either a category wide or exemplar based ranking cri-
teria. Sec. 4.1 presents the optimization framework for
category wide addition of unlabeled samples to categories.
This adds samples that share many discriminative attributes
amongst themselves and the given labeled training data.
The same framework can be applied to identify relevant un-
labeled samples based on their attribute similarity to spe-
cific instances of the training data. This only involves a sim-
ple change to one term of the optimization, and is based on
how ranks of unlabeled samples change as labeled samples
are left out, one at a time, from the attribute based classifier.
So, the optimization runs twice - one to identify samples
that share large numbers of discriminative attributes within
class and a second to find samples that share strong attribute
similarity with specific members of the class, and the two
sets of samples are then combined to create the augmented
training set for the class. We refer to the first as a categorical
analysis and the second as an exemplar analysis.
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4. Joint Discovery of Discriminative Attributes
and Unlabeled Samples

4.1. Categorical Analysis
We simultaneously discover discriminative attributes and

images from the unlabeled data set in a joint optimization
framework formulated in both visual feature space and at-
tribute space with a max margin criterion for discriminativ-
ity. Unlike [17], we do not require a label taxonomy to find
the shared properties. Also unlike [10], we do not need to
learn the distributions of the unlabeled images in the origi-
nal feature space.

For each category c, we will construct a classifier in
visual feature space, wv

c , using the set X = {xi|i ∈
{1, . . . , l, l + 1, . . . , n}} that consists of the initially given
labeled training images {xi|i ∈ {1, . . . , l}} ⊂ X and the
selected images from the unlabeled image pool {xi|i ∈
{l + 1, . . . , n}} ⊂ X . The subset of images from the
unlabeled set is assigned to a category based on identify-
ing discriminative attribute models. Since the problems of
determining the discriminative attributes and selecting the
subset of unlabeled data to assign to a category are coupled,
we learn them jointly. Additionally, we want to mitigate
against unlabeled samples being assigned to multiple cate-
gories, so a term M(·) is added to the optimization criteria
to enforce that. The joint optimization function is:

min
Ic∈I,wv

c ,w
a
c

∑
c

(
αJv

c (Ic, w
v
c ) + βJa

c (Ic, w
a
c )
)
+M(I)

subject to

Jv
c (Ic, w

v
c ) = ‖wv

c‖22 + λv

n∑
i=1

ξc,i

Ic,i · yc,i(wv
cxi) ≥ 1− ξc,i, ∀i ∈ {1, . . . , n}

Ja
c (Ic, w

a
c ) = ‖wa

c ‖22 + λa

n∑
j=1

ζc,j −
n∑

k=l+1

Ic,k

(
wa

cφ(xk)
)

Ic,j · yc,j(wa
cφ(xj)) ≥ 1− ζc,j , ∀j ∈ {1, . . . , n}

n∑
k=l+1

Ic,k ≤ γ, Ic,k = 1, ∀k ∈ {1, . . . , l}

M(I) =
∑∑
c16=c2

Ic1 · Ic2,

(1)

Ic ∈ {0, 1} is the sample selection vector for category c,
and indicates which unlabeled samples are selected for as-
signment to the training set of category c. Ic,i = 1 when
the ith sample is selected for category c. xi ∈ RD is the
visual feature vector of image i. yc,i ∈ {+1,−1} indi-
cates whether the label assigned to xi is c (+1) or not (−1).
φ(·) : RD → RA is a mapping function of visual feature to
the attribute space that is learned from auxiliary data, where
RD and RA denote visual feature space and attribute space,

respectively. α and β are hyper-parameters for balancing
the max margin objective terms for both the visual feature
and attribute based classifiers. γ is a hyper-parameter for
specifying the number of selected images.
Jv
c (Ic, w

v
c ) and the second constraint of Eq. 1 are a max-

margin classification terms in visual feature space. Ja
c (·)

and the forth constraint of Eq. 1 are a max-margin classifier
in the attribute space (TA) with a selection criterion (TR);
we divide it as follows:

Ja
c (Ic, w

a
c ) = ‖wa

c ‖22 +
n∑

j=1

ζc,j︸ ︷︷ ︸
TA

−
n∑

k=l+1

Ic,k

(
wa

cφ(xk)
)

︸ ︷︷ ︸
TR

.

(2)
TR essentially chooses the top γ responses of the at-

tribute classifier from the unlabeled set by the fifth con-
straint of Eq. 1. The term M(Ic) penalizes adding the same
sample to multiple categories (sixth constraint of Eq. 1).

The objective function is obviously not convex due to
the interconnection of the two spaces by the example select-
ing indicator vector I and the attribute mapper φ(·). How-
ever, if the Ic’s were known and we fix either Jv

c (Ic, w
v
c ) or

Ja
c (Ic, w

a
c ), the function becomes convex and can be solved

with an iterative block coordinate descent algorithm. At
each iteration we fix one of the terms and the entire ob-
jective function becomes an ordinary max margin classifi-
cation formulation with a selection criterion. Each iteration
of the block coordinate descent algorithm updates the set of
indicator vectors I . At the first iteration, the initial value
of I is determined by training the attribute classifier wa

c on
the given labeled training set. Then, after the two SVM’s
in both spaces are updated, we update I . Since there is no
proof of convergence for the algorithm, we iterate it a fixed
number of times - 1 ∼ 5 in practice. The iterations could
be controlled using a held out validation set, but since our
premise is that labeled samples are rare we do not do that.

4.2. Exemplar Analysis
The discriminative attributes learned in Sec. 4.1 cap-

ture commonality among all examples in a category. We
refer them as categorical attributes. Each example, how-
ever, has its own characteristics that may help to expand the
visual space of the category by identifying images based
on example-specific characteristics. To discover exemplar
attributes, a straightforward solution would be to learn
exemplar-SVMs [11]. The exemplar-SVM, however, re-
quires many negative samples to make the classifier output
stable. For our purposes, though, we can accomplish the
same thing by analyzing how the ranks of unlabeled sam-
ples change when a single sample is eliminated from the
training set of the attribute SVM. If an unlabeled sample
sees its rank drop sharply from its rank in the full-sample
SVM, then the training sample dropped should have strong
attribute similarity to the unlabeled sample.
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This is illustrated in Figure 1. The top row shows the ten
initial labeled orange samples. The leftmost column shows
unlabeled samples sorted by their rank in the attribute clas-
sifier learned from that set. Then we construct leave one out
attribute classifiers, and each column shows the new rank-
ings of unlabeled samples when each image at the top of the
column is eliminated from the training set. Eliminating the
half orange (second sample, top row) from the training set
reduces the rank of the globally best unlabeled sample from
1 to 10.

First, let wa
c be the attribute classifier for the current

training set for category c (while the process is initialized
based on the labeled training set, after each iteration we use
the additional unlabeled samples added to the category to
construct a new attribute classifier). Let wa

c,j̄
be the at-

tribute classifier learned when the ith sample is removed
from the training set. We next describe how we use the
ranks of unlabeled samples in these two classifiers to mod-
ify TR in Eq. 2. Basically, we are going to re-rank the un-
labeled samples based on their rank changes from wa

c to
wa

c,j̄
. We want samples whose ranks are lowered dramati-

cally by the elimination of a single sample from the training
set to be highly ranked by the re-ranking function. This can
be accomplished by computing the following score based
on rank changes, and sorting the unlabeled samples by this
score:

ej(xi) =
µ

rg(xi)
− ν

rj(xi)
, (3)

where xi is a sample from the an unlabeled pool, rg(·) and
rj(·) are the rank functions of wa

c and wa
c,j̄

respectively.
µ and ν are the balancing hyper-parameters for two ranks.
TR is then simply determined by first selecting the new top
ranked sample from each leave one out SVM, then the sec-
ond ranked, until a fixed number of samples are selected
(skipping over duplicates). This set is then used to re-learn
the feature and attribute based SVM’s and the entire process
iterates.

5. Dataset
We construct a dataset from a large scale dataset for cat-

egory recognition, ImageNet [2] using its standard bench-
mark subset, ILSVRC 2010 dataset. We will publicly re-
lease our dataset for future comparison.1 It consists of ap-
proximately 1 million images of 1,000 categories. The im-
ages are downloaded from a photo sharing portal2. It pro-
vides fine grained category labels such as specific breed of
dogs, e.g., Yorkshire Terrier and Australian Terrier.

We randomly choose 11 categories among natural ob-
jects such as vegetable and dogs as the categories of interest.
Those categories have very large appearance variations due

1http://umiacs.umd.edu/∼jhchoi/addingbyattr/
2http://www.flickr.com

Use	  all	  
Except	  each	  

Sc
or
e	  
hi
gh
	  

Given	  Training	  Samples	  

Figure 1. Unlabeled images ordered by confidence score by wa
c

and a set of wa
c,̄i’s (column wise). The first row shows the labeled

training samples (10 examples). The left most column is a list
of unlabeled images ordered by confidence score by wa

c . Rest of
the columns are lists of unlabeled images ordered by each wa

c,̄i’s.
Note that an image of halved orange in the second column makes
the first ranked images in the left most column (by wa

c ) go down
because the halved orange was removed in the training set of wa

c,̄i.

to factors including non-rigid deformation, lighting, cam-
era angle, intra-class appearance variability etc. For each
category, we randomly choose ten images as an initial la-
beled training set and 500 images as a testing set. The unla-
beled image pool consists of images that are arbitrarily cho-
sen from the entire 1,000 categories in the ILSVRC 2010
benchmark dataset, but includes at least 50 samples from
each of the categories to be learned. The size of the im-
age pool varies in the experiments but is much larger (from
5,000 to 50,000) than the initial training set. For learning
the attribute space and the mapper, it is expected that the
attribute mapper should capture some attribute of the cate-
gories of interest. For this purpose, we use 50 labeled sam-
ples from 93 categories that are similar to the 11 categories
to learn the attribute space.

6. Experiments

The main goal of our method is to add unlabeled im-
ages to the initial training set in order to classify more test
images correctly. We demonstrate the effectiveness of our
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method by improvements in average precision (AP) of cate-
gory recognition. We also evaluate our approach under var-
ious scenarios including the precision (purity) of the unla-
beled image pool and the size of the initial labeled set and
also the effect of parameters including number of selected
examples. Moreover, we evaluate the effect of selecting im-
ages that are not from the category of interest.

6.1. Experimental Setup
Visual feature descriptors: We use various visual feature
descriptors including HOG, GIST and color histograms.
Since the feature dimensionality is prohibitively large, we
reduce the dimension to 6,416 by PCA.
Attribute discovery: We use the binary attribute discov-
ery method of Rastegari et al. [14] as the attribute mapping
function, φ(·) in Eq. 1. We learn the mapper with default
hyper-parameter sets as suggested in [14]. We use 400 bits
in most of our experiments. We also present performance
as a function of the number of bits.
Max margin optimization: We use LibLinear [3] for train-
ing all max-margin based objective functions. To address
the non-linearity of visual feature space, we use homoge-
neous kernel mapping [19] on the original features with the
linear classifier. For the hinge loss penalty hyper-parameter,
we use 0.1.
Parameters: For the parameter in Eq. 1, we use α = 1, β =
1. For categorical attribute only, we mostly use γ = 50 ex-
cept ones in Section 6.4. For combining exemplar and cate-
gorical attributes, we mostly use γ = 20 and γi = 3 except
for Section 6.4. We investigate algorithm performance as a
function of γ in Section 6.4. For the parameters of the scor-
ing function for exemplar-attributes in Eq. 3, we use µ = 1
and ν = 1.

6.2. Qualitative Results
Our method discovers examples that expand the visual

coverage of a category by not only adding the examples
from the same category but also examples from other cat-
egories. Figure 2 illustrates qualitative results on the cate-
gory Dalmatian for both categorical and exemplar attributes
analyses. The selected examples based on categorical at-
tributes exhibit characteristics commonly found in the la-
beled examples such as dotted, four legged animal. The
exemplar attributes, on the other hand, select examples that
exhibit the characteristic of individual labeled training ex-
amples.

6.3. Comparison with Other Selection Criteria
Given our goal of selecting examples from a large un-

labeled data with only a small number of labeled training
samples, we do not compare with semi-supervised learning
methods because they need more labeled data to model the
distribution. Since our method does not involve human in-
tervention, we do not compare to active learning.

Category Name Init. NN ALC Cat. E+C
Mashed Potato 45.03 34.02 51.15 61.39 63.92
Orange 29.84 16.29 26.97 40.61 41.05
Lemon 32.21 27.58 32.43 35.37 34.23
Green Onion 25.06 16.50 19.66 38.57 40.20
Acorn 13.09 11.05 15.41 19.35 20.10
Coffee bean 58.29 43.89 56.62 64.65 66.54
Golden Retriever 14.54 15.57 12.61 17.54 18.61
Yorkshire Terrier 29.62 13.62 27.63 41.41 45.65
Greyhound 15.24 15.73 15.64 14.75 15.22
Dalmatian 43.84 27.97 37.91 54.42 57.23
Miniature Poodle 26.10 12.50 21.16 28.87 30.21
Average 30.26 21.34 28.84 37.90 39.36

Table 1. Comparison of average precision (AP) (%) for each
category with 50 added examples by various methods. ‘Init.’
refers to initial labeled training set. ‘NN’ refers to addition by
‘nearest neighbor’ in visual feature space, ‘ALC’ refers to addition
by ‘active learning criteria (ALC)’ that finds the examples close to
the current decision hyperplanes [6]. ‘Cat.’ refers to our method
of select examples using categorical attributes only. ‘E+C’ refers
to addition using categorical and exemplar attributes. The size
of the unlabeled dataset is roughly 3,000 from randomly chosen
categories out of 1,000 categories.

We compare to baseline algorithms which are applica-
ble to the large unlabeled data scenario. The first baseline
algorithm is to select nearest neighbors. The second base-
line selects images by an active criterion that finds examples
close to a learned decision hyperplanes [6]. Both baseline
algorithms selects images based on analysis in the visual
feature space.

As shown in Table. 1, the two baseline strategies
decrease mean average precision (mAP). However, our
method identifies useful images in the unlabeled image pool
and significantly improves mAP by 7.64%. Except for
the category Greyhound, we obtain performance gain from
2.77% - 16.36% in all categories. The added examples serve
not only as positive samples for each category but also as
negative samples for other categories. The quality of the
selected set can change the mAP significantly in both ways.

6.4. Number of Selected Examples

As we select more examples, controlled by γ in Eq. 1, the
chances of both selecting useful images and harmful images
for a category increase simultaneously. We vary the num-
ber of selected examples and observe mean average preci-
sion as shown in Figure 3. The category wide attributes
identify useful unlabeled images. In addition, the exemplar
attributes further improve the recognition accuracy.

6.5. Adding Examples from Similar Categories

Among the selected images per category, some examples
are true instance of the category. We refer to these as exact
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Selected	  by	  Categorical	  A+ributes	   Selected	  by	  Exemplar	  A+ributes	  

Labeled	  Training	  Examples	  
1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Figure 2. Qualitative results of our method. Note that the selected examples by categorical attributes display characteristics commonly
found in the labeled training examples such as ‘dotted’, ‘four legged animal’. In contrast, the exemplar attributes select the examples that
display the characteristic of individual example.
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Figure 3. Mean average precision (mAP) of 11 category by our
method varying the number of unlabeled images selected. The
red, green and blue are the mAP using the initial labeled set (Init.
Set), the augmented set by our method using category wide at-
tributes only (+ by C only) and categorical+exemplar attributes
respectively. (+ by E+C)

examples and the rest as similar examples. We are inter-
ested in how much the similar examples improve category
recognition. First, we examine the purity of the selected set
in Figure 4. The purity is the percentage of exact samples
in the set. Surprisingly, even though the purity values seem
low, they still improve classification performance.

We now investigate how much the similar examples im-
prove the average precision (AP) by removing the exact ex-
amples from the selected set. The blue bars in Figure 5
represent the AP using just the similar examples. It is in-
teresting to note that using only the similar examples still
improves the APs over the initial labeled set.

In addition, it is also interesting to observe how the per-
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Figure 4. Purity of added examples. Red bars denote the purity
of selected images using category wide attributes only (+ by C
only) and the green bars are obtained from categorical+exemplar
attributes (+ by E+C).

formance changes when we add the same number of similar
examples as the size of the initially selected image set (50).
This is shown as green bars in Figure 5. All results are ob-
tained using categorical attributes only. (The results using
both exemplar and categorical attributes are similar so are
omitted).

6.6. Precision of Unlabeled Data

The unlabeled data can be composed of images from
many categories. The precision of the unlabeled data is de-
fined as the ratio of size of the unlabeled images from ex-
traneous categories to the size of the entire unlabeled image
data. The larger the unlabeled data, the lower we expect its
precision to be (imagine running a text based image search
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Figure 5. Mean average precision (mAP) as a function of the
purity of the selected examples. The navy colored bars are ob-
tained using the initial labeled set (baseline). The blue bars use
only similar examples among the selected 50 examples. The green
bars use 50 similar examples to compare with the result of our
selected 50 examples (orange bars) including both similar and ex-
act examples. The red bars are obtained using a set of 50 ground
truth images, which is the best achievable accuracy (upper bound).
Even the similar examples alone improve the category recognition
accuracy compared to just using the initial labeled set.

using the category name and accepting the first k images re-
turned). It is interesting to observe how robust our method
is against the precision of unlabeled data.

We start with an unlabeled set (550 images, 50 from each
of the 11 categories) of precision 1.0, and reduce precision
by adding images from other categories. The number of
the unrelated images ranges from 2,500 to 50,000, which
are randomly chosen from the entire 1,000 categories of the
ImageNet ILSVRC 2010 dataset.

As shown in Figure 6, we observe that the accuracy
improvement by our method using categorical attributes is
quite stable even when precision is low.

6.7. Size of Initial Labeled Set

We next explore how the size of the initial labeled set
effects accuracy. We systematically vary the size from 5
to 50 and show mAP compared to an SVM learned on the
initial training set - see Figure 7. The mAP gain for the
smallest initial labeled set (5) is the highest as expected.
When the number of samples is larger than 25, our method
(+ by C only) does not improve the mAP much, although
it still improves by 1.18− 2.74%. Interestingly when there
are many samples in the initial training set (e.g., more than
25), the exemplar traits begin to reduce the mAP.
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Figure 6. Mean average precision (mAP) as a function of pre-
cision of unlabeled data. Precision denotes the ratio of size of
the unlabeled images from extraneous categories to the size of the
entire unlabeled image data (size = 50,000). Although precision
decreases, the mean average precisions (mAP) by our method do
not decrease much.
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Figure 7. Mean average precision (mAP) as a function of the
size of the initial labeled set. The number of added samples is 50
in all experiments.

6.8. Comparison to Exemplar SVM

We also compare the effectiveness of our proposed ex-
emplar attributes discovery method (Sec. 4.2) to a conven-
tional exemplar SVM [11]. It is straightforward to integrate
the exemplar SVM into our formulation (Eq. 1): by setting
label yc,j to 1 for the jth example, the label coresponding to
the examples in the same category to 0 and the rest to 1. To
stabilize the exemplar SVM scores, we employ 50,000 ex-
ternal negative samples to learn each exemplar SVM while
we use the small original training set for our method. Fig-

879879879881881



0

10

20

30

40

50

60

70

A
v

e
ra

g
e

 P
re

c
is

io
n

 (
%

)

 

 

M
as

hed
 P

ota
to

O
ra

nge

Lem
on

G
re

en
 O

nio
n

A
co

rn

C
offe

e 
B
ea

n

G
old

en
 R

et
rie

ve
r

York
sh

ire
 T

er
rie

r

G
re

yh
ound

D
al

m
at

ia
n

M
in

ia
tu

re
 P

oodle

A
ve

ra
ge

Init. Set

E−SVM

Ours

Figure 8. Comparison of our exemplar attribute discovery
method (Sec. 4.2) to exemplar SVM. Our method outperforms
the exemplar SVM in terms of category recognition accuracy by
APs without the extra large negative example set (size = 50,000).

ure 8 shows that our exemplar attribute discovery method
outperforms the exemplar SVM by large margins even with-
out the large negative example set.

7. Conclusion
We proposed a method to select unlabeled images to

learn classifiers based on learned attributes. The unlabeled
images selected by our method do not necessarily belong
to the category of interest but are similar in attributes. Our
method does not require any annotated attribute set a priori
but first builds an automatically learned attribute space. We
formulate a joint optimization framework to select both im-
ages and the attributes for a category and solve it iteratively.
In addition to the category wide attributes, we identify ex-
ample specific attributes to diversify the selected images.
For addressing the problem of small size training set to learn
the example specific attributes, we propose a method that
can be intuitively regarded as an inverse of exemplar SVM.

From a large unlabeled data pool, the selected images
improve category recognition accuracy significantly over
accuracy obtained using the initial labeled training set.
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