
Learning Binary Codes for High-Dimensional Data Using Bilinear Projections

Yunchao Gong
UNC Chapel Hill

yunchao@cs.unc.edu

Sanjiv Kumar
Google Research

sanjivk@google.com

Henry A. Rowley
Google Research
har@google.com

Svetlana Lazebnik
University of Illinois

slazebni@illinois.edu

Abstract
Recent advances in visual recognition indicate that to

achieve good retrieval and classification accuracy on large-
scale datasets like ImageNet, extremely high-dimensional
visual descriptors, e.g., Fisher Vectors, are needed. We
present a novel method for converting such descriptors to
compact similarity-preserving binary codes that exploits
their natural matrix structure to reduce their dimensional-
ity using compact bilinear projections instead of a single
large projection matrix. This method achieves compara-
ble retrieval and classification accuracy to the original de-
scriptors and to the state-of-the-art Product Quantization
approach while having orders of magnitude faster code gen-
eration time and smaller memory footprint.

1. Introduction

Today, image search and recognition are being per-

formed on ever larger databases. For example, the Im-

ageNet database [2] currently contains around 15M im-

ages and 20K categories. To achieve high retrieval and

classification accuracy on such datasets, it is necessary to

use extremely high-dimensional descriptors such as Fisher

Vectors (FV) [23, 24, 28], Vectors of Locally Aggregated

Descriptors (VLAD) [14], or Locality Constrained Linear

Codes (LLC) [32]. Our goal is to convert such descriptors to

binary codes in order to improve the efficiency of retrieval

and classification without sacrificing accuracy.

There is a lot of recent work on learning similarity-

preserving binary codes [6, 9, 10, 11, 15, 18, 19, 20, 21,

27, 30, 31, 33], but most of it is focused on relatively

low-dimensional descriptors such as GIST [22], which are

not sufficient for state-of-the-art applications. By contrast,

we are interested in descriptors with tens or hundreds of

thousands of dimensions. Perronnin et al. [24, 28] have

found that to preserve discriminative power, binary codes

for such descriptors must have a very large number of

bits. Indeed, Figure 1(a) shows that compressing a 64K-

dimensional descriptor to 100-1,000 bits (typical code sizes

in most similarity-preserving coding papers) results in an

unacceptable loss of retrieval accuracy compared to code

�� �� ��� ���� ���� ����� �����
�

���

���

���

��	

�

��
����

�

��

��
��

�

�

���
������
�

(a) NN search recall.

�� �� ��� ���� ���� ����� �����

����

���

���

���

��
����

�

�

��
��

 !
"

#�$
��

��
��

%

&

��
'�

�

�

���� $
���(�
#
����)'$
���(�
#
������
�

(b) Storage requirements.

Figure 1. Comparison of our proposed binary coding method with

state-of-the-art ITQ method [6] for retrieval on 50K Flickr images

(1K queries) with 64,000-dimensional VLAD descriptors. (a) Re-

call of 10NN from the original feature space at top 50 retrieved

points. (b) Storage requirements for projection matrices needed

for coding (note the logarithmic scale of the vertical axis). The

dashed curve for ITQ is an estimate, since running ITQ for more

than 4K bits is too expensive on our system. While ITQ has

slightly higher accuracy than our method for shorter code sizes,

larger code sizes are needed to get the highest absolute accuracy,

and ITQ cannot scale to them due to memory limitations. By con-

trast, our method can be used to efficiently compute very high-

dimensional codes that achieve comparable accuracy to the origi-

nal descriptor.

sizes of 16K-64K bits. Thus, our goal is to convert very
high-dimensional real vectors to long binary strings. To do

so, we must overcome significant computational challenges.

A common step of many binary coding methods is lin-

ear projection of the data (e.g., PCA or a Gaussian ran-

dom projection). When the dimensionality of both the in-

put feature vector and the resulting binary string are suffi-

ciently high, the storage and computation requirements for

even a random projection matrix become extreme (Figure

1(b)). For example, a 64K×64K random projection ma-

trix takes roughly 16GB of memory and the projection step

takes more than one second. Methods that require the pro-

jection matrix to be learned, such as Iterative Quantization

(ITQ) [6] become infeasible even more quickly since their

training time scales cubically in the number of bits.

There are a few works on compressing high-dimensional

descriptors such as FV and VLAD. Perronnin et al. [24]

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.69

482

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.69

482

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.69

484

have investigated a few basic methods including thresh-

olding, Locality Sensitive Hashing (LSH) [1], and Spec-

tral Hashing (SH) [33]. A more powerful method, Prod-

uct Quantization (PQ) [13], has produced state-of-the-art

results for compressing FV for large-scale image classifica-

tion [28]. However, descriptors like FV and VLAD require

a random rotation to balance their variance prior to PQ [14],

and as explained above, rotation becomes quite expensive

for high dimensions.

In this paper, we propose a bilinear method that takes

advantage of the natural two-dimensional structure of de-

scriptors such as FV, VLAD, and LLC and uses two smaller

matrices to implicitly represent one big rotation or projec-

tion matrix. This method is inspired by bilinear models used

for other applications [26, 29, 34]. We begin with a method

based on random bilinear projections and then show how to

efficiently learn the projections from data. We demonstrate

the promise of our method, dubbed bilinear projection-
based binary codes (BPBC), through experiments on two

large-scale datasets and two descriptors, VLAD and LLC.

For most scenarios we consider, BPBC produces little or no

degradation in performance compared to the original con-

tinuous descriptors; furthermore, it matches the accuracy of

PQ codes while having much lower running time and stor-

age requirements for code generation.

2. Bilinear Binary Codes

Most high-dimensional descriptors have a natural matrix

or tensor structure. For example, a HOG descriptor is a

two-dimensional grid of histograms, and this structure has

been exploited for object detection [26]. A Fisher Vector

can be represented as a k × 2l matrix, where k is the visual

vocabulary size and l is the dimensionality of the local im-

age features (the most common choice is SIFT with l=128).

VLAD, which can be seen as a simplified version of FV, can

be represented as a k× l matrix. Finally, an LLC descriptor

with s spatial bins can be represented as a k × s matrix.

Let x ∈ R
d denote our descriptor vector. Based on the

structure and interpretation of the descriptor,1 we reorganize

it into a d1 × d2 matrix with d = d1d2:

x ∈ R
d1d2×1 �→ X ∈ R

d1×d2 . (1)

We assume that each vector x ∈ R
d is zero-centered and

has unit norm, as L2 normalization is a widely used prepro-

cessing step that usually improves performance [25].

We will first introduce a randomized method to obtain

d-bit bilinear codes in Section 2.1 and then explain how

to learn data-dependent codes in Section 2.2. Learning of

reduced-dimension codes will be discussed in Section 2.3.

1We have also tried to randomly reorganize descriptors into matrices

but found it to produce inferior performance.

2.1. Random Bilinear Binary Codes

To convert a descriptor x ∈ R
d to a d-dimensional bi-

nary string, we first consider the framework of [1, 6] that

applies a random rotation R ∈ R
d×d to x:

H(x) = sgn(RT x). (2)

Since x can be represented as a matrix X ∈ R
d1×d2 , to

make rotation more efficient, we propose a bilinear formu-

lation using two random orthogonal matrices R1 ∈ R
d1×d1

and R2 ∈ R
d2×d2 :

H(X) = vec
(
sgn(RT

1 XR2)
)
, (3)

where vec(·) denotes column-wise concatenation.

It is easy to show that applying a bilinear rotation to X ∈
R

d1×d2 is equivalent to applying a d1d2 × d1d2 rotation to

vec(X). This rotation is given by R̂ = R2 ⊗ R1, where ⊗
denotes the Kronecker product:

vec(RT
1 XR2) = (RT

2 ⊗RT
1) vec(X) = R̂T vec(X)

follows from the properties of the Kronecker product [16].

Another basic property of the Kronecker product is that if

R1 and R2 are orthogonal, then R2 ⊗ R1 is orthogonal as

well [16]. Thus, a bilinear rotation is simply a special case

of a full rotation, such that the full rotation matrix R̂ can be

reconstructed from two smaller matrices R1 and R2.

While the degree of freedom of our bilinear rotation is

more restricted than a full rotation, the projection matri-

ces are much smaller, and the projection speed is much

faster. In terms of time complexity, performing a full ro-

tation on x takes O((d1d2)
2) time, while our approach is

O(d21d2 + d1d
2
2). In terms of space for projections, full

rotation takes O((d1d2)
2), and our approach only takes

O(d21 + d22). For example, as will be shown in Section

3.4, for a 64K-dimensional vector, a full rotation will take

roughly 16GB of RAM, while the bilinear rotations only

take 1MB of RAM. The projection time for a full rotation is

more than a second, vs. only 3 ms for bilinear rotations.

2.2. Learning Bilinear Binary Codes

In this section, we present a method for learning the ro-

tations R1 and R2 that is inspired by two-sided Procrustes

analysis [29] and builds on our earlier work [5, 6, 7].

Following [6], we want to find a rotation R̂ such that

the angle θi between a rotated feature vector R̂T xi =
vec(RT

1 XiR2) and its binary encoding (geometrically, the

nearest vertex of the binary hypercube), sgn(R̂T x) =
vec(sgn(RT

1 XiR2)), is minimized. Given N training

483483485

visual codewords

SI
FT

 d
im

en
si

on
s

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(a) Original VLAD descriptor

visual codewords

SI
FT

 d
im

en
si

on

(b) Original binary code

visual codewords

SI
FT

 d
im

en
si

on
s

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(c) Bilinearly rotated VLAD

visual codewords

SI
FT

 d
im

en
si

on
s

(d) Bilinearly rotated binary code

Figure 2. Visualization of the VLAD descriptor and resulting binary code (given by the sign function) before and after learned bilinear

rotation. We only show the first 32 SIFT dimensions and visual codewords. Before the rotation, we can clearly see a block pattern, with

many zero values. After the rotation, the descriptor and the binary code look more whitened.

points, we want to maximize∑N

i=1
cos(θi)

=
∑N

i=1

(
sgn(R̂T xi)

T

√
d

(R̂T xi)

)
(4)

=
∑N

i=1

(
vec(sgn(RT

1 XiR2))
T

√
d

vec(RT
1 XiR2)

)
=

1√
d

∑N

i=1

(
vec(Bi)

T vec(RT
1 XiR2)

)
=

1√
d

∑N

i=1
tr(BiR

T
2 X

T
i R1), (5)

where Bi = sgn(RT
1 XiR2). Notice that (4) involves the

large projection matrix R̂ ∈ R
d×d, direct optimization of

which is challenging. However, after reformulation into bi-

linear form (5), the expression only involves the two small

matrices R1 and R2. Letting B = {B1, . . . , BN}, our ob-

jective function is as follows:

Q(B, R1, R2) = max
B,R1,R2

N∑
i=1

tr(BiR
T
2 X

T
i R1) (6)

s. t. Bi ∈ {−1,+1}d1×d2 , RT
1 R1 = I, RT

2 R2 = I.

This optimization problem can be solved by block coordi-

nate ascent by alternating between the different variables

{B1, . . . , BN}, R1, and R2. We describe the update steps

for each variable below, assuming the others are fixed.

(S1) Update Bi. When R1 and R2 are fixed, we indepen-

dently solve for each Bi by maximizing

Q(Bi) = tr(BiR
T
2 X

T
i R1) =

∑d1

k=1

∑d2

l=1 B
kl
i Ṽ lk

i ,

where Ṽ lk
i denote the elements of Ṽi = RT

2 X
T
i R1. Q(Bi)

is maximized by Bi = sgn(Ṽ T
i).

(S2) Update R1. Expanding (6) with R2 and Bi fixed, we

have the following:

Q(R1) =
∑N

i=1
tr(BiR

T
2 X

T
i R1)

= tr
(∑N

i=1
(BiR

T
2 X

T
i)R1

)
= tr(D1R1) ,

where D1 =
∑N

i=1(BiR
T
2 X

T
i). The above expression is

maximized with the help of polar decomposition: R1 =
V1U

T
1 , where D1 = U1S1V

T
1 is the SVD of D1.

(S3) Update R2:

Q(R2) =
∑N

i=1
tr(BiR

T
2 X

T
i R1)

=
∑N

i=1
tr(RT

2 X
T
i R1Bi)

= tr
(
RT

2

∑N

i=1
(XT

i R1Bi)
)
= tr(RT

2 D2) ,

where D2 =
∑N

i=1(X
T
i R1Bi). Analogously to the update

rule for R1, the update rule for R2 is R2 = U2V
T
2 , where

D2 = U2S2V
T
2 is the SVD of D2.

We cycle between these updates for several iterations to

obtain a local maximum. The convergence of the above pro-

gram is guaranteed in finite number of iterations as the op-

timal solution of each step is exactly obtained, each step

is guaranteed not to decrease the objective function value,

and the objective function is bounded from above. In our

implementation, we initialize R1 and R2 by random rota-

tions and use three iterations. We have not found significant

improvement of performance by using more iterations. The

time complexity of this program is O(N(d31+d32)) where d1
and d2 are typically fairly small (e.g., d1 = 128, d2 = 500).

Figure 2 visualizes the structure of a VLAD descrip-

tor and the corresponding binary code before and after a

learned bilinear rotation.

2.3. Learning with Dimensionality Reduction

The formulation of Section 2.2 is used to learn d-

dimensional binary codes starting from d-dimensional de-

scriptors. Now, to produce a code of size c = c1 × c2,

where c1 < d1 and c2 < d2, we need projection matrices

R1 ∈ R
d1×c1 , R2 ∈ R

d2×c2 such that RT
1 R1 = I and

RT
2 R2 = I . Each Bi is now a c1× c2 binary variable. Con-

sider the cosine of the angle between a lower-dimensional

projected vector R̂T xi and its binary encoding sgn(R̂T x):

cos(θi) =
sgn(R̂T xi)

T

√
c

R̂T xi

‖R̂T xi‖2
,

484484486

where R̂ ∈ R
d1d2×c1c2 and R̂T R̂ = I . This formulation

differs from that of (4) in that it contains ‖R̂T xi‖2 in the

denominator, which makes the optimization difficult [5]. In-

stead, we follow [5] to define a relaxed objective function

based on the sum of linear correlations

Q(B, R1, R2) =
∑N

i=1

(
sgn(R̂T xi)

T

√
c

(R̂T xi)

)
.

The optimization framework for this objective is similar to

that of Section 2.2. For the three alternating optimization

steps, (S1) remains the same. For (S2) and (S3), we com-

pute the SVD of D1 and D2 as U1S1V
T
1 and U2S2V

T
2 re-

spectively, and set the two rotations to R1 = V̂1U
T
1 and

R2 = Û2V
T
2 , where V̂1 is the top c1 singular vectors of V1

and Û2 is the top c2 singular vectors of U2. To initialize the

optimization, we generate random orthogonal directions.

2.4. Distance Computation for Binary Codes

At retrieval time, given a query descriptor, we need to

compute its distance to every binary code in the database.

The most popular measure of distance for binary codes is

the Hamming distance. We compute it efficiently by putting

bits in groups of 64 and performing an XOR and bit count

(popcount). For improved accuracy, we use asymmetric dis-
tance, in which the database points are quantized but the

query is not [3, 8, 13]. In this work, we adopt the lower-

bounded asymmetric distance proposed in [3] to measure

the distance between the query and binary codes. For a

query x ∈ R
c and database points b ∈ {−1,+1}c, the

lower-bounded asymmetric distance is simply the L2 dis-

tance between x and b: da(x, b) = ‖x‖22 + c − 2xT b.

Since ‖x‖22 is on the query side and c is fixed, in practice,

we only need to compute xT b. We do this by putting bits

in groups of 8 and constructing a 1 × 256 lookup table to

make the dot-product computation more efficient.

3. Experiments
3.1. Datasets and Features

We test our proposed approach, bilinear projection-based

binary codes (BPBC), on two large-scale image datasets

and two feature types. The first one is the INRIA Holiday

dataset with 1M Flickr distractors (Holiday+Flickr1M)

[12]. There are 1,419 images in the Holiday dataset cor-

responding to 500 different scene instances, and each in-

stance has three images on average. There is a set of 500

query images, and the remaining 919 images together with

the 1M Flickr images are used as the database. We use the

SIFT features of interest points provided by [14] and clus-

ter them to 500 k-means centers. Then we represent each

image by a 128 × 500 = 64, 000 dimensional VLAD. The

vectors are power-normalized (element-wise square-rooted)

and L2-normalized as in [25].

The second dataset is the ILSVRC2010 subset of Ima-

geNet [2], which contains 1.2M images and 1,000 classes.

On this dataset, we use the publicly available SIFT features,

which are densely extracted from the images at three dif-

ferent scales. We cluster the features into 200 centers and

then aggregate them into VLAD vectors of 128 × 200 =
25, 600 dimensions. These vectors are also power- and L2-

normalized. In addition, we compute LLC features [32] on

this dataset using a 5,000-dimensional visual codebook and

a three-level spatial pyramid (21 spatial bins). The resulting

features have 5, 000 × 21 = 105, 000 dimensions. Unlike

VLAD descriptors, which are dense and have both positive

and negative values, the LLC descriptors are nonnegative

and sparse. For improved results, we zero-center and L2-

normalize them.

3.2. Experimental Protocols

To learn binary codes using the methods of Sections 2.2

and 2.3, we randomly sample 20,000 training images from

each dataset. We then set aside a number of query images

that were not used for training and run nearest neighbor

searches against all the other images in the dataset. For

Holiday+Flickr1M, we sample the training images from

the Flickr subset only and use the 500 predefined queries.

For ILSVRC2010, we use 1,000 random queries. For each

dataset, we evaluate two types of retrieval tasks:

1. Retrieval of ground-truth nearest neighbors from the

original feature space. These are defined as the top

ten Euclidean nearest neighbors for each query based

on original descriptors. Our performance measure for

this task is the recall of 10NN for different numbers of

retrieved points [9, 13].

2. Retrieval of “relevant” or “semantically correct”

neighbors. For Holiday+Flickr1M, these are defined

as the images showing the same object instance (re-

call from Section 3.1 that each query has around

three matches). The standard performance measure

for this task on this dataset is mean average precision

(mAP) [8, 12, 14]. For ILSVRC2010, we define the

ground-truth “relevant” neighbors as the images shar-

ing the same category label. In this case, there are very

many matches for each query. Following [6, 18, 20],

we report performance using precision at top k re-

trieved images (precision@k).

In addition, in Section 3.8 we perform image classification

experiments on the ILSVRC2010 dataset.

3.3. Baseline Methods

Our main baseline is the state-of-the-art Product Quan-

tization (PQ) approach [13]. PQ groups the data dimen-

sions in batches of size s and quantizes each group with k
codebook centers. In our experiments, we use s = 8 and

485485487

Feature dim. LSH PQ RR+PQ BPBC

128×10 0.12 2.8 2.92 0.08

128×100 9.35 26.5 35.85 0.54

128×200 29.14 47.3 76.44 0.86

128×500 186.22 122.3 308.52 3.06

128×1000 – 269.5 – 9.53

Table 1. Average time (ms) to encode a single descriptor for LSH,

PQ, and BPBC. The VLAD feature dimension is l × k.

Feature dim. LSH PQ RR+PQ BPBC

128×10 6.25 1.25 7.50 0.06

128×100 625 12.5 637 0.10

128×200 2500 25.0 2525 0.22

128×500 15625 62.5 15687 1.02

128×1000 62500 125 62625 3.88

Table 2. Memory (MB) needed to store the projections (or code-

books), assuming each element is a float (32 bits).

k = 256 following [14]. At query time, PQ uses asym-

metric distance to compare an uncompressed query point to

quantized database points. Namely, the distances between

the code centers and corresponding dimensions of the query

are first computed and stored in a lookup table. Then the

distances between the query and database points are com-

puted by table lookup and summation.

For high-dimensional features with unbalanced variance,

Jégou et al. [14] recommend randomly rotating the data

prior to PQ.2 This baseline will be referred to as RR+PQ.

Whenever the descriptor dimensionality in our experiments

is too high for us to perform the full random rotation, we

perform a bilinear rotation instead (BR+PQ).3

As simpler baselines, we also consider LSH based on

random projection [1] and the α = 0 binarization scheme

proposed in [24], which simply takes the sign of each di-

mension. There exist many other methods aimed at lower-

dimensional data and shorter codes, e.g., [6, 20, 30, 33], but

on our data, they produce poor results for small code sizes

and do not scale to larger code sizes (recall Figure 1).

3.4. Computation and Storage Requirements

First, we evaluate the scalability of our method compared

to LSH, PQ, and RR+PQ for converting d-dimensional vec-

tors to d-bit binary strings. For this test, we use the VLAD

features. All running times are evaluated on a machine with

24GB RAM and a 6-core 2.6GHz CPU. Table 1 reports code

generation time for different VLAD sizes and Table 2 re-

ports the memory requirements for storing the projection

matrix. It is clear that our bilinear formulation is orders of

2The original PQ paper [13] states that a random rotation is not needed

prior to PQ. However, the conclusions of [13] are mainly drawn from low-

dimensional data like SIFT and GIST, whose variance already tends to be

roughly balanced.
3As another efficient alternative to random rotation prior to PQ, we

have also considered a random permutation, but found that on our data it

has no effect.

Code size SD (binary) ASD (binary) ASD (PQ) Eucl. (est.)

122×100 0.33 4.48 4.59 ∼120

128×200 0.60 11.29 11.28 ∼241

Table 3. Retrieval time per query (seconds) on the ILSVRC2010

dataset with 1.2M images and two different code sizes. This is the

time to perform exhaustive computation of distances from a sin-

gle query to all the 1.2M images in the database. “SD” denotes

symmetric (Hamming) and “ASD” asymmetric distance. For Eu-

clidean distance, all the original descriptors do not fit in RAM, so

the timing is extrapolated from a smaller subset. The actual timing

is likely to be higher due to file I/O.

magnitude more efficient than LSH and both versions of PQ

both in terms of projection time and storage.

Table 3 compares the speed of Hamming distance (SD)

vs. asymmetric distance (ASD) computation for two code

sizes on ILSVRC2010. As one would expect, computing

Hamming distance using XOR and popcount is extremely

fast. The speed of ASD for PQ vs. our method is com-

parable, and much slower than SD. However, note that for

binary codes with ASD, one can first use SD to find a short

list and then do re-ranking with ASD, which will be much

faster than exhaustive ASD computation.

3.5. Retrieval on Holiday+Flickr1M

Next, we evaluate retrieval performance on the Holi-

day+Flickr1M dataset using VLAD features with 500 ×
128 = 64, 000 dimensions. As explained in Section 3.1,

we use the predefined 500 Holiday queries. For 64,000-

dimensional features, evaluating RR+PQ is prohibitively

expensive, so instead we try to combine the bilinear rotation

with PQ (denoted as BR+PQ). For BPBC with dimension-

ality reduction (Section 2.3), we use bilinear projections

R1 ∈ R
500×400, R2 ∈ R

128×80. This reduces the dimen-

sionality in half.

Figure 3(a) shows the recall of 10NN from the original

feature space for different numbers of retrieved images. PQ

without rotation fails on this dataset; BR+PQ is slightly bet-

ter, but is still disappointing. This is due to many Flickr im-

ages (e.g., sky and sea images) having few interest points,

resulting in VLAD with entries that are mostly zero. Bilin-

ear rotation appears to be insufficient to fully balance the

variance in this case, and performing the full random rota-

tion is too expensive.4 On the other hand, all versions of

BPBC show good performance. For a code size of 32,000

(dimensionality reduction by a factor of two), learned ro-

4Jégou et al. [14] report relatively strong performance for RR+PQ on

Holiday+Flickr1M, but they use lower-dimensional VLAD (d = 2, 048
and d = 8, 192) followed by PCA compression to 32-128 dimensions.

These parameter settings are motivated by the goal of [14] to produce ex-

tremely compact image codes. By contrast, our goal is to produce higher-

dimensional codes that do not lose discriminative power. Indeed, by raising

the dimensionality of the code, we are able to improve the retrieval accu-

racy in absolute terms: the mAP for our BPBC setup (Figure 3(b)) is about

0.4 vs. about 0.2 for the PQ setup of [14].

486486488

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved points

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall of 10NN.

Method Rate mAP

VLAD (float) 1 39.0

Sign (SD) 32 25.6

PQ (with bilinear rotation, ASD) 32 24.0

PQ (w/o rotation, ASD) 32 2.3

BPBC (learned, ASD) 32 40.1

BPBC (learned, SD) 32 40.1

BPBC (random, SD) 32 40.3

BPBC (learned, SD, 1/2) 64 38.8

BPBC (random, SD, 1/2) 64 38.6

(b) Instance-level retrieval results.

Figure 3. Results on the Holiday+Flickr1M dataset with 64,000-

dimensional VLAD. (a) Recall of ground truth 10NN from the

original feature space. (b) Instance-level retrieval results (mAP).

“SD” (resp. “ASD”) denote symmetric (resp. asymmetric) dis-

tance. “Sign” refers to binarization by thresholding each dimen-

sion at zero. “Random” refers to the method of Section 2.1 and

“learned” refers to the methods of Sections 2.2 and 2.3. “1/2”

refers to reducing the code dimensionality in half with the method

of Section 2.3. “Rate” is the factor by which storage is reduced

compared to the original descriptors.

tation works much better than random, while for the full-

dimensional BPBC, learned and random rotations perform

similarly. Asymmetric distance (ASD) further improves the

recall over symmetric distance (SD).

Next, Figure 3(b) reports instance-level image retrieval

accuracy measured by mean average precision (mAP), or

the area under the recall-precision curve. Both learned and

random BPBC produce comparable results to the original

descriptor. PQ without rotation works poorly, and BR+PQ

is more reasonable, but still worse than our method. Note

that for this task, unlike for the retrieval of 10NN, ASD does

not give any further improvement over SD. This is good

news, since SD computation is much faster (recall Table 3).

3.6. Retrieval on ILSVRC2010 with VLAD

As discussed in Section 3.1, our VLAD descriptors for

the ILSVRC2010 dataset have dimensionality 25,600. Ran-

dom rotation for this descriptor size is still feasible, so we

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved points

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
RR + PQ (ASD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall of 10NN.

Method Rate P@10 P@50

VLAD (float) 1 17.73 7.29

Sign (SD) 32 13.15 3.87

PQ (with full rotation, ASD) 32 18.06 7.41

PQ (with bilinear rotation, ASD) 32 16.98 6.96

PQ (w/o rotation, ASD) 32 11.32 3.14

BPBC (learned, ASD) 32 18.01 7.49

BPBC (learned, SD) 32 18.07 7.42

BPBC (random, SD) 32 18.17 7.60

BPBC (learned, SD, 1/2) 64 17.80 7.25

BPBC (random, SD, 1/2) 64 16.85 6.78

(b) Categorical image retrieval results.

Figure 4. Results on ILSVRC2010 with 25,600-dimensional

VLAD. (a) Recall of ground-truth 10NN from the original feature

space. (b) Semantic precision at 10 and 50 retrieved images. See

caption of Figure 3 for notation.

are able to evaluate RR+PQ. We randomly sample 1,000

query images and use the rest as the database. For BPBC

with dimensionality reduction, we construct bilinear pro-

jections R1 ∈ R
200×160, R2 ∈ R

128×80, which reduces the

dimensionality in half. Figure 4(a) compares the recall of

10NN from the original feature space with increasing num-

ber of retrieved points. The basic PQ method on this dataset

works much better than on Holiday+Flickr1M (in particular,

unlike in Figure 3, it is now better than simple thresholding).

This is because the images in ILSVRC2010 are textured and

contain prominent objects, which leads to VLAD with rea-

sonably balanced variance. Furthermore, RR+PQ is feasi-

ble for the VLAD dimensionality we use on ILSVRC2010.

We can see from Figure 4(a) that the improvement from

PQ to RR+PQ is remarkable, while BR+PQ is somewhat

weaker than RR+PQ. Overall, RR+PQ is the strongest of

all the baseline methods, and full-dimensional BPBC with

asymmetric distance is able to match its performance while

having a lower memory footprint and faster code generation

time (recall Tables 1 and 2). The relative performance of the

other BPBC variants is the same as in Figure 3(a).

Next, we evaluate the semantic retrieval accuracy on this

dataset. Figure 4(b) shows the average precision for top k

487487489

images retrieved. We can observe that RR+PQ and most

versions of BPBC have comparable precision to the origi-

nal uncompressed features. As in Section 3.5, using ASD

as opposed to SD does not give any gains in semantic pre-

cision for our method. Thus, our method has an important

advantage over PQ at retrieval time, since unlike PQ, it can

be used with the faster Hamming distance.

3.7. Retrieval on ILSVRC2010 with LLC

To demonstrate that the BPBC method is applicable to

other high-dimensional descriptors besides VLAD, we also

report retrieval results on the ILSVRC2010 dataset with

LLC features. As discussed in Section 3.1, these fea-

tures have the highest dimensionality yet in all our ex-

periments: 5, 000 × 21 = 105, 000. To reduce dimen-

sionality by a factor of two, we use bilinear projections

R1 ∈ R
5000×2500, R2 ∈ R

21×21 (note that the dimension-

ality of the second side, representing the number of spatial

bins, is already low at 21, and we have found that trying to

reduce it further can lead to unstable behavior for our learn-

ing algorithm).

Figure 5(a) reports the recall for 10NN. Most of the

trends are similar to those of Section 3.6. Full-dimensional

BPBC with ASD once again has the best performance, to-

gether with BR+PQ (evaluating RR+PQ is once again in-

feasible). Learned rotation works significantly better than

the random one. Next, Table 5(b) reports the semantic pre-

cision analogously to Table 4(b). As in Table 4(b), PQ

with rotation and different versions of BPBC work simi-

larly. By comparing Table 4(b) and 5(b), we can see that

LLC features have higher absolute precision than VLAD,

which confirms that extremely high-dimensional features

and codes, far from overfitting, are necessary to obtain bet-

ter performance on very large-scale many-category datasets.

3.8. Image Classification

Finally, we demonstrate the effectiveness of our pro-

posed codes for SVM classification on ILSVRC2010. We

adopt the setting of Sánchez and Perronnin [28] where the

classifier is trained on compressed or encoded descriptors

but tested on the original ones. For PQ-compressed data, we

perform decoding in order to train the SVM (decoding con-

sists of looking up and concatenating the codewords corre-

sponding to each subset of dimensions) and test on original

descriptors (rotated if necessary). Note that unlike [28], we

use batch training, and decoding all the training descriptors

ahead of time does not actually save us on storage. Instead,

our goal is simply to establish a baseline classification accu-

racy. For BPBC-compressed data, we train directly on the

binarized vectors sgn(R̂T vec(X)) but test on un-binarized

vectors R̂T vec(X).
Our classifier is LIBLINEAR SVM [4] and the feature

is 25,600-dimensional VLAD. To limit the running time for

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of retrieved images

R
ec

al
l

BPBC (learned, ASD)
BPBC (learned, SD)
BPBC (random, SD)
BPBC (learned, SD, 1/2)
BPBC (random, SD, 1/2)
sign (SD)
BR + PQ (ASD)
PQ (ASD)

(a) Recall of 10NN.

Method Rate P@10 P@50

VLAD (float) 1 21.50 10.06

Sign (SD) 32 10.99 2.58

PQ (with bilinear rotation, ASD) 32 21.41 10.11

PQ (w/o rotation, ASD) 32 12.67 4.20

BPBC (learned, ASD) 32 21.78 10.11

BPBC (learned, SD) 32 21.54 10.11

BPBC (random, SD) 32 21.73 10.35

BPBC (learned, SD, 1/2) 64 21.22 9.96

BPBC (random, SD, 1/2) 64 21.27 9.88

(b) Categorical image retrieval results.

Figure 5. Retrieval results on ILSVRC dataset with 105,000-

dimensional LLC features. (a) Recall for 10NN from the origi-

nal feature space. (b) Categorical retrieval precision at 10 and 50

retrieved images. See caption of Figure 3 for notation.

SVM training and parameter tuning, and to make sure we

can hold all the training data in memory, we randomly sam-

ple 100 classes from ILSVRC2010. We use five random

splits into 50% for training, 25% for validation, and 25% for

testing. To generate negative data, we sample 200 points per

class, which does not sacrifice accuracy too much. For each

method, we validate the SVM hyperparameter C on a grid

of [2× 10−5, 2× 102] with order-of-magnitude increments.

Classification results are reported in Table 4. The full-

dimensional BPBC incurs very little loss of accuracy over

the original features, and the learned and random rotations

work comparably. When dimension is reduced in half, the

classification accuracy drops, with the random method de-

grading more than the learned one. RR+PQ outperforms

the best version of BPBC by about 0.3%, but it is not

clear whether the difference is statistically significant. In-

terestingly, PQ without RR still produces reasonable classi-

fication results, while its performance on retrieval tasks is

severely degraded. Evidently, the SVM training can com-

pensate for the quantization error, whereas nearest-neighbor

search without a supervised learning stage cannot. Similar

reasoning applies to binarization by taking the sign, whose

performance is also fairly good for this task.

488488490

Method Rate Classification accuracy

VLAD (float) 1 44.87 ± 0.30

Sign 32 41.10 ± 0.34

PQ 32 44.05 ± 0.33

RR+PQ 32 44.64 ± 0.13

BPBC (learned) 32 44.34 ± 0.21

BPBC (random) 32 44.27 ± 0.19

BPBC (learned, 1/2) 64 43.06 ± 0.20

BPBC (random, 1/2) 64 41.28 ± 0.20

Table 4. Image classification results on 100 classes randomly

sampled classes from the ILSVRC2010 dataset. The set of

classes is fixed but results are averaged over five different train-

ing/validation/test splits. The visual feature is 25,600-dimensional

VLAD. “Rate” is the factor by which storage is reduced.

An interesting question is as follows: instead of starting

with d-dimensional data and reducing the dimensionality to

d/2 through binary coding, can we obtain the same accu-

racy if we start with d/2-dimensional features and main-

tain this dimensionality in the coding step? To answer

this question, we have performed classification on 12,800-

dimensional VLAD for the same 100 classes and obtained

an average accuracy of 43.08%. This is comparable to

the accuracy of our 12,800-dimensional binary descriptor

learned from the 25,600-dimensional VLAD. On the other

hand, classifying 12,800-dimensional codes computed from

12,800-dimensional VLAD gives an accuracy of 41.63%.

Thus, starting with the highest possible dimensionality of

the original features appears to be important for learning

binary codes with the most discriminative power.

4. Discussion and Future Work

This paper has presented a novel bilinear rotation

formulation for learning binary codes for high dimensional

feature vectors that exploits the natural two-dimensional

structure of many existing descriptors. Our approach

matches the accuracy of Product Quantization for retrieval

and classification tasks while being much more efficient in

terms of memory and computation. As recent progress on

recognition shows that using descriptors with millions of

dimensions can lead to even better performance [17, 28], it

will be interesting to apply our approach on such data.

Acknowledgments. We thank Ruiqi Guo for helpful dis-

cussions. Gong and Lazebnik were supported by NSF

grant IIS 1228082, DARPA Computer Science Study Group

(D12AP00305), Microsoft Research Faculty Fellowship,

and Xerox.

References
[1] M. S. Charikar. Similarity estimation techniques from rounding al-

gorithms. STOC, 2002.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-

geNet: A large-scale hierarchical image database. CVPR, 2009.

[3] W. Dong, M. Charikar, and K. Li. Asymmetric distance estimation

with sketches for similarity search in high-dimensional spaces. SI-
GIR, 2008.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.

Liblinear: A library for large linear classification. JMLR, 2008.

[5] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik. Angular quantization

based binary codes for fast similarity search. NIPS, 2012.

[6] Y. Gong and S. Lazebnik. Iterative quantization: A Procrustean ap-

proach to learning binary codes. In: CVPR, 2011.

[7] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantiza-

tion: A Procrustean approach to learning binary codes for large-scale

image retrieval. PAMI, 2012.

[8] A. Gordo and F. Perronnin. Asymmetric distances for binary embed-

dings. CVPR, 2011.

[9] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Compact hash-

ing with joint optimization of search accuracy and time. CVPR, 2011.

[10] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical

hashing. CVPR, 2012.

[11] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned

metrics. CVPR, 2008.

[12] H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak

geometric consistency for large-scale image search. ECCV, 2008.

[13] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE TPAMI, 2011.

[14] H. Jégou, M. Douze, C. Schmid, and P. Perez. Aggregating local

descriptors into a compact image representation. CVPR, 2010.

[15] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for

scalable image search. In ICCV, 2009.

[16] A. J. Laub. Matrix Analysis for Scientists and Engineers. SIAM.

[17] Y. Lin, L. Cao, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, and T. Huang.

Large-scale image classification: Fast feature extraction and SVM

training. In CVPR, 2011.

[18] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised

hashing with kernels. CVPR, 2012.

[19] W. Liu, J. Wang, Y. Mu, S. Kumar, and S.-F. Chang. Compact hy-

perplane hashing with bilinear functions. ICML.

[20] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary

codes. ICML, 2011.

[21] M. Norouzi, R. Salakhutdinov, and D. Fleet. Hamming distance met-

ric learning. In NIPS, 2012.

[22] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic

representation of the spatial envelope. IJCV, 2001.

[23] F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies

for image categorization. CVPR, 2007.

[24] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image

retrieval with compressed Fisher vectors. In CVPR, 2010.

[25] F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher ker-

nel for large-scale image classification. ECCV, 2010.

[26] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Bilinear classifiers for

visual recognition. NIPS, 2009.

[27] M. Raginsky and S. Lazebnik. Locality sensitive binary codes from

sift-invariant kernels. NIPS, 2009.

[28] J. Sánchez and F. Perronnin. High-dimensional signature compres-

sion for large-scale image classification. In CVPR, 2011.

[29] P. Schönemann. On two-sided orthogonal Procrustes problems. Psy-
chometrika, 1968.

[30] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image

databases for recognition. CVPR, 2008.

[31] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for

scalable image retrieval. CVPR, 2010.

[32] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. CVPR, 2010.

[33] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. NIPS, 2008.

[34] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear discriminant

analysis. NIPS, 2004.

489489491

