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Abstract

We present a hierarchical method for human pose esti-
mation from a single still image. In our approach, a depen-
dency graph representing relationships between reference
points such as body joints is constructed and the positions of
these reference points are sequentially estimated by a suc-
cessive application of multidimensional output regressions
along the dependency paths, starting from the root node.
Each regressor takes image features computed from an im-
age patch centered on the current node’s position estimated
by the previous regressor and is specialized for estimating
its child nodes’ positions. The use of the dependency graph
allows us to decompose a complex pose estimation prob-
lem into a set of local pose estimation problems that are
less complex. We design a dependency graph for two com-
monly used human pose estimation datasets, the Buffy Stick-
men dataset and the ETHZ PASCAL Stickmen dataset, and
demonstrate that our method achieves comparable accu-
racy to state-of-the-art results on both datasets with signifi-
cantly lower computation time than existing methods. Fur-
thermore, we propose an importance weighted boosted re-
gression trees method for transductive learning settings and
demonstrate the resulting improved performance for pose
estimation tasks.

1. Introduction

Human pose estimation has been a widely studied topic
in the computer vision community. Most of the early meth-
ods work on silhouettes extracted by background subtrac-
tion to reduce the complexity of the problem. However, re-
liably extracting silhouettes is itself a difficult task in prac-
tical settings and requires background images. Recently,
the focus of the community has shifted toward pose esti-
mation from a single still image in cluttered backgrounds.
Although some of the techniques from the silhouette-based
algorithms can be applied, the task is significantly more dif-
ficult, generating new challenges to address.

Most of the existing methods for pose estimation from a
single image, including many state-of-the-art methods, are
based on a pictorial structure model, which was first pro-
posed in [1] for general computer vision problems and later
applied to the pose estimation problem in [9]. The picto-
rial structure model represents a human body by a combina-
tion of body parts with spring-like constrains between those
parts to enforce kinematically plausible spatial configura-
tions. The inference is done by first evaluating the like-
lihood of each body part’s locations on the image and then
finding the most plausible configuration. If the model forms
a tree structure, the globally optimum solution is efficiently
found by dynamic programming.

Despite their successes, pictorial structure models have
some problems. First, detecting body parts such as limbs,
torso and head is challenging in a real-world scenario due to
noisy backgrounds, occlusion and variation in appearances
and poses. Most of the efforts have been devoted to building
reliable body part detectors; however, they tend to be finely
tuned to a specific dataset. Second, it is apparent that a sim-
ple pictorial structure model does not produce sufficiently
good results and thus many efforts have concentrated on ex-
tending the basic pictorial structure model to more complex
ones, requiring extensive computations.

In this paper, we propose a novel solution for the hu-
man pose estimation problem, which we call Regression
on a Dependency Graph (RoDG). RoDG does not rely on
detectors for each body part nor requires computationally
expensive optimization methods. In RoDG, a dependency
graph representing relationships between reference points
such as body joints is specified and the positions of these
reference points are sequentially estimated by a successive
application of multidimensional output regression along the
dependency paths, starting from the root node. Each re-
gressor takes image features computed from an image patch
centered on the current node’s position estimated by the pre-
vious regressor and is specialized for estimating its child
nodes’ positions. The use of the dependency graph allows
us to decompose a complex pose estimation problem into
a set of local pose estimation problems that are much less
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complex. In the training phase, those regressors are inde-
pendently trained using images of people with ground-truth
joint locations.

Most regression methods for the human pose estimation
task [4, 2, 24] learn a single regressor mapping an image
patch containing an entire human body region to all of the
pose parameters. A drawback of this approach is that im-
age patches have to be large enough to cover all possible
poses and thus are dominated by a lot of background re-
gions, making regression problems complex. In contrast,
the size of the image patches in our approach is designed to
contain mostly foreground regions that are sufficient to es-
timate local poses, reducing the complexity of the mapping
problems.

RoDG is simple, versatile and significantly faster than
existing approaches, yet achieves accuracy comparable
to state-of-the-art on two popular benchmarks, the Buffy
Stickmen dataset1 and the ETHZ PASCAL Stickmen
dataset2. We also propose an importance weighted variant
of boosted regression trees for transductive learning settings
and demonstrate its effectiveness for the human pose esti-
mation task.

2. Related work

Many existing approaches to human pose estimation
from a still image are based on a pictorial structure model.
The focus of current research has been in 1) extending the
models to a non-tree structures with efficient inference pro-
cedures and 2) improving body part detectors. Ren et al.[16]
introduced pair-wise constraints between parts and use Inte-
ger Quadratic Programming to find the most probable con-
figuration, however, their part detectors relied on simple line
features. Andriluka et al.[3] used discriminatively trained
part detectors to detect parts from images with complex
backgrounds.

Instead of relying on a single model, Sapp et al.[18] pro-
posed a coarse-to-fine cascade of pictorial structure mod-
els. In this approach, the coarser models are trained to effi-
ciently prune implausible poses as much as possible while
preserving the true poses for the finer level of pictorial struc-
ture models that are more accurate but computationally ex-
pensive. Sun et al.[19] extended the tree models of [18] to
loopy models and presented an efficient and exact inference
algorithm based on branch-and-bound.

Yang and Ramanan [26] proposed a mixture of templates
for each part. They introduced a score term for represent-
ing co-occurrence relations between the mixtures of parts
in a scoring function of the pictorial structure model and
achieved impressive results. Ukita [21] extended [26] by

1http://www.robots.ox.ac.uk/˜vgg/data/stickmen/
2http://groups.inf.ed.ac.uk/calvin/ethz_pascal_

stickmen/

introducing contour-based features to evaluate parts con-
nectivities and achieved state-of-the-art results with at most
four times the computation time of [26].

Several approaches to human pose estimation from clut-
tered images that do not use pictorial structure models
[22, 11, 14, 2] have been developed. [22] applied MCMC
technique to find the MAP estimate of the 3-dimensional
pose. [11, 14] extended the Implicit Shape Model of [13]
to the human pose estimation task by allowing voting in a
pose parameter space.

Transductive learning was first applied to human pose
estimation in [24] where the authors proposed importance
weighted variants of kernel regression and twin Gaussian
process model to remove the biases in the training set.

3. Method - Regression on a Dependency
Graph

Let us denote I for an image, pi = (x, y) for a pixel
location of the i-th key point in the image, where i ∈
{1, . . . ,K}. The key points may correspond to anatomi-
cally defined points of a human body or arbitrary defined
reference points. A dependency graph on the key points is
manually designed based on the anatomical structure of the
human body. For notational simplicity, we assume p1 cor-
responds to the root node. Each adjacent pair of nodes (i, j)
in the graph has the following dependency:

pj = s · fi,j(pi, I, s) + pi (1)

where i and j are a parent and child node, respectively, s is
the scale parameter and fi,j is a function that outputs a vec-
tor. Given a root node position p1, scale s and an image I ,
we can determine subsequent {p2, . . . , pK} by successively
applying Eq.(1) along all the graph paths.

Each function fi,j is defined as follows:

fi,j(pi, I, s) = gi,j(h(pi, I, s)) (2)

where gi,j is a regressor and h(pi, I, s) is a predefined
function which computes the image features from an im-
age patch centered on pi at scale s. The size of the image
patches is designed to be sufficiently large to contain all
possible pj , however, it should not be larger than necessary.

Each regressor gi,j is independently trained from a set of
images with ground-truth annotations of {p1, . . . , pK} and
s. Input features for each regressor are computed by the
same h. A target vector for each regressor is the relative
location of pj with respect to pi normalized by s and can be
computed by solving Eqs.(1) and (2) for gi,j :

gi,j(h(pi, I, s)) = (pj − pi)/s (3)

Note that each regressor gi,j is a multidimensional out-
put regressor as the output is a 2-dimensional vector. Fur-
thermore, for a parent node i that has more than two child
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nodes {j1, . . . , jL}, we define a single multidimensional
output regressor that computes an output for each child node
at once from the same input:

gi(·) = (gi,j1(·), . . . , gi,jL(·)) ∈ R2L (4)

In Fig.1 left, we show an instance of the dependency
graph designed for the datasets used in the experiments.
The non-root nodes of the graph correspond to a set of body
joints used to represent a human body pose in the dataset.
In Fig.1 right, the red box represents a detection window
given by an upper body detector. The root node corresponds
to the center of the detection window while the other nodes
correspond to endpoints of sticks representing a head, torso,
upper and lower arms. The scale s is determined by the ratio
between the size of the detection window and a predefined
canonical window size.

The dependency graph is designed by taking into account
the anatomical structure of the human body and also the
pose representation adopted by the target datasets. For in-
stance, we make both nodes 7 and 8 depend on node 6 in the
graph as they represent body points that are close to each
other and thus are contained by the image patch centered
on p6. Similarly, we make nodes 2,3,4,5,6,10 depend on
node 1 as their positions do not vary significantly with re-
spect to p1. Designing an optimum dependency graph for a
given task is an interesting topic which will be considered
in future.

The details of the training and testing steps on this struc-
ture are presented in Section 5. Note that RoDG is quite
general and applicable to other tasks such as facial points
localization and hand pose estimation by properly design-
ing the dependency graphs.
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Figure 1. Left: Dependency graph, Right: Semantics of the nodes.
The red box is a detection window and the yellow star is the center
of the detection window.

4. Multidimensional Output Regression on
Weighted Training Samples

Multidimensional output regression allows us to train a
single model that outputs target vectors instead of indepen-
dently training a single model for each output dimension.

We denote a set of training samples by {ti,xi}Ni=1 , where
t is a target vector and x is an input vector. Furthermore, we
denote the weight of the i-th training sample as wi. All the
weights are set to 1 except for in the transductive learning
setting (Section 4.3).

The goal of regression is to learn a function F ∗(x) such
that the expected value of a certain loss function Ψ(t, F (x))
is minimized:

F ∗(x) = argmin
F (x)

E[Ψ(t, F (x)] (5)

By approximating the above expected loss by empirical
loss, we obtain

F ∗(x) = argmin
F (x)

N∑
i=1

wiΨ(ti, F (xi)). (6)

4.1. Multidimensional Output Regression Tree on
Weighted Training Samples

We propose a multidimensional output regression tree on
weighted training samples and use it as a building block
for the gradient boosting procedure which is presented in
Section 4.2. The multidimensional output regression tree is
a non-linear regression model represented as follows:

H(x;A,R) =

K∑
k=1

ak1(x ∈ rk) (7)

where 1 is an indicator function, R = {r1, . . . , rK} is
a set of disjoint partitions of the input space and A =
{a1, . . . ,aK} is a set of vectors. Each ak is computed as
the weighted mean of the target vectors of the training sam-
ples that fall into rk.

In the training phase, the regression tree is grown by re-
cursively partitioning the input space, starting from a root
node which corresponds to the entire input space. Subse-
quent partitions are applied to one of the leaves. Through-
out the growth of the tree, A = {a1, . . . ,aK′}, where K ′

is the number of leaves at the time and the weighted sum of
squared error for each leaf node k is computed as follows:

Sk =
∑
i∈rk

wi||ti − ak||22 (8)

Then the weighted sum of squared error on the entire train-
ing data is given by S =

∑K′

k=1 Sk.
At each partitioning stage, the leaf with the largest

weighted sum of squared error is selected for partitioning.
A binary split rule defined by an index of the input dimen-
sion and a threshold is selected among all possible split
rules such that the reduction in S is maximized. When com-
puting the weighted means and sum of squared errors, an
efficient incremental algorithm such as [23] is used. The
recursive partitioning stops when K leaves are generated,
where K is a predefined parameter.
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4.2. Multidimensional Output Boosted Regression
Trees on Weighted Training Samples

A gradient boosting machine [10] is an algorithm to con-
struct a strong regressor from an ensemble of weak regres-
sor. In this paper, we use the proposed weighted variant of
multidimensional output regression tree as a weak regres-
sor. The strong regressor F (x) is expressed as an ensemble
of regression trees H:

F (x;P ) =

M∑
m=0

H(x;Am,Rm) (9)

where P = {Am,Rm}Mm=0 represents the set of regression
trees’ parameters.

In the training phase, the gradient boosting algorithm
tries to minimize the function in Eq.(6) by sequentially
adding a new regression tree H at each stage m, where
m = 0 to M . At each stage except for m = 0, a set of the
parameters of the tree is determined such that the updated
model maximally reduces the loss:

(Am,Rm) = argmin
A,R

N∑
i=1

wiΨ(ti, Fm−1(xi)+H(xi;A,R))

(10)
Then the learned regression tree is added to the current
model,

Fm(x) = Fm−1(x) +H(x;Am,Rm). (11)

For m = 0, F0(x) is the weighted mean target vector of all
training samples.

Choosing the squared error loss function Ψ(t, F (x)) =
||t−F (x)||22 and the weighted regression trees as the weak
regressor, we obtain Algorithm 1, where ν is a shrinkage
parameter to prevent overfitting. Each tree H is trained us-
ing residual t̃ of each training sample recomputed at each
iteration as target vectors. A non-weighted version of the
algorithm is also described in [4].

Algorithm 1 Multidimensional Output Boosted Regression
Trees on Weighted Training Samples

1: F0(x) = t̄ . weighted mean
2: for m = 1 to M do
3: t̃i = ti − Fm−1(xi), i = 1, . . . , N

4: (Am,Rm) = argmin
A,R

N∑
i=1

wi||t̃i −H(xi;A,R)||22

5: Fm(x) = Fm−1(x) + νH(x;Am,Rm)
6: end for

4.3. Importance Weighted Boosted Regression
Trees

In a transductive learning setting, (unlabeled) testing
samples are available during the training phase along with

labeled training samples. When the test samples and train-
ing samples are drawn from different probability distribu-
tions, the regressor trained solely on the training samples is
not optimal for the given test samples. One of the possi-
ble remedies to this problem is realized by weighting each
training sample by an importance weight w such that the
new distribution formed by the weighted training samples
resembles the distribution of testing samples. This is ac-
complished by setting the importance weight of the i-th
training sample as wi = pte(xi)/ptr(xi), where pte and
ptr are probability density functions of the testing samples
and training samples respectively. The proposed weighted
variant of the boosted regression trees can work with any
method that estimate importance weights. In this paper we
adopt RuLSIF [25] owing to its impressive performance.

Instead of working on the entire testing samples at once,
we first cluster the testing samples into several clusters
by the k-means algorithm and for each cluster we inde-
pendently estimate the importance weights and train a re-
gressor. This would make the probability density of each
cluster simpler and ease the estimation of the importance
weights. Furthermore, we transform the testing samples
to Ntr dimensional vectors by computing a kernel matrix
K = (k(xte

i ,x
tr
j ))i,j , i = 1, . . . , Nte, j = 1, . . . , Ntr

where Nte and Ntr are the number of the testing and train-
ing samples respectively. This feature transformation and
clustering was found to improve the accuracy.

5. Experiments
We tested our algorithm on publicly available datasets

for the upper body pose estimation task. The performance
is measured by the Percentage of Correctly estimated body
Parts (PCP). A comparison with existing works reveals the
advantages of our method.

5.1. Datasets

We use the Buffy Stickmen dataset and the ETHZ PAS-
CAL Stickmen dataset to evaluate our method. Both
datasets have the same representation of poses and provide
the same protocol to measure the performance. A body pose
is represented by 6 sticks representing a torso, head, upper
arms and lower arms (see Fig. 1). Each stick is represented
by the locations of the two endpoints. Both datasets come
with detection windows containing upper bodies obtained
by an upper body detector. The performance is measured
only on the images with detection windows, allowing the
separation of the human detection task from the pose esti-
mation task. As two endpoints of each stick are annotated
without consistent ordering, we manually swap two end-
points if necessary.

The Buffy Stickmen dataset has 748 images taken from
the TV show Buffy the Vampire Slayer and it is very chal-
lenging due to highly cluttered backgrounds. However, the
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same subjects with same clothing occasionally appear in
both training and testing set which makes the task easier.
Among 748 images, 276 images are specified as testing data
while 472 images are used for training. In the first release
of the dataset, 85.1% of the images in the testing set come
with detection windows while 95.3% come with detection
windows obtained by an improved detector in the latest re-
lease.

The PASCAL Stickmen dataset contains images taken
from the PASCAL VOC 2008 trainval release. Unlike the
Buffy Stickmen dataset, it consists mainly of 549 amateur
photographs with unconstrained illumination, severe occlu-
sion and low image quality making this dataset more chal-
lenging than the Buffy dataset. In the first release, 65.6%
of the images come with detection windows while 75.1% in
the latest release with the improved detector. Note that the
PASCAL dataset is used only for testing.

The performance of the pose estimation algorithms is
measured using PCP. Each body part is represented as a
stick and its estimate is considered correct if its endpoints
lie within 100t% of the length of the ground-truth stick from
their ground-truth locations. We denote PCP with t = 0.5
by PCP0.5.

Both datasets come with a tool to compute the PCP, how-
ever, it was recently pointed out in [15] that the tool does
not exactly compute the above defined PCP, leading to er-
roneously higher PCP. As most of the existing works report
PCP on the detection windows in the first releases of the
dataset using this tool, we also report PCP using the same
tool. To facilitate future comparison, we also report the cor-
rect PCP computed by a fixed version of the tool3 on the
updated detection windows provided in the latest releases.
To eliminate any confusion we precisely define a condition
that an estimated part (i.e. stick) has to satisfy to be consid-
ered as correctly localized:

(||E1 −G1||2 ≤ t · L ∧ ||E2 −G2||2 ≤ t · L)

∨ (12)
(||E1 −G2||2 ≤ t · L ∧ ||E2 −G1||2 ≤ t · L)

where (E1, E2) and (G1, G2) are locations of the two end-
points of the estimated and ground-truth stick, respectively,
and L = ||G1 −G2||2.

5.2. Implementation Details

In order to obtain the ground-truth of the root node, a set
of detection windows containing the annotated upper bod-
ies in the training images are first obtained by running the
same upper body detector used to obtain the detection win-
dows for the testing set. Each image has exactly one anno-
tated human. Detection windows are obtained for 345 out
of 472 training images in the Buffy training set4. The scale

3The fixed tool will be available on the author’s website.
4We thank Marcin Eichner for providing the results.

s for each sample is determined by the width of the detec-
tion window divided by 64. The ground-truth for the other
nodes are included in the dataset.

The image patches from which h(pi, I, s = 1) computes
image features is set to 64 × 64 pixel rectangular region
whose center is located at pi. From each patch, we com-
pute multiscale HOG [5] with cell size 8, 16, 32 and 2 × 2
cell blocks. The orientation histogram for each cell is com-
puted with unsigned gradients with 9 orientation bins. The
dimensionality of the resultant HOG feature is 2124. For an
arbitrary s, the image patch size is scaled by s while keep-
ing the center location unchanged.

In its original form the dependency graph (Fig.1)
requires 5 regressor, namely, g1,{2,3,4,5,6,10}, g6,{7,8},
g10,{11,12}, g8,9 and g12,13. In order to exploit the symmet-
ric structure of the human body, we train a shared regressor
for g6,{7,8} and g10,{11,12} by horizontally flipping the train-
ing samples for the key points on the right side of the body.
In the testing time, the same regressor is used for both sides
but for the right side both the input patch and output vector
need to be horizontally flipped. We do the same for g8,9
and g12,13. This procedure practically doubles the number
of the training samples. For g1,{2,3,4,5,6,10}, we also double
the number of the training samples by appropriately mirror-
ing each training sample.

For boosted regression trees, the number of the leaves in
the regression trees K is set to 5 and the shrinkage parame-
ter ν is set to 0.1 following the suggestion in [12]. Through
cross-validation on the training set, it is observed that the
error keeps decreasing as the number of trees increases.
Thus, we empirically set the number of trees M to 2000
for g1,{2,3,4,5,6,10} and 1000 for the rest. The regressors are
trained on the Buffy training set and the same regressors
are used for testing on both Buffy testing set and PASCAL
dataset.

5.3. Results

As our RoDG works with any multidimensional output
regression methods, we also test RoDG with Kernel Partial
Least Squares (KPLS) [17], Partial Least Squares (PLS) [6],
Lasso [7] and Multivariate RVM (MRVM) [20]. The param-
eters of those regression methods are determined by 5-fold
cross validation.

In Table 1, we show the results on the Buffy dataset eval-
uated with the PCP tool provided in the dataset and the de-
tection windows in the initial release of the dataset, while
in Table 2, we show the results with the fixed PCP tool and
the updated detection windows in the latest release.

As can be seen from Table 1, the RoDG-Boost achieves
the second best total PCP0.5 next to [21] with significantly
lower computation time (Table 5). Note that unlike some of
the previous works, RoDG does not require external train-
ing data nor exploit color information. For reference, we
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also compare our methods with [21]5 using a stricter criteria
(total PCP0.2) and found out that RoDG-Boost outperforms
[21] with a large margin (RoDG-Boost:63.0, [21]:58.2).
This result indicates that the ranking of performance varies
depending on the PCP threshold, thus comparisons should
also be made by PCP-curves obtained by varying the PCP
threshold. Table 2 shows that RoDG-Boost and RoDG-
KPLS outperform the existing method with a large margin.

The PCP values on the first setting are higher than those
on the second setting due to the flaw of the original PCP
tool. The correct PCP scores reveal that there is still
much room for improvement, especially for lower arms. In
Fig.2(a), we plot the PCP curves on the Buffy testing set
with the second setting. RoDG-Boost consistently outper-
forms RoDG-KPLS when PCP threshold is less than 0.47
and both methods significantly outperform the state-of-the-
art. We encourage future comparisons on this new setting
with PCP curves.

Table 1. PCP0.5 on Buffy with the original PCP tool and detection
windows

total torso u.arms l.arms head
RoDG-Boost 89.8 99.6 96.8 73.0 99.6
RoDG-KPLS 88.2 100 96.6 68.7 98.7

RoDG-MRVM 87.5 99.6 97.2 67.0 97.0
RoDG-LASSO 86.7 100 96.7 63.6 99.6

RoDG-PLS 87.2 100 97.5 65.3 97.9
Ukita [21] 90.3 100 97.5 73.9 98.9
Yang [26] 89.1 100 96.6 70.9 99.6
Zuffi [27] 85.6 99.6 94.7 62.8 99.2
Sun [19] 85.7 99.6 93.8 63.9 99.2
Sapp [18] 85.5 100 95.3 63.0 96.2

Andriluka [3] 83.1 97.5 92.7 59.6 95.7

Table 2. PCP0.5 on Buffy with the updated PCP tool and detection
windows

total torso u.arms l.arms head
RoDG-Boost 81.1 98.5 92.8 51.5 99.2
RoDG-KPLS 81.2 99.2 92.8 51.3 99.6

RoDG-MRVM 76.9 98.9 91.8 40.5 97.7
RoDG-LASSO 74.6 98.5 89.7 35.4 98.9

RoDG-PLS 74.2 99.6 90.5 33.5 97.7
Eichner [8] 76.7 99.6 81.9 50.0 96.6

In Tables 3 and 4, we show the results on the PASCAL
dataset with the two settings. We achieve state-of-the-art re-
sults on both settings. The PCPs on the PASCAL are much
lower than that on Buffy. We argue that the reasons are 1)

5We thank Norimichi Ukita for providing the results.
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Figure 2. PCP curves with the second setting (best viewed in color)

the PASCAL dataset is more difficult due to more complex
poses, more challenging occlusions and blur, 2) the similar-
ity between the testing and training sets in the Buffy dataset
favors PCP on the Buffy dataset. In Fig.2(b), we plot the
PCP curves on the PASCAL dataset with the second set-
ting. RoDG-KPLS consistently outperforms RoDG-Boost,
however, RoDG-KPLS is much more computationally ex-
pensive due to KPLS execution (Table 5).

Table 3. PCP0.5 on PASCAL with the original PCP tool and de-
tection windows

total torso u.arms l.arms head
RoDG-Boost 79.2 100 87.8 50.4 98.9
RoDG-KPLS 78.8 99.7 87.0 50.4 98.6

RoDG-MRVM 77.5 99.7 86.0 47.5 98.1
RoDG-LASSO 76.4 100 86.7 44.4 96.1

RoDG-PLS 76.3 99.7 87.0 43.8 96.9
Sun [19] 78.8 99.7 81.4 55.4 99.4
Sapp [18] 77.2 100 87.1 49.4 90.0

Andriluka [3] 71.8 96.4 77.8 47.0 85.0

Table 4. PCP0.5 on PASCAL with the updated PCP tool and de-
tection windows

total torso u.arms l.arms head
RoDG-Boost 63.3 91.5 75.1 27.8 82.3
RoDG-KPLS 64.5 87.1 77.2 30.5 84.7

RoDG-MRVM 59.6 87.1 71.5 26.1 75.5
RoDG-LASSO 57.4 89.6 69.4 22.1 71.6

RoDG-PLS 56.5 88.8 72.1 18.0 69.9
Eichner [8] 55.7 96.6 60.6 27.3 61.9

Table 5 presents approximate computation times of each
method to process one image. Note that the computation
time of previous methods are taken from their original pa-
pers or websites and thus are not obtained by running on the
same computer, however, they give a rough idea on compu-
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tational requirements of each method. All RoDGs are run
on Xeon 3.6GHz CPU machine. All RoDGs run signifi-
cantly faster than all the previous methods.

Table 5. Computation time per image. Left: our methods, Right:
existing methods

method time method time
RoDG-Boost 23 msec. Ukita [21] 4 sec.
RoDG-KPLS 193 msec. Yang [26] 1 sec.
RoDG-PLS 13 msec. Zuffi [27] a few min.

RoDG-LASSO 13 msec. Sun [19] 300 sec.
RoDG-MRVM 15 msec. Sapp [18] 300 sec.

Andriluka [3] 50 sec.
Eichner [8] 6.6 sec.

Representative results of RoDG-Boost on Buffy and
PASCAL are shown in Fig.3 and Fig.4, respectively.

Transductive learning results
We evaluate the performance of RoDG with our importance
weighted boosted regression trees in transductive settings.
As the fixed PCP tool is more adequate to compare the per-
formance of the methods, we conduct experiments only us-
ing the second setting. For RuLSIF, we use the same param-
eter settings employed in [25]. We use a Gaussian kernel
with σ = 10 for feature transformation and set the number
of clusters to 10 and 20 for Buffy and PASCAL, respec-
tively. The parameters of the gradient boosting are kept the
same.

Tables 6 and 7 show the results on the Buffy and PAS-
CAL dataset, respectively. The first row presents the results
of non-transductive settings, the second row, the results of
transductive settings without clustering and the third row
presents the results with clustering. On the Buffy dataset,
the PCP clearly improves while on the PASCAL dataset,
RuLSIF degrades the performance but RuLSIF-cluster re-
covers the loss.

Table 6. PCP0.5 of importance weighted boosted regression trees
on Buffy

total torso u.arms l.arms head
Base 81.1 98.5 92.8 51.5 99.2

RuLSIF 81.6 98.9 92.6 53.2 99.2
RuLSIF-clstrs 82.5 98.9 93.5 54.9 99.2

Table 7. PCP0.5 of importance weighted boosted regression trees
on PASCAL

total torso u.arms l.arms head
Base 63.3 91.5 75.1 27.8 82.3

RuLSIF 63.0 90.3 75.2 28.8 79.9
RuLSIF-clstrs 63.4 90.3 75.5 27.9 83.0

6. Conclusion
In this paper, we presented an algorithm for human pose

estimation from a still image based on successive appli-
cation of multidimensional output regressions on a depen-
dency graph. The pose estimation problem was divided
into a set of local pose estimation problems and solved se-
quentially from the root node of the graph. The method is
a competitive alternative to pictorial structure-based meth-
ods for human pose estimation. On the two popular bench-
marks, Buffy Stickmen and ETHZ PASCAL Stickmen, our
method achieves comparable accuracy to state-of-the-art re-
sult with significantly lower computation time. Further-
more, we proposed boosted regression trees for importance
weighted samples and applied it to transductive learning set-
tings for human pose estimation.
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