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Abstract

With an explosion of popularity of online photo sharing,
we can trivially collect a huge number of photo streams for
any interesting topics such as scuba diving as an outdoor
recreational activity class. Obviously, the retrieved photo
streams are neither aligned nor calibrated since they are
taken in different temporal, spatial, and personal perspec-
tives. However, at the same time, they are likely to share
common storylines that consist of sequences of events and
activities frequently recurred within the topic. In this paper,
as a first technical step to detect such collective storylines,
we propose an approach to jointly aligning and segment-
ing uncalibrated multiple photo streams. The alignment
task discovers the matched images between different photo
streams, and the image segmentation task parses each im-
age into multiple meaningful regions to facilitate the image
understanding. We close a loop between the two tasks so
that solving one task helps enhance the performance of the
other in a mutually rewarding way. To this end, we design
a scalable message-passing based optimization framework
to jointly achieve both tasks for the whole input image set
at once. With evaluation on the new Flickr dataset of 15
outdoor activities that consist of 1.5 millions of images of
13 thousands of photo streams, our empirical results show
that the proposed algorithms are more successful than other
candidate methods for both tasks.

1. Introduction

As online sharing of personal photo streams is becoming

popular, many of such photo streams often share overlap-

ping contents. For example, one can easily download a huge

number of photo streams associated with the query term

scuba+diving from any photo sharing sites such as Flickr.

The retrieved photo streams record various events and activ-

ities associated with scuba+diving, which are captured by

different people from their unique experiences. Obviously,

the photo streams are neither aligned nor calibrated since

they are taken in different temporal, spatial, and personal

Figure 1. Motivation for jointly aligning and segmenting mul-

tiple photo streams with an example of three photo streams of

scuba+diving. The input is any number of photo streams of a

specific activity that are taken by various users at different time

and places. The output is two-fold. (a) Photo stream alignment.

The images of different photo streams are matched (as shown in

the same colors). (b) Image cosegmentation. The shared regions

in the aligned images are jointly segmented.

perspectives. However, at the same time, they are likely to

share common storylines consisting of sequences of events

and activities repeatedly recurred across the scuba+diving
photo streams (e.g. riding a boat, wearing equipment, un-

derwater diving, and so on). The construction of such photo

storylines can potentiate a variety of applications. For ex-

ample, if a family decides to go to a scuba diving trip, they

can make a plan by previewing what other people usually

do. After the trip, they can also review the similarities and

differences of their trip compared to others.

Therefore our challenging goal is to build such collec-

tive storylines from the photo streams of millions of users,

and to discover the relations between the reconstructed sto-

rylines and photo streams of individual users. In this pa-
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per, as a first technical step to achieve this ultimate goal,

we propose a method to jointly perform alignment of multi-

ple photo streams and cosegmentation of aligned images, as

shown in Fig.1. In the alignment step, images of different

photo sets are matched based on visual contents and asso-

ciated meta-data. The alignment is a core task to build a

big picture of storylines from a large number of fragmented

photo streams of individual users. In the cosegmentation

step, the aligned images are segmented together in order to

facilitate image understanding such as pixel-level classifica-

tion in the images. It is important to note that solving these

two tasks are mutually rewarding. The main challenge of

cosegmenting multiple photo streams is that the Web im-

ages by general users are too diverse to segment all at once.

Jointly segmenting images with no commonality, which

contradicts the basic assumption of cosegmentation, could

be worse than individually segmenting each image. There-

fore, the alignment step fills in the role of enabling grouping

of images that share sufficient commonality, which provides

a high-level clue for cosegmentation. Conversely, once we

parse each image into multiple segments, image matching,

a basic operation for the photo stream alignment can be im-

proved. We can iterate these two steps in multiple rounds.

In our approach, photo stream alignment and image

cosegmentation are achieved in a similar way. For the align-

ment, we first establish a sparse graph that connects similar

photo streams to be aligned together as a Markov random

field. Then, we perform belief propagation to jointly align

all photo steams at once. Likewise, for image cosegmenta-

tion, we build a graph linking the coherent images that are

beneficial to be segmented together, based on the output of

the alignment step. Then, we perform cosegmentation of

the entire image set all at once under the guidance of the

graph by a message-passing style optimization.

For evaluation, we collect about 1.5 millions of images

of 13 thousands of photo streams regarding 15 outdoor

recreational activities from Flickr. Our experiments in Sec-

tion 5 demonstrate that our approach outperforms other can-

didate methods on both photo stream alignment and image

cosegmentation.

1.1. Previous work

While there has been little work on jointly aligning and

segmenting multiple photo streams, the following two lines

of research are remotely related to our work.

Cosegmentation: Our problem involves segmenting

aligned photo streams together. It resembles the cosegmen-

tation problem [1, 8, 10, 11, 15, 20], whose objective is to

jointly segment recurring objects (or foregrounds) that are

shared in multiple images. Our work is unique in several re-

spects comparing to the large body of previous cosegmenta-

tion research. First, we focus on segmentation of unordered

multiple Web photo streams. The cosegmentation of Flickr

photo streams was discussed in [10], but it was applied to

at most 20 images that are manually selected out of hun-

dreds of pictures of a single Flickr photo stream. In contrast,

here we can handle an arbitrary number of uncalibrated Web

photo streams by closing the loop between segmentation

and photo stream alignment. Second, in our experiments,

we perform scalable segmentation with more than 100K im-

ages of 1K photo streams, which exceeds those of previous

work by two orders of magnitude. To our knowledge, the

largest dataset sizes in previous work are about 1K [10, 11].

Large-scale image alignment: Image alignment has

been one of fundamental tasks in a variety of computer

vision problems. Recently, with the explosion of pictures

available online, image alignment has become a key build-

ing block to solve various large-scale problems. Some

notable examples include the reconstruction of 3D mod-

els of landmarks [19], the localization of tourists’ pho-

tos [3], spatio-temporal reconstruction of time-varying 3D

city models [17], and nonparametric object recognition and

scene parsing [12]. However, their objectives of the image

alignment are quite different from ours, which is to integrate

with a subsequent image segmentation to infer common sto-

rylines of outdoor activities. As far as we know, [21] is one

of the very few papers that involve the alignment of mul-

tiple photo streams. However, their algorithm was tested

with relatively small datasets (i.e. 12 classes with less than

10 photo streams per class) compared to ours (i.e. 15 out-

door activities with 1K photo streams per activity). More

importantly, they did not explore any sub-image level anal-

ysis; no image segmentation is performed.

1.2. Summary of Contributions

To conclude the introduction, we summarize the main

contributions of this paper as follows.

(1) We propose an approach to jointly aligning and

segmenting large-scale Web photo streams of different

users. Compared to previous cosegmentation research, our

approach can handle any number of uncalibrated photo

streams. Compared to existing image alignment research,

our work can widen its applicability for reconstructing col-

lective storylines from multiple photo streams by closing

the loop with cosegmentation in a mutually rewarding way.

(2) We propose large-scale alignment and cosegmenta-

tion algorithms that jointly work on the whole dataset by

using message-passing based optimization. The algorithms

are scalable; they run in a linear time with the number of

photo streams and images, respectively.

(3) In experiments, we evaluate the proposed approach

with our new Flickr dataset of 15 outdoor activities. Our

largest experiments run on more than 100K images of 1K

photo streams, which exceed those of previous work by or-

ders of magnitude. We also show the superiority of our ap-

proach over other candidate methods for both tasks.
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2. Approach
In this section, we describe the problem definition and

the overview of our solution to the problem.

2.1. Problem Formulation

The input of our algorithm is the set of photo streams of

a particular activity denoted by P = {P 1, · · · , PL}, where

L is the number of input photo streams. Each photo stream

is a set of photos taken in sequence by a single photogra-

pher within a certain period of time, which is set to a single

day in this paper. Without loss of generality, we assume

that each photo stream is sorted by taken time. We also use

I = {I1, · · · , IN} to denote the whole image set without

distinguishing the membership of photo streams. As a nota-

tion convention, we use superscripts to denote photo stream

numbers and subscripts to denote image numbers.

Another input is related to the segmentation task; a user

can provide the maximum number of foregrounds of interest

per image K. Then, our algorithm automatically identifies

K most dominant regions that are distinctive one another

from the image and its aligned neighbors1. The background

is defined as all the other regions that are not included in any

ofK foregrounds. For notational simplicity, we interchange

the term background and foreground K+1.

The output of our algorithm is two-fold. The first out-

put for the alignment is the set of correspondences between

the images of different photo streams. If we represent each

image as a vertex and each correspondence as an edge, the

output can be summarized as an L-partite graph. The sec-

ond output for the segmentation is assigning every pixel of

each image to one of K foregrounds or background.

2.2. Overview of Algorithm

Our approach alternates between solving two target

tasks, photo stream alignment and image cosegmentation.

Given a large set of uncalibrated photo streams, we first

build a nearest neighbor similarity graph that connects the

photo streams to be aligned (see section 3.4). We formulate

the alignment of the whole photo streams as an energy min-

imization problem, which can be solved by belief propaga-

tion on the graph. Its detailed procedure will be explained

in section 3.3 and 3.4. As a result of the alignment, we can

obtain the correspondences between the images of differ-

ent photo streams, from which we establish an image graph

connecting the similar images that are likely to share com-

mon foregrounds (see section 4.1). We perform large-scale

cosegmentation for all images at once under the guidance

of the image graph in a message-passing way, which will be

1 In segmentation literature, it is called an unsupervised setting. A user

may provide some foreground examples in the form of bounding-boxes or

pixel-wise annotations, which is called a supervised setting. In this paper,

we focus on the unsupervised case because it is more challenging. Also, it

is trivial to adapt our approach to the supervised setting.

Figure 2. The benefit of segmentation for measuring image simi-

larity. In this example, the same objects appear in different loca-

tions with different poses across the image pair. (a) When images

are not yet segmented, we compute the image similarity from the

spatial pyramid histograms on the whole images. (b) Once images

are segmented, we find the best assignment between the segments

of two images, and compute the mean of segment similarities.

discussed in section 4.2. The segmentation of images can

enhance the similarity measurement between images, which

subsequently contributes to a better photo stream alignment.

This will be justified in section 3.2 with an intuitive exam-

ple. Finally, we can return to the photo stream alignment

step with the new segmentation-based image similarity.

3. Alignment of Photo Streams
We begin with our image description and similarity mea-

sure, and then discuss the proposed alignment algorithm.

3.1. Image Description

We use the dense feature extraction with vector quanti-

zation, which is one of standard methods in recent computer

vision research. We densely extract two features from each

image: HSV color SIFT and histogram of oriented edge

(HOG) feature on a regular grid at steps of 4 and 8 pixels, re-

spectively. Then, we form 300 visual words for each feature

type by applying K-means to randomly selected descriptors.

Finally, the nearest word is assigned to every node of the

grid. As image and segment descriptors, we build L1 nor-

malized spatial pyramid histograms to count the frequency

of each visual word in multiple levels of regular grids.

3.2. Image Similarity Measure

It is vital to design a reliable similarity metric between

images for an accurate alignment of photo streams. Our

alternating approach is based on the assumption that the

segmentation is helpful to enhance the measurement of im-

age similarity. Fig.2 shows a typical example of such in-

tuition where the same objects appear in different locations

with different poses across the images. When images are

not segmented yet, the image similarity is calculated from

two-level spatial pyramid histograms on the whole images,

which are not robust against location and pose variations.

However, this issue can be largely alleviated even with an

imperfect segmentation. Given the segment sets of two im-

ages I1 and I2, denoted by F1 and F2, we first solve the

linear assignment problem (i.e. finding the best assignment

620620622



between the segments of two images), and then compute the

mean of total similarity values as an image similarity met-

ric. Formally, given a similarity metric between segments

σs : F1 ×F2 → R, the image similarity σ is defined by

σ(I1, I2) = max

(∑
s∈F1

σs(s, fs(s))

)
/M (1)

where fs : F1 → F2 is a bijection and M is the number of

segments. We use as σs the histogram intersection on the

spatial pyramid histograms of the segments.

3.3. Pairwise Photo Stream Alignment

For a better understanding, our discussion starts from the

alignment of a pair of photo streams P 1 and P 2. That is, the

objective is to establish the correspondences between two

photo streams through image matching. Our alignment ob-

jective is formulated based on the MRF energy function that

has been applied to many computer vision problems such

as deformable image matching [18] and SIFT flow [12]. Its

strength lies in its flexibility to easily incorporate various

energy terms related to alignment. It is of particular interest

for our applications since we can leverage the terms regard-

ing the meta-data associated with the images.

The goal of alignment is to find a matching f : P 1 →
P 2 ∪ {∅} where ∅ is the null, meaning that if f(pi) = ∅
for an image pi ∈ P 1, pi has no correspondence in P 2. Let

p̂i ∈ P 2 ∪ {∅} denote the matched image to pi ∈ P 1. The

pairwise alignment is performed by minimizing the energy

function as follows.

E(P 1, P 2) =−
∑

pi∈P 1

σ(pi, p̂i) +
∑

pi∈P 1

ηmin(|t(pi)− t(p̂i)|, τ)

+
∑

(pi,pj)∈Δ
ρ σ(pi, pj)min(|t(p̂i)− t(p̂j)|, ν) (2)

where τ and ν are the thresholds for truncated L1 norms,

and η and ρ are term weights. We let t(pi) be the times-

tamp of image pi. The σ(pi, p̂i) is the image similarity

between pi and p̂i. We let σ(pi, ∅) = 0 and t(∅) = ∞,

which means that if minpj∈P 2 σ(pi, pj) < ητ + ρν, then pi
matches no image in P 2. The Δ contains the entire tempo-

ral neighborhood in a photo stream (i.e. (pi, pj)∈Δ means

|t(pi) − t(pj)| ≤ δ). The first term accounts for the max-

imization of image similarity between the matched pairs,

and the second term penalizes the time difference between

the matched pairs. The third one is the smoothness term

to encourage that the matched images to the neighbors in

P 1 are also neighbors in P 2. This regularization is more

strongly imposed for a pair of images that are more visually

similar by weighting σ(pi, pj). The optimization of Eq.(2)

can be achieved by using the belief propagation [6, 12].

3.4. Multiple Photo Stream Alignment

We extend the pairwise alignment of Eq.(2) to that of an

arbitrary number of photo streams P . One naive approach

may be to incrementally combine pairwise alignments start-

ing from the most similar photo stream pair and progress-

ing to the most distant one. However, this approach has two

significant drawbacks [4]. First, it tends to be computation-

ally intensive. Second, more importantly, this method does

not treat all photo streams equally, which may lead to local

minima according to the order of consideration.

To circumvent these issues, we jointly align all photo

streams at once after constructing a graph between photo

streams GP = (P, EP ). For each photo stream P i ∈ P ,

we first find a set of photo streams that are sufficiently over-

lapped on timeline (i.e. the photo streams P j such that (#
of images of P j within the time range of P i)/ (total # of

images P j) ≥ γ). Among them, we obtain KP -nearest

neighbors in terms of visual similarity, which is calculated

by using the idea of Naive-Bayes Nearest-Neighbor [2] as

follows. Given two photo streams P i and P j , for each im-

age p ∈ P i, we obtain the first nearest neighbor in P j de-

noted by NN(p). Then, the similarity from P i to P j is com-

puted by
∑

p∈P i ‖σ(p,NN(p))‖2. Finally, EP includes all

pairs of nearest neighbor photo streams.

The objective of multiple photo stream alignment re-

duces to find a matching f : P i → P j ∪ {∅} for all pairs

(P i, P j) ∈ EP , which can be accomplished by minimizing

E =
∑

(P i,P j)∈EP

E(P i, P j) (3)

where E(P i, P j) is defined by Eq.(2). The optimization

can be achieved by the belief propagation on the graph of

photo streams GP , in such a way that we repeat a pairwise

alignment of previous section by following the edges of EP
until convergence.

4. Large-Scale Cosegmentation
In this section, we explain our algorithm to construct an

image graph and jointly segment the whole image set.

4.1. Building An Image Graph

For large-scale cosegmentation, we establish an image
graph GI = (I, EC) where I is the set of images of all

photo streams, and EC is the set of edges that connect the

images that share enough commonality to be segmented to-

gether. The edge set consists of two groups: EC = EB∪EW
where EB defines the edges between the images of differ-

ent photo streams while EW connects the images within the

same photo stream. EB is trivially obtained from the out-

put of photo stream alignment; simply, all correspondences

of image pairs are added to EB . EW is useful for coseg-

mentation because the images in the same photo stream are

621621623



consecutively taken by the same camera, and thus they are

likely to share common objects and scenes. In order to de-

fine EW , we find KW -nearest neighbors for each image Ii
among its temporal neighborhood in the same photo stream,

which includes all images I such that |t(I)− t(Ii)| ≤ δ. In

our experiments, δ is set to 2 hours.

4.2. Running Cosegmentation

We begin with some basic ingredients of our cosegmen-

tation algorithm. We first oversegment every image of I by

using the submodular image segmentation [11]. Let Si de-

note the set of oversegments of image Ii. Then, the goal

of segmentation reduces to finding an optimal disjoint par-

tition Si =
⋃K+1

k=1 Fk
i with Fk

i ∩ F l
i = ∅ if k �= l, where

Fk
i denotes the regions of foreground k in image Ii.
MFC algorithm: In our approach, we select the

MFC [10] as our base cosegmentation algorithm, since it

is scalable and has been successfully tested with Flickr user

images. More specifically, we exploit two procedures of the

MFC algorithm as our basic operations: foreground mod-
eling and region assignment steps. The foreground mod-

els retain the appearance models of K foregrounds and the

background. Formally, the k-th foreground model is de-

fined as a parametric function vk : 2|Si| → R that takes any

subset S ⊂ Si as input and returns its value to foreground

k (i.e. how closely region S is relevant to foreground k).

Each foreground model is learned from the regions that are

allocated to the foreground after the region assignment step.

Therefore, the foreground model can be accomplished by

using any region classifiers or their combinations. In this

paper, we use the Gaussian mixture model (GMM) on the

RGB color and HSV SIFT spaces. Thus, vk(S) is defined

as the mean log-likelihood of the descriptors of S to the k-th

learned GMM model [14].

The role of the region assignment step is, given a set of

learned foreground models {vk}K+1
k=1 , to discover the opti-

mal partition of Si into {Fk
i }K+1

k=1 that maximizes the over-

all allocation values. We let ci denote one such partition

instance of image Ii. Generally, the set partition problem

is NP-complete, but the region assignment of the MFC can

solve it in a very efficient way by using combinatorial auc-

tion idea. We do not discuss its details, which can be found

in [10]. Instead, we denote the region assignment procedure

by {Fk
i }K+1

k=1 = RegAss(Si, {vk}K+1
k=1 ). In the following,

we use the abbreviated notation of {v} for {vk}K+1
k=1 .

Message Passing based Cosegmentation: The basic

idea of our large-scale cosegmentation is to iteratively per-

form foreground modeling and region assignment based on

image graph GI . We view the image graph GI as a MRF

with hidden variables corresponding to the partition ci of

each image Ii. Consequently, we formulate the cosegmen-

tation of whole image set I as the following energy maxi-

mization:

Figure 3. An intuition of our message-passing based cosegmenta-

tion at round t. (a) We show an image Ii to be segmented, and its

three neighbors Ni in the image graph GI . We also present color-

coded partitions of best beliefs of Ni at t−1, denoted by ct−1∗
Ni

. (b)

The message passing from Ni to Ii at round t ends up perform-

ing the region assignment for Ii by using the foreground models

{vNi } learned from ct−1∗
Ni

. As a result, we obtain the partition of

the best belief of image Ii at t, denoted by ct∗
i .

D(I;GI) = α
∑
Ii∈I

ψ (ci; {v}) +
∑

(Ii,Ni)∈EC

φ (ci; {vNi
}) (4)

where Ni denotes the neighborhood of image Ii in image

graph GI , and α is a term weight. {v} and {vNi} indi-

cate the global and local foreground models, respectively.

Both of them are implemented by the same region classi-

fiers (e.g. GMM models). Only difference is the training

data; {vNi
} is learned from the regions of foregrounds only

inNi, whereas {v} is obtained without imposing such local

restriction.

The objective of Eq.(4) consists of a unary term ψ and a

pairwise term φ; it means that ci is achieved by searching

for the best partition not only for {v} in the unary term ψ
but also for {vNi} in the pairwise term φ. For a partition

ci of Si into {Fi}, the unary term is defined as the sum of

assignment scores by {v}:

ψ (ci; {v}) =
K+1∑
k=1

vk(Fk
i ). (5)

The pairwise term φ (ci; {vNi
}) is defined as the exact same

form of Eq.(5) only except replacing {v} by {vNi
}.

Optionally, the unary term ψ can be reasonably ignored

by setting α to 0, if it is hard to define a single set of glob-

ally applicable foreground models. For example, the person
foregrounds are ubiquitous in all photo sets but their appear-

ances can be severely varied in different photo sets. In this

case, using only local models may be more robust.

Messages and beliefs: The energy maximization in

Eq.(4) can be solved by the belief propagation, which pro-

ceeds by iteratively computing new messages for each edge

in graph GI . Using the max-product algorithm (i.e. equiv-

alently, the min-sum algorithm with negative log probabili-

ties), the message from Ni to Ii at round t is defined by [6]
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mt
Ni→Ii

(ci) =max
cNi

(
φ (ci; {vNi}) + ψ (cNi ; {v}) (6)

+
∑

s∈N (Ni)\Ii

mt−1
s→Ni

(cNi)
)

where N (Ni)\Ii denotes the neighbors of Ni except Ii.
According to Eq.(6), the message computation involves the

search for the best cNi
(i.e. the partitions of neighbors) for

every possible ci. It results in an exponential explosion of

the search space, which is largely unnecessary in practice.

Therefore, we introduce an assumption that is reasonable

for image cosegmentation as follows. The best partitions
cNi

for the messagemt
Ni→Ii

(ci) at round t is the same with
those of the best beliefs of Ni at round t− 1.

Fig.3 shows an intuitive example of how our message

passing works with this assumption. Fig.3.(a) shows the

image Ii to be segmented and its three neighbors Ni in

image graph GI . We also illustrate the color-coded par-

titions of the best beliefs of Ni at round t−1, which are

denoted by ct−1∗
Ni

. As shown in Fig.3.(b), when we com-

pute the message mt
Ni→Ii

(ci), the assumption allows us

to simply learn foreground models {vNi
} from ct−1∗

Ni
of

Fig.3.(a), and to evaluate each possible ci. By running

{Fi} = RegAss(Si, {vNi
}), we can obtain the partition ct∗i

(i.e. the partition of the best belief of Ii at round t) as a

result, which is also shown in Fig.3.(b).

Consequently, the implementation of our message-

passing based cosegmentation is straightforward; at every

round, we iteratively segment each image Ii by using the

learned foreground models from the partitioned regions of

its neighbors Ni at previous round. Then, the segmented

image Ii is subsequently used to learn the foreground mod-

els for its neighbors’ segmentation. That is, we iteratively

run foreground modeling and region assignment steps by

following the edges of image graph GI .

Initialization: In order to proceed our iterative coseg-

mentation algorithm, we need initial image partitions as

starting points of belief propagation. In the supervised sce-

nario, we trivially begin from the labeled images. In an un-

supervised setting, we apply the diversity ranking method

of [11] to image graph GI to discover a small number of

central images and their neighbors. Then, the unsupervised

version of MFC algorithm in [10] initially segments the im-

ages of each group, from which message passing begins.

4.3. Analysis of the Algorithm

The core procedures of our approach are the two belief

propagation (BP) techniques for alignment and cosegmen-

tation. The alignment BP works on the graph of photo

streams while the cosegmentation BP runs on the image

graph. Generally, the BP algorithm runs in O(T |E|) where

T is the number of iterations and |E| is the number of edges.

Since we use only sparse KNN graphs where each vertex

SB: surfing+beach, HR: horse+riding, RA: rafting, YA: yacht, AB: air+ballooning,
RO: rowing, SD: scuba+diving, FO: formula+one, SN: snowboarding, SP: sa-
fari+park, MC: mountain+camping, RC: rock+climbing, TF: tour+de+france, LM:
london+marathon, FF: fly+fishing.

Figure 4. Our Flickr datasets of 15 outdoor recreational activities.

The number of images and photo streams are shown in (a) and (b),

respectively. The dataset sizes are (1,514,976, 13,157) in total.

is connected to a constant number of neighbors, the align-

ment BP runs in O(TL) and the cosegmentation BP does

inO(TN) where L and N are the number of photo streams

and images, respectively. Moreover, the BP algorithm has

been studied much for parallelization [7], which can fur-

ther improve the speed of our algorithm. We summarize the

pseudocode of our algorithm in supplementary material.

5. Experiments
We evaluate the proposed approach from two technical

perspectives: photo stream alignment in section 5.1 and im-

age cosegmentation in section 5.2. We present more details

of experiments in supplementary material, including exper-

imental design, application of baselines, and in-depth anal-

ysis of results. Our Matlab demo code is available at our

webpage (http://www.cs.cmu.edu/∼gunhee).

Flickr Dataset: Fig.4 summarizes our Flickr dataset that

consists of 1,514,976 images of 13,157 photo streams for

15 outdoor recreational activity classes. Flickr is one of the

best image sources to test our algorithm since a large num-

ber of photo streams of different users are freely available

with rich associated meta-data. We use the class names as

search keywords, and download all the photo streams that

contain more than 50 images. We use all pictures of each

photo stream without any filtering. For a quantitative seg-

mentation evaluation, we manually annotate 100 images per

class, from which we obtain approximate performance mea-

sures of algorithms. Although the labeled images are rela-

tively few compared to dataset sizes, in practice the sampled

annotation is widely adopted in standard large-scale bench-

mark datasets such as ImageNet [5].

5.1. Results on Alignment

Tasks: The performance of photo stream alignment is

evaluated by a temporal localization task. It is inspired

by the studies of geolocation estimation [3, 9], whose goal

is to estimate the geolocations of individual pictures for a

given sequence of a tourist’s photos. We carry out our ex-

periments similarly only except that the geolocation is re-

placed by the timestamp. We first randomly select 80% of

photo streams of each class as training set and the others
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Figure 5. Comparison of temporal localization between our methods (BPS) and (BP) and the baselines (HMM), (DTW), and (KNN). In (a),

we show the accuracies of all algorithms for 15 outdoor activity classes with ε = 60 minutes. In (b), we show the variation of average

localization accuracies by changing time thresholds ε from 30 minutes to 180 minutes. The acronyms of activities are referred to Fig.4.

as test set. Then, the goal is to estimate the timestamps of

all the images of the test photo streams by aligning them

with training photo streams whose timestamps are known.

Such temporal localization task is also important to achieve

our ultimate goal, the picture-based storyline construction,

which requires correctly locating each photo stream on the

timeline to relate it with other photo streams.

Baselines: For the alignment tests, we compare our al-

gorithm with four baselines. As one of the simplest base-

lines, the (KNN) performs image matching by using only

image similarity. We also choose two alternatives of im-

age sequence alignment. The (HMM) is the hidden Markov

model method that has been widely applied for localizing

tourists’ photo sets [3, 9]. The (DTW) is dynamic time warp-

ing, one of most popular algorithms for multiple sequence

alignment [13]. Our algorithm is tested in two different

ways, according to whether image segmentation is in a loop

or not. The (BP) does not exploit the image segmentation

output whereas the (BPS) is our fully geared approach. That

is, this comparison can justify the usefulness of our alternat-

ing approach between alignment and segmentation.

Quantitative results: To compare the performances of

algorithms, we use the similar evaluation metric to those

of image geolocalization research [3, 9]. Given the es-

timated timestamps of all test images by each algorithm,

we compute the percentage of images for which the es-

timated timestamps are within ε minutes of the ground-

truths. Fig.5.(a) reports the accuracy rates of our algorithms

and baselines across 15 activity classes with ε = 60 min-

utes. The leftmost bar set is the average performance of

15 classes. Our algorithm significantly outperforms all the

baselines in most classes. The average accuracy of our

method (BPS) is 39.1%, which is notably higher than 23.7%

of the best baseline (HMM). Fig.5.(b) compares the average

accuracies of all algorithms according to different ε values

from 30 to 180 minutes. In all ranges of ε, our (BPS) consis-

tently outperforms the best baseline (HMM) by 17.1% points

on average. Moreover, the accuracies of (BPS) is higher

than those of (BP) by 3.6% points on average, which sup-

ports that segmentation can improve alignment.

Qualitative results: We present very preliminary results

of storyline construction in supplementary material, which

hints that our alignment works promisingly for this goal.

5.2. Results on Segmentation

Tasks: The task of image cosegmentation is to identify

frequently recurring foregrounds in the image set. The ac-

curacy is measured by the intersection-over-union metric

(GTi∩Ri)/(GTi∪Ri), whereGTi is the groundtruth of im-

age i and Ri is the estimated regions by an algorithm. It is

also a standard metric in PASCAL challenge. We compute

the average values of this metric from all annotated images.

Baselines: We select three baselines of unsupervised

segmentation methods that can discover multiple objects

from a large-scale dataset (i.e. at least more than tens of

thousands of images). The (LDA) [16] is an LDA-based

unsupervised localization method, and the (COS) [11] is a

state-of-art cosegmentation algorithm based on submodular

optimization. We also test the MFC algorithm (MFC) with-

out involving the alignment step; this comparison can quan-

tify the contribution of alignment to cosegmentation. For

(COS) and (MFC), we cluster the images into multiple sub-

groups by K-means on visual features, and apply the meth-

ods to each subgroup independently. We run our method

and all the baselines in an unsupervised manner (i.e. with-

out any seed labels) for a fair comparison. Since it is hard

to know the best K beforehand (e.g. multiple foregrounds

may exist in an image), we repeat each method by changing

K from one to five, and report the best results.

Quantitative results: Fig.6 compares the segmenta-

tion performance between our method and the three base-

lines. In almost all classes, the accuracies of our algorithm

(BP+MFC) are far better than those of the best baselines.

Especially, our average accuracy is 43.5%, which is signifi-

cantly higher than 34.3% of the best baseline (MFC), which

indicates that our alignment step is more successful than

simple clustering such as K-means for cosegmenting ex-

tremely diverse Web user images.

Segmentation examples: Fig.7 shows some selected ex-

amples of cosegmentation. We observe that the subjects

and their appearances are severely variable even in the im-

ages that are collected with the same keyword. For exam-

ple, in the safari+park class, tens of different animals oc-

cur, and in all classes, people are ubiquitously shown with

different appearance, poses, and clothes. Moreover, a sin-

gle class may include multiple other activities; for example,
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Figure 6. Cosegmentation accuracies between our method (BP+MFC) and the baselines (MFC), (COS), and (LDA) for 15 outdoor activities

classes. The leftmost bar set shows the average accuracies. The acronyms of activities are referred to Fig.4.

Figure 7. Cosegmentation examples of the Flickr outdoor recreational activity dataset.

the mountain+camping class contains the pictures of skiing,

trekking, fishing, rock climbing, and hunting. Evidently,

for the analysis of Web user images, it is extremely hard to

pre-define the objects of interest and learn the classifiers be-

forehand. In contrast, our approach is greatly successful to

quickly align a large-scale image set and segment out com-

mon regions in an unsupervised and bottom-up way, which

can be a useful function for various Web applications.

6. Conclusion
We proposed a scalable approach to jointly aligning and

segmenting multiple uncalibrated Web photo streams of

different users. We demonstrated superior alignment and

cosegmentation performance for the Flickr outdoor activity

dataset over other candidate methods. The empirical results

assured that our method can be a key component to achieve

our ultimate goal: inferring collective photo storylines from

Web images, which is a next direction of our future work.
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