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Abstract

An object model base that covers a large number of ob-
ject categories is of great value for many computer vision
tasks. As artifacts are usually designed to have various
textures, their structure is the primary distinguishing fea-
ture between different categories. Thus, how to encode this
structural information and how to start the model learning
with a minimum of human labeling become two key chal-
lenges for the construction of the model base. We design a
graphical model that uses object edges to represent object
structures, and this paper aims to incrementally learn this
category model from one labeled object and a number of
casually captured scenes. However, the incremental model
learning may be biased due to the limited human labeling.
Therefore, we propose a new strategy that uses the depth
information in RGBD images to guide the model learning
for object detection in ordinary RGB images. In experi-
ments, the proposed method achieves superior performance
as good as the supervised methods that require the labeling
of all target objects.

1. Introduction

Category model learning is a classical area in the field of

computer vision. In this paper, we return to two basic ques-

tions. First, for many regular-shape artifacts, it is the struc-

ture, rather than the texture, that determines their function-

s and categories, so how can we obtain structural knowl-
edge for each object category? Second, if we idealize the

spirit of semi-supervised learning, can we learn a category
model from the minimum labeling (only one labeled object)
and casually captured image sample pools? Here, we use

the phrase “casually captured” to describe the loose require-

ment that training samples do not need to be hand-cropped

or carefully aligned, and thus can be easily collected by or-

dinary people in their daily life. In casually captured image

sample pools, the target objects within an image are usually

small with large texture variations and various rigid trans-

Figure 1. How can a structure-based category model be learn-

t from one labeled object and a number of casually captured

scenes2? Accurate part correspondences between target object-

s are necessary for training the structure-based model, but purely

image-based object detection and matching are hampered by tex-

ture variations and rigid transformations of objects in these scenes.

Therefore, we learn models from RGBD images, but apply them

to object detection in ordinary RGB images.

formations, even including roll rotations (Fig. 1). The mini-

mum labeling meets the efficiency requirement for the con-

struction of a category model base. These category models

are expected to be able to detect objects in complex scenes.

However, the model learning is caught in a dilemma. On

the one hand, training the structure-based model requires

the collection of small target objects in casually captured

scenes, as well as the extraction of part correspondences

between these objects. On the other hand, without train-

ing, object detection and matching based on the only labeled

object is hampered by intra-category texture variations and

various rigid transformations, which represent a great chal-

lenge for state-of-the-art algorithms. Worse still, bias and

errors in object collection in the initial learning steps will

affect subsequent steps, and be accumulated into a signifi-

cant model bias.

Fortunately, the invention of the Kinect [1] has made

2The detail definition of the “casually captured scenes” is presented in

the first paragraph of Section 1.
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Figure 2. Flowchart of the proposed method. We use the 3D structure of the labeled object to match other objects in RGBD images (purple

arrows). We then use the 3D part correspondences (green arrows) to train a model for object detection in ordinary RGB images.

instance-based object detection plausible. The Kinect RGB-

D images provide explicit spatial structures of objects that

are robust to variations in texture, 2D scale, and viewpoint.

In many cases, the 3D structure of a single object is discrim-

inative enough for category detection. Thus, we propose

a different model learning strategy in which we can train
the model from RGBD images, and then apply the model
to category detection in ordinary RGB images (Fig. 1). At

first, we use structure-based 3D matching to collect object-

s from RGBD images, simultaneously obtaining part cor-

respondences, in spite of texture variations. Thus, a local

codebook of visual words can be learned for each part of

the object. The part correspondences in the 3D space are

also used to train the 2D structural knowledge in the cate-

gory model, as shown in Fig. 2. In this way, we use more

reliable 3D matching results to guide the learning of not-so-

discriminative image-based models, in order to overcome

the bias problem in the incremental model learning.

To achieve this learning strategy, we propose a novel

graphical model that utilizes an object’s edges as a new and

concise representation of its structures. Object edges have

a stronger relationship than textures to the overall objec-

t structure, particularly where large texture variations ex-

ist. In this graphical model, we design different attributes to

guide both the collection of 3D objects from RGBD images

and the training of category models.

Both the 3D object collection and the category-model-

based object detection are achieved by graph matching.

Conventional algorithms for learning graph matching [2, 3,

4] have focused on training the weights of different graph-

ical attributes, given a template graph (the category model)

and multiple target graphs. In contrast, we train the category

model by extending the method proposed by Leordeanu et
al. [2] to estimate the general prototype of model attributes

and eliminate the specificity in the labeled object.

The contributions of this paper can be summarized as

follows. Facing challenges in the semi-supervised learning

of visual models, we propose, for the first time, to use on-

ly one labeled object to start learning the structure knowl-

edge from casually captured scenes. We apply the nov-

el strategy—using objects collected from RGBD images to

train the RGB-image-oriented model, thus avoiding possi-

ble bias problems caused by texture variations and various

rigid transformations. A new type of graphical model based

on object edges is designed as a concise representation of

object structures in RGB and RGBD images.

2. Related Work
Object detection: Texture variations, object rotation-

s, and the use of object structures make the task of object

detection a great challenge. Bag-of-words models [5] have

exhibited a good performance in image retrieval and recog-

nition without using structural information, and the HOG

and silhouette templates[6, 7] have been widely used to rep-

resent global structures on the image plane. Later, Hough-

style methods [8, 9] were developed as a sophisticated su-

pervised way of encoding the spatial relationship between

object parts. [10, 11] proposed the direct use of a 3D model

to detect objects and estimate their poses in images. In addi-

tion, [12, 13] have used object appearances observed from

multiple viewpoints to learn the 3D structure in a super-

vised manner. Recently, RGBD images made object detec-

tion much easier [14, 15, 16], and even the structure discov-

ery [17] or segmentation of indoor environments [18, 19]

produced object-level results.

However, in this research, a single labeled object only

provides its specific 2D structure and appearance observed

from one viewpoint. In this case, the graph matching has the

ability to detect objects with various scales and rotations, an

approach that has been widely used [20, 21, 22]. Neverthe-

less, 2D structures of artifacts are not robust to viewpoint

changes. Thus, we use the graphical model based on the 3D

structure to collect training samples for model learning.

Model learning: We limit our discussion to unsuper-

vised and semi-supervised methods, and analyze them with

a view to the construction of a category model base.

The requirement of learning from a single labeling

makes this research related to one-shot learning [23]. How-

ever, we focus on the extraction of the exact structural mod-

el from casually captured scenes, rather than the observing

probability of patch textures.

Unsupervised object discovery (reviewed by [24]) was

a classical achievement of object-level knowledge mining.

Most methods used bag-of-words models [5] for category

representation, and others [25, 26, 27, 28] detected repeti-

tive objects with the similar appearance in the environment.
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Figure 3. Edge segmentation and illustration of variables.

[29] manually cropped and aligned target objects in images

for training, whereas [30, 25, 31] used unsupervised seg-

mentation to generate object candidates, which relied on the

foreground-background discrimination.

In contrast to the conventional learning of all categories

from a large sample pool, Li et al. [5] and Grauman et
al. [32] proposed semi-supervised learning and active learn-

ing to collect objects using an image search engine to sift the

raw images. This was found to be a more efficient ways of

constructing a category model base.

However, most of the above methods rely on objec-

t textures being highly similar, and are thus sensitive to

the texture variations of many artifacts. Furthermore, the

minimum labeling requirement for model base construction

worsens the problem of texture variations. Hence, we focus

on structural knowledge and use the depth information in

RGBD images to avoid large errors in sample collection.

3. Graphical model of object edge segments
and graph matching

Considering the need for robustness to viewpoint varia-

tion and roll rotations, we use a graphical model to encode

the local and pairwise attributes of the object structure, thus

achieving object detection via graph matching. In contrast

to conventional studies based on POI in images, or voxels

or surfaces [33, 34] in point clouds, we consider the edges

of an object as basic elements of their structures. Edges are

detected in RGB images using [35] and then discretized in-

to line segments as the graph nodes, as shown in Fig. 3. The

concise edge-based structure representation avoids the high

computational overhead of matching.

Using edge segments in the only labeled object, we con-

struct a complete undirected graph G as the initial catego-

ry model, in which parameters will be refined via learning.

Given a target scene, we generate a target graph, denoted by

G′. The local attributes of vertex i and pairwise attributes of

edge ij in G are denoted by fi and fij , respectively. We use

a matching matrix y by yii′ ∈ {0, 1} to define the matching

assignments between G and G′. yii′ = 1 if node i in G map-

s to node i′ in G′, otherwise yii′ = 0. We set
∑

i′ yii′ = 1
for all i. Thus, the general idea of graph matching is to

estimate the best matching assignments as:

ŷ=argmax
y
C, C=

[∑
ii′

ρii′yii′+
∑
ii′jj′

ρii′jj′yii′yjj′
]

(1)

where ρii′ and ρii′jj′ are the compatibility for the unary

assignment i → i′ and the pairwise assignment ij → i′j′,
respectively. These are determined by graph attributes:

ρii′ = Φ1(fi, fi′ ;w1), ρii′jj′ = Φ2(fij , fi′j′ ;w2) (2)

where w1 and w2 are parameter weightings for attributes.

In our study, some parts of the target objects in the ca-

sually captured scenes may be occluded, so some model n-

odes should not be matched. We use one-to-none matchings

to model this case, and thus add a new matching choice—

none—that is organized as a node in G′:

ρi,none=κE(ρii′), ρi,none,jj′=ρii′j,none=κE(ρii′jj′) (3)

where κ (= 1, here) controls the matching priority of none.

Besides, many-to-one matchings should be avoided, as

they introduce errors to the learning of pairwise attributes

between those multiple nodes. Considering that the com-

patibility in (2) is positive in our study, we modify unary

compatibility as ρii′jj′ = −1 if and only if i′ = j′.
By designing different local and pairwise attributes, the

graphical model can be used for both object collection from

RGBD images and object detection in ordinary images.

Edge segmentation: Edge segmentation is achieved

via a local growth strategy. Each pair of neighboring edge

points is initialized as a line segment, and then neighboring

segments are gradually merged into longer and straighter

lines. In particular, edge segments in RGBD images are

mapped to the 3D space to represent the 3D object structure.

Local non-smoothness exists on the extracted edges due

to low image quality and texture variations. Thus, we design

a penalty metric to guide the merging process for reliable

segmentation. Suppose neighboring segments u and v are

merged into a longer segment, as illustrated in Fig. 3. The

penalty of their supplementary angle θu,v is calculated as:

Penangle
u,v = θu,v(1− Uu,v) (4)

where, Uu,v = e−τ min{l∗u,l∗v} measures the unreliability of

the angle measurement, as angles between shorter segments

are more sensitive to local perturbations; τ (= 0.2, here)

controls the decrease speed, and l∗u and l∗v are the projected

lengths of segments u and v on the new segment.

As the orientation measurement of long segments suffers

less from local non-smoothness than that of short ones, the

length penalty is designed to avoid transferring the orienta-

tion unreliability from the short to the long segment when

merging them:

Penlength
u,v =

l∗u
l∗u + l∗v

log
l∗u

l∗u + l∗v
+

l∗v
l∗u + l∗v

log
l∗v

l∗u + l∗v
(5)

The total penalty is calculated as follows:

Penu,v = Penangle
u,v + ηPenlength

u,v (6)
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Figure 4. Model for object collection from RGBD images.

where η (= 0.5, here) is a weighting for the two penalty

metrics. Pairs with lower penalty scores are merged earlier.

The stopping criterion is that for each merge, the height of

the triangle consisting of old and new segments should not

be more than six pixel units (Fig. 3). Finally, lines longer

than 15 pixel units are selected as reliable segments.

3.1. Model for object collection from RGBD images

The proposed graphical model, as a paradigm, is adapted

for collecting objects in RGBD scenes and simultaneous-

ly extracting the correspondences of local patches between

objects for further learning. The notation for this model is

illustrated in Fig. 4.

Spatial length: The spatial length denoted by li is

taken as a local attribute. The length penalty for assignment

i→ i′ can be calculated as | log li′
li
|. Thus, the compatibility

of length attributes is calculated as:

P length
ii′ = e−| log li−log li′ |/β (7)

where β (= 2, here) controls the deformability level.

Patch features: Two local patches are collected at

the terminal points of each edge segment and normalized to

their right orientations. Their HOG features are also used

as local attributes (details follow in Section 4.1). The HOG

features extracted from two patches of node i in G are de-

noted by Ωi = {�A
i , �

B
i }. We calculate the compatibility

of patch features via a Gaussian distribution:

P patch
ii′ = G([dist(�A

i ,Ωi′), dist(�
B
i ,Ωi′)]

T (8a)

|μ = 0, (σpatch)2I)

dist(�i,Ωi′) = min
�i′∈Ωi′

‖�i −�i′‖2 (8b)

where G(·) denotes a Gaussian function, and (σpatch)2

(= 1, here) is the covariance. As we cannot obtain the ter-

minal correspondence from matching, we use the nearest

neighboring distance dist(·, ·) to Ωi′ of node i′ in G′.
Spatial angle: θij denotes the spatial angle between

nodes i and j in G, and it is a conventional pairwise at-

tribute. Its compatibility is assumed to follow a Gaussian

distribution:

P angle
ii′jj′ = G(θi′j′ |μ = θij , (σ

angle)2) (9)

where, (σangle)2 (= 1, here) denotes the variation in angle.

Centerline: Besides the spatial angle, the relative s-

patial translation between two nodes is also modeled as a

pairwise attribute. We propose the centerline—connecting
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Figure 5. Category model for ordinary RGB images
the centers of two node segments—to measure the transla-

tion. The centerline is represented in the local 3D coordi-

nate system of the segments, which is independent of the

global rotation of the object. Let oi and oj denote the unit

3D orientation of node segments i and j. We calculate three

orthogonal unit vectors to define this coordinate system as

Oij = [
oi+oj

‖oi+oj‖2
,

oi−oj

‖oi−oj‖2
,oi × oj].

Thus, the 3D translation Tij between nodes i and j
can be measured in the local coordinate system as dij =
OT

ijTij . Note that the orientation of node segment i may

be defined as either oi or −oi, so we instead use cij =

[min{|dij1 |, |dij2 |},max{|dij1 |, |dij2 |}, |dij3 |]T , as the center-

line coordinates. The compatibility of centerline coordi-

nates for the matching assignment ij → i′j′ is also assumed

to follow a Gaussian distribution:

P center
ii′jj′ = G(ci′j′ |μ = cij , (σ

cen
ij )2I) (10a)

(σcen
ij )2 = (α‖cij‖2)2 + (σnoise)2 (10b)

where the variation is caused by both the structural de-
formability and noise, which are controlled by α = 1 and

σnoise = 5.

Now, we summarize the model for 3D object detection

as follows. We define the local and pairwise attributes

as fi = [li,Ωi], fij = [θij , cij ], and the parameters as

w1 = [β, σpatch], w2 = [σangle, σnoise, α]. Thus, the over-

all compatibility for unary and pairwise assignments can be

calculated as:

ρii′ = Φ1(fi, fi′ ;w1) = P length
ii′ P patch

ii′

ρii′jj′ = Φ2(fij , fi′j′ ;w2) = P angle
ii′jj′ P

center
ii′jj′

(11)

As Φ1(·) and Φ2(·) are positive bounded functions, the

compatibility maximization can be transformed to the en-

ergy minimization problem and solved by TRW-S [36].

Finally, we define the matching rate Υ as the simple e-

valuation of the matching quality: Υ = Ndetect/(Ndetect+
Nnone), where Ndetect and Nnone are the number of nodes

matched to real segments in the target images and none,

respectively. An incorrect matching will produce a large

Nnone and thus a small Υ. Therefore, only those match-

ing results with Υ ≥ 0.7 are considered to be sufficiently

reliable for further model learning.

3.2. Category model for ordinary RGB images

As depth information can no longer be used, we design

new local and pairwise attributes for object detection in or-

dinary images. The notation is illustrated in Fig. 5.
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Figure 6. Local codebook extraction. (a) The bicycle is detected by 3D matching. Patches (red) are extracted at terminals of the detected

segments (blue). Yellow sides indicate patch orientations. (b) A detailed view. (c) Patch orientation normalization. (d) Patches collected

from the same part of objects are clustered to generate a sparse local codebook of patch features.

A local codebook consisting of a set of patch features—

Ωi = {�k
i }, (k = 1, 2, ...)—is learned for each node i in

G as the only local attribute (details follow in Section 4.1).

Different patch features in the codebook represent different

local texture styles, thus overcoming the texture variations.

Three types of pairwise attributes are defined as follows:

1) θimg
ij denotes the angle between nodes i and j in G on the

image plane; 2) we define [λA
ij , λ

B
ij ] =

1

T img
ij

[limg
i , limg

j ] as

the relative length, where limg
i denotes the segment length

of node i, and T img
ij denotes the length of the centerline

between nodes i and j in G; 3) [θAij , θ
B
ij ] denote the relative

angles between the centerline and line segments of nodes i
and j on the image plane, respectively.

As in [2], we absorb local compatibilities into the pair-

wise compatibilities, fij = {θimg
ij , λA

ij , λB
ij , θAij , θBij , Ωi, Ωj}:

ρii′ = 0

ρii′jj′ = Φ2(fij , fi′j′ ;w) =

e
−w1|θimg

ij −θimg

i′j′ |
2−∑

k∈{A,B}
{
w2|λk

ij−λk
i′j′ |2

+w3|θk
ij−θk

i′j′ |2+w4[dist
2(�k

i′ ,Ωi)+dist2(�k
j′ ,Ωj)]

}
(12)

The distance between the local codebook Ωi in G and the

patch features �i′ in G′ is also measured by dist(�i′ ,Ωi)
as defined in (8b). Similar to the model for RGBD images,

the maximization problem is also solved by TRW-S [36].

4. Model learning
We use matching assignments estimated by relatively re-

liable 3D matchings to guide the training of the category

model for ordinary RGB images, in order to avoid the bias

problem. With the part correspondences from 3D matching,

we extract a local codebook for each model node that covers

all possible texture styles of a local part. We then extend the

method proposed by Leordeanu et al. [2] for both conven-

tional parameter learning for graph matching and estimation

of the general prototype of model attributes.

4.1. Local codebooks extraction

For each node in the category model, we extract a set of

patches from its matched node segments in target scenes,

as shown in Fig. 6. These patches are extracted at the two

terminals of the edge segment, and then normalized to their

right orientations, thus removing rotation effects. Patches

are collected from a square, which should be rotated to the

orientation of the edge segment (Fig. 6(c)).

HOG features [6] are extracted from the patches with

5×5 cells, each of which covers half of its neighboring cells.

For gradient histogram extraction, the gradient in each cell

is encoded into 4 orientation bins (0◦–180◦). As the patch is

locally collected and suffers only slightly from illumination

changes, all the cells can be normalized in a single block.

Patch features corresponding to each node in the model

are then clustered via k-means clustering (k = 5). Cluster

centers are taken as a sparse set of visual words for this

node, thus composing the local codebook denoted by Ωi.

4.2. Model learning

The graph matching based on the category model defined

by (1) and (12) can be rewritten as

argmax
y
C = argmax

y
yTMy (13)

where M(ii′),(jj′) = ρii′jj′ . y is transformed from a match-

ing matrix to a vector. According to [37], elements of the

principal eigenvector x of M, e.g. xii′ , can be taken as the

confidence value of the corresponding assignment i→ i′.
Leordeanu et al. [2] proposed to increase the elements

corresponding to the correct assignments. At the same

time, elements for incorrect assignments will decrease,

as x is normalized. To reduce the large computation, a

approximate principal eigenvector is calculated as x =
Mn1√

(Mn1)T (Mn1)
. Thus, the partial derivatives of x are com-

puted as follows:

x
′
=

(Mn1)
′‖Mn1‖ − ((Mn1)T (Mn1)

′
)Mn1/‖Mn1‖

‖Mn1‖2
(14)

where (Mn1)
′

= M
′
(Mn−11) + M(Mn−11)

′
. We

choose n = 10, as in [2].

We extend [2] from the pure learning of matching param-

eters w to the learning of both the parameters and the model

attributes {w, f} by maximizing the following function:

F(w, f) =
N∑
i=1

x(i)(w, f)t(i) (15)

where i = 1, 2, ..., N indicates each target scene used for

training; t(i) denotes the predicted matching assignment.
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{w, f} is initialized using the labeled object, and the

maximization of F(w, f) can be achieved by modifying

{w, f} in an iterative framework. Intuitively, the match-

ing assignments can be directly predicted as t(i) = ŷ3D,(i),

where ŷ3D,(i) denote the 3D matching assignments in the

RGBD image. However, many categories have symmetric

3D structures, e.g. notebook PCs, and thus have several

potential assignment states. These matching states are e-

quivalent in terms of the 3D structure, but they may show

different attributes when the object is projected on the im-

age plane. The matching assignments predicted by the cat-

egory model (denoted by ŷimg,(i)) are not always the same

as ŷ3D,(i). Therefore, we use ŷimg,(i) to compute t(i), and

errors in ŷimg,(i) are detected and eliminated by ŷ3D,(i) to

avoid the bias problem. If nodes in the target image i are

matched by both ŷimg,(i) and ŷ3D,(i), the corresponding

assignments in ŷimg,(i) are probably correct. Thus, we get:

t(i) = diag{a(i)jj′}ŷimg,(i), a
(i)
jj′ =

∑
j

ŷ
3D,(i)
jj′ (16)

a
(i)
jj′ ∈ {0, 1} indicates whether node j′ has been matched

in the 3D matching, as many-to-one matching are avoided.

In iteration k of the EM framework, the matching assign-

ment t(i),k is estimated by (16), and then the model param-

eters and attributes are modified via gradient ascent:

wk+1
j = wk

j + ζ
N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂wj

fk+1
j = fk

j + ζ
N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂fj

(17)

5. Experiments
5.1. Data

Various RGBD datasets has been built in recent years.

However, according to our scenario of learning from ca-

sually captured RGBD images, target objects should not

be hand-cropped or aligned, and thus have different s-

cales, textures, and rotations. Each category must con-

tain enough samples for training. Therefore, we build a

new dataset containing approximately 900 objects in com-

plex environments. Five large categories—notebook PC,

drink box, basket, bucket, and bicycle—are used, contain-

ing 33, 36, 36, 67, and 92 scenes, respectively. Please

visit http://shiba.iis.u-tokyo.ac.jp/song/
?page id=343 to download this dataset.

5.2. Results and evaluation

Most of image-based category knowledge mining al-

gorithms are hampered by texture variations and roll ro-

tations. In this case, we compare the proposed method

with image-based semi-supervised and supervised learn-

ing of graph matching, and five competing methods are

Figure 7. Biased models. (Top left) Model parameters (w) of the

notebook PC category projected onto a 2D space. Different points

indicate w learned from a different initial labeling. Our method

learns more convergent values of w, whereas the outliers provid-

ed by Semi-supervised+TRW-S indicate the biased models. (The

others) Distribution of the detection and error rates of the learned

models. Semi-supervised+TRW-S provides more biased models.

used. Pure graph matching based on TRW-S [36] with-

out learning is denoted by Matching+TRW-S. Two meth-

ods based on [2] learn graph matching in an unsupervised

manner, using spectral techniques [37] and the TRW-S [36]

to solve graph matching, respectively. However, just like

our method, the template graph is also required in [2],

so we refer to these as semi-supervised methods: Semi-
supervised+Spectral and Semi-supervised+TRW-S. The re-

maining two methods achieve supervised learning of the

proposed category model. Supervised uses the ground truth,

instead of 3D matching assignments, to guide the model

learning, whereas Supervised+NIO uses nonlinear inverse

optimization (NIO) for model learning [4, 38].

Matching+TRW-S does not learn the matching weight-

s defined in (12), so we simply set w = 1. Super-
vised transforms semi-supervised learning into supervised

learning by redefining ajj′ in (16) as 1 or 0 depending

on whether node j′ in the scene is a true object part

according to the ground truth. This kind of supervised

learning is also formulated in [2]. Finally, in Super-
vised+NIO, the NIO [38] is used to estimate the model

parameters and attributes that minimize the compatibili-

ty gap between the true assignments and predicted assign-

ments, as argminfij ,w
∑N

k=1

{
maxy C(fij ,w,y|G′(k)) −

C(fij ,w,y
(k)
truth|G

′(k))
}

. C(·) is the matching compatibility

in (1), and G
′(k) and y

(k)
truth are the graph and the matching

ground truth of scene k.

The object detection performance is evaluated by the

cross validation. We use each RGBD image to start a single

model learning process as follows. We label edge segments

on the target object in this image, and randomly select 2/3
and 1/3 of the remaining RGBD images in this category as

a training set and a testing set, respectively. Thus, we learn

a number of models for each category, and use each of them

to test object detection.
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Detection rate / Error rate (%) Notebook PC Drink box Basket Bucket Bicycle

Matching+TRW-S[36] 56.17 / 42.82 84.84 / 14.93 74.12 / 24.67 73.43 / 22.76 67.62 / 18.31
Semi-supervised+Spectral[2, 37] 41.89 / 58.16 78.01 / 21.99 61.69 / 39.11 74.60 / 30.17 76.28 / 23.72

Semi-supervised+TRW-S[2, 36] 43.57 / 54.43 77.95 / 20.89 62.87 / 30.83 69.47 / 22.41 61.37 / 20.40

Ours 74.24 / 25.98 98.03 / 1.97 88.04 / 13.22 87.99 / 17.77 81.56 / 18.44

Supervised[2] 73.13 / 27.08 98.61 / 1.39 87.21 / 14.15 87.69 / 18.04 80.98 / 19.02

Supervised+NIO[4, 38] 78.11 / 22.13 95.54 / 4.46 92.05 / 9.42 79.08 / 25.55 82.68 / 17.31
3D matching (in RGBD images) 93.68 / 6.49 90.57 / 9.43 90.35 / 11.00 96.12 / 10.57 93.87 / 4.58

Table 1. Detection rate and error rate of object detection. Our method learns from a minimum labeling, but achieves similar performances

to these supervised methods that require to manually label all the training samples.

We use the detection rate (DR = NT

min{Nmodel,Ntarget} )

and error rate (ER = NB

Nmodel ) to evaluate each single de-

tection of objects. NT and NB denote the number of nodes

in the model that are matched to the target object and the

background; Nmodel and N target indicate the total num-

ber of segments in the model and the target object. Note

that NT + NB ≤ Nmodel, as some model nodes may be

matched to none.

Thus, the average values of DR and ER indicate the

overall detection performance for each category. The av-

eraging is applied across all detections produced by all the

learned models in the cross validation.

Results: Fig. 8 illustrates object detection using the

learned category models, and Table 1 gives the quantita-

tive results. Table 1 also proves that the performance of

3D matching from RGBD images is superior enough to

guide the learning of category models. Conventional semi-

supervised methods suffer greatly from the bias problem, as

shown in Fig. 7. For some categories, our method exhibits

a better performance than the Supervised method. This is

because the manual labeling of the ground truth only deter-

mines a set of correct object segments for detection in tar-

get scenes for the Supervised method, whereas our method

uses 3D matching to provide more exact matching assign-

ments that fit the target model, in spite of some matching

errors. Moreover, the learning algorithm [2] is not sensitive

to outliers in training samples for the regression of the pro-

totype model, so our method performs even better than the

3D matching for the drink box category.

6. Discussion and conclusions

In this paper, we proposed a method for category model

learning from a single labeled object and a number of ca-

sually captured RGBD images, and the learned model was

expected to be applied to object detection in ordinary RGB

images. The minimum labeling greatly saves human labor

in model base construction. The depth information in RGB-

D images helps the semi-supervised learning framework to

overcome the bias problem. Our experiments have demon-

strated the effectiveness of the proposed.

Using graph matching, the model cannot detect multiple

objects for each time. As artifacts for daily use usually have

regular shapes and various textures, the proposed category

model mainly focuses on structural information, namely ob-

ject edge segments. This design makes the model robust to

texture variations, but at the same time unsuitable for large-

ly occluded objects and those with highly deformable or ir-

regular shapes, such as natural scenes and animals.

ACKNOWLEDGMENT
This work was supported by Microsoft Research, a

Grant-in-Aid for Young Scientists (23700192) of Japans

Ministry of Education, Culture, Sports, Science, and Tech-

nology (MEST), and Grant of Japans Ministry of Land, In-

frastructure, Transport and Tourism (MLIT).

References
[1] Introducing Kinect for Xbox 360, http://www.xbox.

com/en-US/Kinect/,2011. 1

[2] M. Leordeanu and M. Hebert, “Unsupervised learning for

graph matching”, In CVPR, 2009. 2, 5, 6, 7

[3] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J.

Smola, “Learning graph matching”, In PAMI, 2009. 2

[4] L. Torresani, V. Kolmogorov, and C. Rother, “Feature corre-

spondence via graph matching: Models and global optimiza-

tion”, In ECCV, 2008. 2, 6, 7

[5] L.-J. Li, G. Wang, and F.-F. Li, “Optimol: automatic online

picture collection via incremental model learning”, In IJCV,

vol. 88, no. 2, pp. 147–154, 2010. 2, 3

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients

for human detection”, In CVPR, 2005. 2, 5

[7] M. Leordeanu, M. Hebert, and R. Sukthankar, “Beyond local

appearance: category recognition from pairwise interactions

of simple features”, In CVPR, 2007. 2

[8] N. Razavi, J. Gall, P. Kohli, and L. v. Gool, “Latent hough

transform for object detection”, In ECCV, 2012. 2

[9] K. Liu, Q. Wang, W. Driever, and O. Ronneberger, “2d/3d

rotation-invariant detection using equivariant filters and ker-

nelweighted mapping”, In CVPR, 2012. 2

[10] K. Lai and D. Fox, “Object recognition in 3d point clouds

using web data and domain adaptation”, In IJRR, vol. 29,

no. 8, pp. 1019–1037, 2010. 2

199199199



Figure 8. Object detection results.

[11] E. Hsiao, A. Collet, and M. Hebert, “Making specific fea-

tures less discriminative to improve point-based 3d object

recognition”, In CVPR, 2010. 2

[12] W. Hu, “Learning 3d object templates by hierarchical quanti-

zation of geometry and appearance spaces”, In CVPR, 2012.

2

[13] B. Pepik, P. Gehler, M. Stark, and B. Schiele, “3d2pm—3d

deformable part models”, In ECCV, 2012. 2

[14] A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze, “A

global hypotheses verification method for 3d object recogni-

tion”, In ECCV, 2012. 2

[15] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learn-

ing for object recognition combining rgb and depth informa-

tion”, In ICRA, 2011. 2

[16] W. Susanto, M. Rohrbach, and B. Schiele, “3d object detec-

tion with multiple kinects”, In ECCV, 2012. 2

[17] A. Collet, S. S. Srinivasay, and M. Hebert, “Structure dis-

covery in multi-modal data: a region-based approach”, In

ICRA, 2011. 2

[18] X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features

and algorithms”, In CVPR, 2012. 2

[19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor

segmentation and support inference from rgbd images”, In
ECCV, 2012. 2

[20] O. Duchenne, A. Joulin, and J. Ponce, “A graph-matching

kernel for object categorization”, In ICCV, 2011. 2

[21] K. I. Kim, J. Tompkin, M. Theobald, J. Kautz, and

C. Theobalt, “Match graph construction for large image

databases”, In ECCV, 2012. 2

[22] M. Cho and K. M. Lee, “Progressive graph matching: Mak-

ing a move of graphs via probabilistic voting”, In CVPR,

2012. 2

[23] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of

object categories”, In PAMI, vol. 28, no. 4, pp. 594–611,

2006. 2

[24] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Bun-

tine, “Unsupervised object discovery: A comparison”, In

IJCV, vol. 88, no. 2, pp. 284–302, 2010. 2

[25] H. Kang, M. Hebert, and T. Kanade, “Discovering object

instances from scenes of daily living”, In ICCV, 2011. 2, 3

[26] C. Li, D. Parikh, and T. Chen, “Automatic discovery of

groups of objects for scene understanding”, In CVPR, 2012.

2

[27] A. Faktor and M. Irani, “”clustering by composition” -

unsupervised discovery of image categories”, In ECCV,

2012. 2

[28] J.-Y. Zhu, J. Wu, Y. Wei, E. Chang, and Z. Tu, “Unsu-

pervised object class discovery via saliency-guided multiple

class learning”, In CVPR, 2012. 2

[29] Y. J. Lee and K. Grauman, “Shape discovery from unlabeled

image collections”, In CVPR, 2009. 3

[30] Y. J. Lee and K. Grauman, “Learning the easy things first:

Self-paced visual category discovery”, In CVPR, 2011. 3

[31] Z.Liao, A.Farhadi, Y.Wang, I.Endres, and D.Forsyth,

“Building a dictionary of image fragments”, In CVPR, 2012.

3

[32] S. Vijayanarasimhan and K. Grauman, “Large-scale live ac-

tive learning: Training object detectors with crawled data and

crowds”, In CVPR, 2011. 3

[33] C. Olsson and Y. Boykov, “Curvature-based regularization

for surface approximation”, In CVPR, 2012. 3

[34] H. Liu and S. Yan, “Efficient structure detection via random

consensus graph”, In CVPR, 2012. 3

[35] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour

detection and hierarchical image segmentation”, In PAMI,

vol. 33, no. 5, pp. 898–916, 2011. 3

[36] V. Kolmogorov, “Convergent tree-reweighted message pass-

ing for energy minimization”, In IEEE PAMI, vol. 28, no.

10, pp. 1568–1583, 2006. 4, 5, 6, 7

[37] M. Leordeanu and M. Hebert, “A spectral technique for cor-

respondence problems using pairwise constraints”, In ICCV,

2005. 5, 6, 7

[38] Z. Popović C. K. Liu, A. Hertzmann, “Learning physics-

based motion style with nonlinear inverse optimization”, In
SIGGRAPH, 2005. 6, 7

200200200


