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Abstract
Analyzing brain networks from neuroimages is becom-

ing a promising approach in identifying novel connectivity-
based biomarkers for the Alzheimer’s disease (AD). In this
regard, brain “effective connectivity” analysis, which stud-
ies the causal relationship among brain regions, is highly
challenging and of many research opportunities. Most of
the existing works in this field use generative methods. De-
spite their success in data representation and other impor-
tant merits, generative methods are not necessarily discrim-
inative, which may cause the ignorance of subtle but criti-
cal disease-induced changes. In this paper, we propose a
learning-based approach that integrates the benefits of gen-
erative and discriminative methods to recover effective con-
nectivity. In particular, we employ Fisher kernel to bridge
the generative models of sparse Bayesian networks (SBN)
and the discriminative classifiers of SVMs, and convert the
SBN parameter learning to Fisher kernel learning via min-
imizing a generalization error bound of SVMs. Our method
is able to simultaneously boost the discriminative power of
both the generative SBN models and the SBN-induced SVM
classifiers via Fisher kernel. The proposed method is tested
on analyzing brain effective connectivity for AD from ADNI
data, and demonstrates significant improvements over the
state-of-the-art work.

1. Introduction
As the most common form of dementia, Alzheimer’s dis-

ease (AD) is a fatal and progressive neurodegenerative dis-

ease that has caused serious socioeconomic problems in de-

veloped countries. Early diagnosis of AD may benefit the

patients with disease-interrupted therapies when the demen-

tia is still mild. Neuroimaging techniques are important in

AD study because they may provide more sensitive and con-

sistent measures than traditional cognitive assessment.

Currently, neuroimage analysis has evolved from study-

ing local morphometry to complex relationships and inter-

actions across brain regions. This is because the brain is, by

Figure 1. Left: ROI partitions on MRI. Right: Some identified di-
rectional relationships discriminative for AD. (Please refer to Sec-
tion 4.3. The figure is best viewed on monitor.)

nature, a complex network of many interconnected regions.

A brain network is usually modeled by a graph with each

node corresponding to a brain region and each edge corre-

sponding to the connectivity between regions. The connec-

tivity could be statistical dependencies (functional connec-

tivity) or causal relationships (effective connectivity) [14],

represented by undirected or directed graph, respectively.
This paper focuses on brain effective connectivity analy-
sis, an endeavor that has gained research interest due to its

ability to analyze the directional effect of one brain region

over another. Effective connectivity analysis has been ap-

plied to fMRI [5], PET [1], and gray matter morphology in

structural MRI [6], and has exhibited promising potential in

identifying novel connectivity-based biomarkers for AD.

With sparseness techniques, effective connectivity anal-

ysis has been able to handle medium to large scale brain net-

works. A remarkable recent work is from Huang, et al. [1],

where a sparse Gaussian Bayesian network (SGBN) is re-

covered frommore than 40 brain regions in fluorodeoxyglu-

cose PET (FDG-PET) images for AD analysis. That ap-

proach learns the Bayesian network (BN) structure and pa-

rameters simultaneously in one step, which demonstrates a

more accurate network recovery than the conventional two-

stage approaches in sparse BN learning (such as LIMB-

DAG [13], MMHC [16], TC and TC-bw [9], etc.). Despite

the effectiveness in network representation, the above meth-

ods (including [1]) are all generative methods. By their
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nature, generative methods focus on representing an indi-

vidual group, thus may not be discriminative. When ana-

lyzing brain networks, they are prone to over-emphasizing

major structures within an individual group, and neglecting

the subtle disease-induced structural changes across differ-

ent groups. Therefore, generative methods are usually infe-

rior in prediction compared with the discriminative methods

that focus on the class boundary. However, discriminative

methods are not amenable for interpretative analysis that is

critical in exploratory research aimed at both understanding

and diagnosing the disease. Therefore, we aim to integrate
the merits of generative and discriminative methods to learn
BNs that are not only representative but also discriminative.
Recent progress in [10, 11] for learning discriminative BNs

follows the conventional two-stage approach and works for

discrete variables. They may not be suitable for brain net-

work analysis where the brain regional measurements are

usually continuous variables.

To achieve our goal, we improve the model of the SGBN

in [1], and further boost its discriminative power via a kernel

learning approach that links the generative SGBN with the

SVM classifiers. This paper includes several contributions:

1) We propose an augmented SGBN model (A-SGBN) by

revisiting the method in [1]. A-SGBN fits the underlying

distribution more precisely, therefore bringing better predic-

tion. 2) By inducing Fisher kernel on our A-SGBN models,

we provide a way to obtain subject-specific SGBN-induced

feature vectors that can be used by discriminative classifiers

such as SVMs. Through this, we integrate the generative

and discriminative models. 3) More significantly, we con-

vert the learning of SGBN parameters to the learning of dis-

criminative Fisher kernels, which makes the optimization

simple. Specifically, we jointly learn the SGBN parameters

and the separating hyperplane of SVMs over Fisher kernel

by minimizing a generalization error bound of SVMs. 4)

We apply our method on ADNI 1 data to analyze brain ef-

fective connectivity for AD from both T1-weighted MRI

and FDG-PET images. Our method significantly improves

the discriminative power of the generative SGBN and the

discriminative SVM classifier simultaneously. 5) By Fisher

kernel, we obtain a new kind of features that reflect the

changing rate of connection strength, which have not been

investigated in conventional approaches.

2. Background and Notation
2.1. Gaussian Bayesian Network

Gaussian Bayesian network (GBN) is the fundamental

tool that we use to learn brain effective connectivity in this

paper. It is therefore briefly described here, together with

the definition of symbols used throughout the paper.

Let x = [x1, x2, · · · , xm]� be a sample of m features

1http://www.adni-info.org/

(variables). Let D ∈ R
n×m be a data matrix of n samples.

The i-th row of D represents a sample xi. The j-th col-
umn ofD, denoted as fj , represents a realization of the j-th
random variable xj on the n samples.

A Bayesian network (BN) G is a directed acyclic graph

(DAG) that expresses the factorization property of a joint

distribution p(x). With each variable corresponding to a

node in G, the joint distribution is factorized as p(x) =∏
i=1,··· ,m

p(xi|Pa(xi)), where Pa(xi) denotes the parent

nodes of xi. A GBN assumes that p(xi|Pa(xi)) follows
a Gaussian distribution. Each node xi is regressed over its
parent nodes Pa(xi): xi = θ�i Pa(xi) + εi, where the vec-
tor θi is the regression coefficients, and εi ∼ N (0, σ2i ).
The matrixΘ = [θ1, · · · ,θm] are called the parameters of
a GBN. In this paper, following [1], a m × m matrix G is

used to represent network structure, in which, if there is a

direct edge from xi to xj ,Gij = 1; otherwise,Gij = 0. In
addition, another p × p matrix P is also kept to record all

the directed paths in the structure. If there is a directed path
from xi to xj , Pij = 1; otherwise Pij = 0.

2.2. Sparse Gaussian Bayesian Network

The state-of-the-art work for brain causal relationship

analysis in [1] underpins our study in this paper. In [1], it

is proposed to learn a sparse GBN (SGBN) for brain effec-

tive connectivity analysis utilizing FDG-PET images. Com-

pared with the conventional BN methods that learn the net-

work structure and parameters in two steps, SGBN simul-

taneously learns the structure and parameters by enforcing

sparseness constraint on a GBN. This one-step learning ap-

proach outperforms the conventional two-step methods with

higher accuracies for the network edge recovery. In partic-

ular, it is proposed in [1] to solve a constrained least-square

fitting problem:

min
θ

m∑
i=1

‖fi − θ�i Pa(xi)‖22 + λ1‖θi‖1 (1)

s.t. Θji × Pij = 0, ∀i, j = 1, · · · ,m, i �= j.

Here fi and θi are defined as above. The i-th row of the

matrix Pa(xi) correspond to the parent nodes of xi, which
are initially set as all the nodes other than xi, and further
filtered implicitly by the sparseness constraint over their re-

gression coefficients θi. In BN learning, a difficult problem

is how to enforce the DAG property to ensure the validity

of the resulting BN: there should be no directed cycles in

the graph. In [1] it is proved that a sufficient and necessary

condition for being a DAG is Θji × Pij = 0 for all i and
j. ThePij is computed by a Breadth-first search onG with

xi being the root node. For more details, please read [1].
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3. Proposed Method
In this paper, we study brain networks from two sources.

The first source is gray matter morphology from T1-

weighted MRI. It has been reported that the covariation of

gray matter morphology might be related to the anatomical

connectivity [15]. Studying brain morphology as a network

can take the advantage of statistical tools from graph the-

ory. The second source is FDG-PET images. The retention

of tracer in FDG-PET is analogous to the glucose uptake,

thus reflecting the tissue metabolic activity.

Building brain networks includes identifying network

nodes and reconstructing the connectivity. This paper fo-

cuses on the latter. Hence, after briefing how network nodes

are defined in our method in Section 3.1, we concentrate on

how to infer the effective connectivity that is both represen-

tative (Section 3.2) and discriminative (Section 3.3).

3.1. Network Nodes Determination

MRI. This study involves 120 subjects including 50 MCI
(mild cognitive impairment, a prodromal AD) patients and

70 NC (normal controls) from the publicly accessible data

of ADNI. The T1-weighted MR images are segmented into

gray matter (GM), white matter (WM), and cerebrospinal

fluid (CSF) using FAST in the FSL2 package after inten-

sity correction, skull stripping [17], and cerebellum re-

moval. These tissue-segmented images are spatially nor-

malized into a template space by HAMMER 3, and par-

titioned into 100 Region of Interest (ROI) via an ROI at-

las [3]. We use the GM volumes of each ROI as network

nodes, and select 40 ROIs that have the highest correlation

with class labels into our study.

PET. This study involves 103 subjects including 51 AD

patients and 52 NC whose FDG-PET and MR images are

downloaded from ADNI. We first co-register the MR im-

ages into a template space and partition them into ROIs as

mentioned above. Then the PET images are aligned with

their MR images from the same subject by a rigid trans-

formation. The average tracer uptakes within each ROI are

used as network nodes. Similarly, we select 40 ROIs that

are most discriminative with regards to AD.

3.2. SGBN Model Augmentation

A simple way to use generative BNs for prediction is to

train each class a BN individually and classify a new sample

xi by assigning it to the class with a higher likelihood. The
more precisely the BN model reflects the underlying distri-

bution, the more accurate the prediction is. To compare the

likelihood for each class in the same space, the data should

not be normalized separately for each class as in [1] where

a single class is the focus.

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
3http://www.med.unc.edu/bric/ideagroup/tools/projects-1/brain/pages-

1/hammer

To handle this, we introduce a bias term x0 in the regres-
sion, i.e., xi = θ�i [Pa(xi), x0] + εi, and demonstrate it not
a trivial improvement over the case when directly applying

the SGBN in [1]. Accordingly, in the graph G, a bias node
is added. It has no parent but is the parent of all the other

nodes. If originally G is a DAG, adding x0 in this way does
not cause the violation of DAG. To be distinguished from

SGBN in [1], we call ours A-SGBN. Intuitively, there could

be two reasons to include such a bias node into a brain net-

work: i) there possibly exist some latent variables related

to the disease, which are not included in the current study,

and their influences may be absorbed by the bias node; or ii)

the state of a node may depend not only on the interactions

with other nodes, but also on the prior of itself. Our ex-

periment in Section 4 demonstrates that A-SGBN is a more

precise model than SGBN (smaller fitting errors for both

training and test data) for our case, and effectively improves

the classification. In addition to the advantages of A-SGBN

over SGBN, in the following we show that actively learning

the discrimination can further boost the classification per-

formance.

3.3. Discriminative SBNLearning via FisherKernel

Both SGBN and A-SGBN learn the brain networks for

AD or NC separately. This may ignore some subtle but crit-

ical network differences that distinguish the two classes. We

argue that the parameters of the generative model should be

learned from the two classes jointly to keep the essential

discrimination. This can be achieved by maximizing the

posterior probability p(y|x), where y is the class label of
x. Although conceptually direct, this approach often leads
to complicated optimization problems. This paper takes an-

other approach. Specifically, we employ Fisher kernel to ex-
tract feature vectors from the SGBN models of two classes,
and then convert the model parameter learning to Fisher
kernel learning with SVMs. We find that the SGBN-induced
Fisher vector (see below) is a linear function of parameters

Θ, which well simplifies the optimization.

3.3.1 Induction of Fisher vectors from SGBN

Below we introduce how to use Fisher kernel on SGBNs to

obtain feature vectors used for kernel learning.

Fisher kernel provides a way to compare samples in-

duced by a generative model. It maps a sample to a feature

vector in the gradient space of the model parameters. The

intuition is that similar objects induce similar log-likelihood

gradients of the model parameters. Fisher kernel is com-

puted as K(x,x′) = g�xU
−1gx′ , where the Fisher vector

gx = ∇θ log(p(x|θ)) describes the changing direction of
parameters to better fit the model. The Fisher information

metricU weights the similarity measure, but is often set as

an identity matrix in practice [2].

Fisher kernel has recently witnessed successful applica-
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tions in image categorization [12, 4] for inducing feature

vectors from Gaussian Mixture Model (GMM) of a visual

vocabulary. Despite its success, to the best of our knowl-

edge, Fisher kernel has not been applied to BN for brain

connectivity analysis. More importantly, in the applications

above, there is no discriminative learning for Fisher kernel

as in this paper. The advantage of discriminative Fisher ker-

nel has also been confirmed by a very recent study that uses

a different learning criterion within a different context [8].

Following [1], we only consider Θ as parameters and

predefine σ. Let L(x|Θ) = log(p(x|Θ)) denote the

log-likelihood. Our Fisher vector for each sample x is

ΦΘ(x) = [∇Θ1L(x|Θ1)
�, ∇Θ2L(x|Θ2)

�]�, where Θ1

and Θ2 are the parameters of the SGBNs for the two

classes (y = 1, 2), respectively. Recall that, using a BN,
the probability p(x|Θ) can be factorized as p(x|Θ) =∏
i=1,··· ,m

p(xi|Pa(xi),θi). Therefore, it holds that

L(x|Θ) =
m∑
i=1

log p(xi|Pa(xi),θi) (2)

=
m∑
i=1

−(xi − θ�i Pa(xi))
2

2σ2i
− log(2π√

σi).

Taking partial derivative over θi, we have

∂L(x|Θ)
∂θi

= −Pa(xi)Pa(xi)
�

σ2i
θi − xiPa(xi)

σ2i
(3)

� S(xi)θi + s0(xi),

where S(xi) is a matrix and s0(xi) is a vector. As shown,
ΦΘ(x) is a linear function of Θ. This simple form of

ΦΘ(x) significantly facilitates our further kernel learning.

3.3.2 Discriminative Fisher kernel learning via SVM

As each Fisher vector is a function of the SGBN parame-

ters, discriminatively learning these parameters can thus be

converted to learning discriminative Fisher kernels. We re-

quire that the learned SGBN models possess the following

properties. Firstly, the Fisher vectors induced by the learned

SGBN model should be well separated between classes.

Secondly, the learned SGBN models should maintain rea-

sonable capacity of representation. Thirdly, the learned

SGBN models should not violate DAG.

We use the following strategies to achieve our goal.

Firstly, to obtain a discriminative Fisher kernel, we jointly

learn the parameters of SGBN and the separating hyper-

plane of SVMs with Fisher kernel. Radius-margin bound,

the upper bound of the Leave-One-Out error, is minimized

to keep good generalization of the SVMs. Secondly, to

maintain reasonable representation, we explicitly control

the fitting errors of the learned model during optimization.

Thirdly, we enforce the DAG constraint in [1] to ensure the

validity of the graph. For convenience, we call our method

DL-A-SGBN. More details are given below.

In order to use radius-margin bound, L2-SVM with soft

margin has to be employed, which optimizes

min
w,ξ

1

2
‖w‖22 + Cξ�ξ (4)

s.t. yi(w
�Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, ∀i

Following the convention in SVMs, xi is the i-th sample
with class label yi, w the normal of separating plane, b the
bias term, ξ the slack variables and C the regularization pa-

rameter. L2-SVM can be rewritten as SVM with hard mar-

gin by slightly modifying the kernelK := K+ I/C, where
I is identity matrix. For convenience, in the following, we
redefine Φ(xi) := [Φ

�(xi) e�i /
√
C]�. The vector ei has

the value of 1 at the i-th element, and 0 elsewhere.
Incorporating radius information leads to solving

min
w

1

2
R2‖w‖22 (5)

s.t. yi(w
�Φ(xi) + b) ≥ 1, ∀i,

where R2 denotes the radius of Minimal Enclosing Ball

(MEB). It has been observed that when the sample size is

small, the estimation ofR2 may become noisy and unstable.

Therefore, it has been proposed to use trace-based scatter

matrix instead for such cases [7]. We optimize

min
θ,w

1

2
tr(ST )‖w‖22 (6)

s.t. yi(w
�ΦΘ(xi) + b) ≥ 1, ∀i

h(D1,Θ1) ≤ T1, h(D2,Θ2) ≤ T2,

Θ1 ∈ DAG, Θ2 ∈ DAG.

Here tr(ST ) is the trace of the total scatter matrix ST ,
where ST =

∑n
i=1(Φ(xi) − m)(Φ(xi) − m)�, and m

is the mean of total n samples in the kernel-induced space.
It can be shown that tr(ST ) = tr(K)− 1�K1/n, where 1
denotes a vector whose elements are all 1, andK the kernel

matrix. Fisher vector ΦΘ(xi) is obtained as mentioned in
Section 3.3.1. The function h(·) measures the squared fit-
ting errors of the corresponding SGBNs for the dataD1 and

D2 from the two classes. It is defined as

h(D,Θ) =
m∑
i=1

‖fi − θ�i Pa(xi)‖22,

where all the symbols are defined as in Eqn. (1). The two

user-defined parameters T1 and T2 explicitly control the de-
gree of fitting during the learning process (Section 4.2). The

DAG constraints here are the same to that used in Eqn.( 1).

Recall that the DAG constraint is Θji × Pij = 0, where
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Pij = {0, 1}, reflecting the structure of Θ. It is observed
that enforcing DAG in this way has somewhat enforced

the graph sparsity. Therefore, to avoid complicating our

optimization we do not impose additional sparseness con-

straints on Θ here. Our A-SGBN could serve as a good

initial solution for this problem.

One possible approach for solving Eqn. (6) is to alter-

nately optimize the separating hyperplanew and the param-

eterΘ. That is,

min
θ

J(Θ) (7)

s.t. h(D1,Θ1) ≤ T1, h(D2,Θ2) ≤ T2,

Θ1 ∈ DAG, Θ2 ∈ DAG.

where

J(Θ) = min
w

1

2
tr(ST )‖w‖22 (8)

s.t. yi(w
�ΦΘ(xi) + b) ≥ 1, ∀i.

Note that for a given Θ, the term tr(ST ) is constant to
Eqn. (8). Due to the strong duality in SVM optimization,

we solve the term ‖w‖22 by

J0(Θ) = max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

yiyjαiαjKΘ(xi,xj)

(9)

s.t.
n∑
i=1

αiyi = 0, αi ≥ 0 ∀i,

where αi is the Lagrangian multiplier. Many quadratic pro-
gramming packages could be used to solve Eqn. (7). We use

fmincon-SQP (sequential quadratic programming) in Mat-

lab. Our learning process is summarized in Table 1.

Table 1. Discriminatively Learning Θ

Input:Θ(0) estimated by A-SGBN

Output:Θ� learned by Eqn. (7)
1. LetΘ(t−1) = Θ(0)

2. Compute Φ
(t−1)
Θ andK

(t−1)
Θ by Eqn. (3)

3. Compute tr(ST )
(t−1) = tr(K(t−1)

Θ )− 1�K(t−1)
Θ 1/n

4. Solve J0(Θ
(t−1)) and α� by Eqn. (9)

5. J(Θ(t−1)) = J0(Θ
(t−1))× tr(ST )(t−1)

6. Compute ∇Θ(t−1)J by Eqn. (10)

7. For a given α�, minimize Eqn. (7) using J(Θ(t−1)) and
∇Θ(t−1)J ; Obtain the optimalΘ(t)

8. LetΘ(t−1) = Θ(t)

9. Repeat Step 2-8 until convergence, letΘ� = Θ(t)

3.3.3 Discussion

Gradient of Eqn. (7). Gradient information is required

by many optimization algorithms (including fmincon-SQP)

to speed up the line search. In our case, the gradient of the

objective function in Eqn. (7) can be simply calculated as

∇ΘJ =− 1

2
tr(ST )

∑
ij

α�iα
�
jyiyj∇ΘKΘ(xi,xj) (10)

+ J0(Θ)

(
I+

1

n
11�

)
∇ΘKΘ(xi,xj),

where α� maximizes Eqn. (9). The symbols I and 1 are

defined as before. The terms tr(ST ) and J0(Θ) have been
computed when evaluating the objective function J(Θ) in
Eqn.( 7), thus introducing no additional computational cost.

∇ΘKΘ(xi,xj) is just a linear function ofΘ:

∂KΘ(xi,xj)

∂θl
=[S(xil)

�S(xjl) + S(xjl)
�S(xil)]θl

(11)

+ (S(xjl)
�s0(xil) + S(xil)

�s0(xjl)),

where xil denotes the l-th feature of the i-th sample, and S
and s0 are defined in Eqn. (3).

Variable selection. Learning the whole set of SGBN

parameters may encounter the “curse of dimensionality”

when the training samples are insufficient. For example,

we have less than 100 training samples, but 3600 parame-
ters (from two classes) to learn. This may cause overfitting

and make the estimation unstable. To handle this issue, we

hypothesize that, learning only a selected subset of param-

eters may mitigate the overfitting and improve the discrim-

ination. For this purpose, Θ is partitioned into two parts:

Θ = {Θsel,Θnosel}. We keep using the wholeΘ for com-

putingKΘ, but optimize Eqn. (7) only overΘsel. There are
many options to determine Θsel. We initially compute the
Pearson correlation between each component ofΦΘ and the

class labels on the training data, and select the top θi with
the highest correlations. To keep our problem simple, only

the parameters associated with edges present in the graph

are optimized. In this way, the optimization may only elim-

inate but never add edges in the graph, which avoids the

violation of DAG, as well as maintaining the sparsity of the

initial A-SGBN. It is remarkable that even this simple selec-

tion process has been able to greatly improve the discrimi-

nation experimentally.

Extension. Although focusing on each node correspond-

ing to a scalar ROI feature, our method is readily extendable

to handle multiple features (feature vector) of an ROI. In

this case, the conditional distribution for node i becomes
p(xi|PA(xi)) = N (xi|

∑
xj∈PA(xi)

Mijxj ,Σi), where
PA and M are both matrices. Our learning remains the

same. In our future work, we will apply this extension to

analyze fMRI where each ROI is associated with a vector

of temporal signal.
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4. Experiment

We evaluate our proposed A-SGBN and DL-A-SGBN

against the baseline SGBN (B-SGBN) from [1] (without

normalizing the data) in three aspects: i) model fitting, ii)

discrimination, and iii) connectivity. Three data sets are

used in our experiment: the MRI and FDG-PET data men-

tioned in Section 3.1, and another MRI-II data that uses the

MR images from the same subjects as MRI, but involves

40 different ROIs. Although not as discriminative as that in

MRI, the ROIs in MRI-II are more spread across the frontal,

parietal, occipital and frontal lobes, thus specially used for a

detailed lobe-to-lobe comparison on connectivity. We ran-

domly partition each data set into 30 groups of training-test

pairs. Each group includes 80 training and 40 test samples

in MRI and MRI-II, or 60 training and 43 test samples in

PET.

4.1. Comparison of Fitting

Our DL-A-SGBN targets to become discriminative with-

out sacrificing too much power of data representation com-

pared with B-SGBN. Since the change of data fitting from

A-SGBN to DL-A-SGBN has been explicitly controlled by

the user-defined parameters T1 and T2, we simply compare
the model fitting between A-SGBN and B-SGBN. The fit-

ting errors are tested on both training and test data for each

class in all three data sets. The root of mean squared fitting

errors (RMS) are summarized in Table 2. In order to test if

the fitting errors of A-SGBN are statistically different from

that of B-SGBN, a paired t-test (two-tailed) is conducted on

the fitting errors over the 30 groups for each data set, re-
spectively. The resulting p-value is also given in the last
column in Table 2.

Table 2. Fitting Error (RMS) Averaged over 30 Training-Test
Groups

MRI B-SGBN A-SGBN p-value

Training
MCI 0.6344 0.6192 0

NC 0.5962 0.5896 0

Test
MCI 0.7385 0.7301 0

NC 0.6801 0.6763 3.2e-4

PET B-SGBN A-SGBN p-value

Training
NC 0.5466 0.5334 0

AD 0.6291 0.6195 0

Test
NC 0.6171 0.6100 5e-8

AD 0.7508 0.7467 2.2e-6

MRI-II B-SGBN A-SGBN p-value

Training
MCI 0.6756 0.6675 0

NC 0.6441 0.6382 0

Test
MCI 0.8047 0.8033 0.055

NC 0.7381 0.7366 9.1e-4

As shown, on all three data sets, our A-SGBN fits the

data consistently better than B-SGBN. Such improvement

is significant as indicated by the small p-values (except for
MCI group in MRI-II). This finding indicates that our A-

SGBN might better reflect the underlying distribution of

the data, which makes it perform well on both the train-

ing and the test data. Another interesting finding is that the

generative models explain the NC better than the MCI (in

MRI data set) or the AD (in PET data set) patients. This

may reflect the common impression that compared with the

healthy population, the AD population might be more het-

erogeneous and therefore more difficult to be represented

by a single Gaussian model.

4.2. Comparison of Discrimination

Our proposed learning process results in two kinds of

models: two DL-A-SGBN models with one for each class,

and one SBN-induced SVM classifier that considers only

the boundary of the two classes. We test whether our learn-

ing can improve the discriminative power on both kinds.

The A-SGBN models estimated separately for each class

are used as the initial solution. In order to keep reasonable

interpretation, we allow maximal 1% additional squared fit-

ting errors (that is, Ti = 1.01 × Ti0, (i = 1, 2), where Ti0
is the squared fitting error of the initial solution) to be in-

troduced during the learning of DL-A-SGBN. We test both

the SVM classifier and the DL-A-SGBNs. For the SVM

classifier, we use L2-SVM with Fisher kernels . For DL-A-

SGBNs, as mentioned before, we simply compare the val-

ues of likelihood, and assign the sample to the class with

a higher likelihood. We also conduct a paired t-test (two-

tailed) to examine the statistical significance of the improve-

ment over the 30 groups for all three data sets. The results

are summarized in Table 3.

Table 3. Test Classification Accuracy (%) Averaged over 30
Training-Test Groups

SGBN-induced SVM classifier

A-SGBN (%) DL-A-SGBN (%) p-value

MRI 71.42 74.50 6.2e-5

PET 57.75 65.43 0

MRI-II 57.25 61.83 1.4e-6

SGBN classifier

A-SGBN (%) DL-A-SGBN (%) p-value

MRI 71.08 74.83 6.8e-5

PET 67.36 71.47 4.7e-7

MRI-II 59.75 65.42 1.2e-6

It can be seen that, as expected, optimizing Eqn. (6)

significantly improves the discriminative power of SVM

classifiers by 3.08% for MRI, 7.68% for PET, and 4.58%
for MRI-II. More importantly, by learning a discriminative

SVM classifier, we also simultaneously improve the dis-

criminative power of the generative models DL-A-SGBN
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by 3.75% for MRI, 4.11% for PET, and 5.67% for MRI-II.

Such improvements are statistically significant as indicated

by the small p-values. Moreover, when cross-referencing

the third columns in Table 3, it is noticed that our SVM

classifiers perform just comparably (for MRI) or even worse

(for PET and MRI-II) than our generative DL-A-SGBNs.

This may be because our Fisher vectors have very high di-

mensionality, which causes the serious overfitting of data

in SVM classifiers. Such situation might be somewhat im-

proved for DL-A-SGBN since the simple Gaussian model

may “regularize” the fitting. Based on this assumption, we

further select a number of leading features from Fisher vec-

tors by computing the Pearson correlation of the features

and the labels, and use the selected features to construct the

Fisher kernel for the SVM classifiers. As shown in the last

column in Table 4, the simple feature selection step can fur-

ther significantly improve the classification performance of

the Fisher-kernel based SVM: from 74.5% to 80.08% for

MRI, from 65.43% to 77.83% for PET, and from 61.83% to

73.5% for MRI-II.

In Table 4, the improvement from our proposed learning

method is scrutinized at each processing step. Compared

with the B-SGBN induced from [1], introducing a bias node

(A-SGBN) better fits the population, therefore improves the

prediction on test data by 9% for MRI, 6.04% for PET, and

6.67% for MRI-II. The discriminative power of A-SGBN

is further improved by 3 ∼ 6% via our discriminative pa-

rameter learning. This leads to generative models DL-A-

SGBN achieving a classification accuracy above 70%, with
no more than 1% increase of the squared fitting error. More-

over, by selecting leading features in the SGBN-induced

Fisher vectors, we can construct more discriminative SVM

classifiers with additional 6% or more improvement from

our DL-A-SGBN to differentiate both MCI vs NC groups

in MRI or MRI-II and AD vs NC groups in PET.

In sum, compared with the baseline B-SGBN, our pro-

posed method can increase the prediction accuracy by as

high as 18% for MRI, 16% for PET, and 20% for MRI-

II, using Fisher kernel induced SVM classifiers with feature

selection. Meanwhile, these SVM classifiers are linked to

the learned generative model DL-A-SGBN whose discrimi-

native powers have also been increased by about 10% from

B-SGBN on all three data sets. Our DL-A-SGBN models

are not only discriminative, but also descriptive with only

a slight increase in the squared fitting errors (at most 1%
increase, controlled by the optimization parameter).

Table 4. Test Classification Accuracy (%) Averaged over 30
Training-Test Groups

B-SGBN A-SGBN DL-A-SBN SVM (sel)

MRI 62.08 71.08 74.83 80.08
PET 61.32 67.36 71.47 77.83
MRI-II 53.08 59.75 65.42 73.50

4.3. Comparison of Connectivity

In order to gain more insight into the results, we also con-

duct a lobe-to-lobe comparison on the connectivity derived

by our methods and B-SGBN. It is found that, although the

40 ROIs used in MRI and PET are individually discrimi-

native, they do not necessarily cover the representative re-

gions across the whole brain. For example, the 40 nodes

used in the MRI data set are mostly located in the tem-

poral lobe and the subcortical region. Therefore, we spe-

cially design the MRI-II data set by selecting 40 regions

that cover the frontal, parietal, occipital and temporal (in-

cluding the subcortical region) lobes from MR images of

the same subjects involved in MRI data. Although MRI-II

(with the best test accuracy of 73.5%) is less discrimina-
tive than MRI (with the best test accuracy of 80.08%) as
shown in Table 4, we consistently observe significant im-

provements of our method over B-SGBN.

The structures of the brain networks recovered from NC

and MCI groups are displayed in Fig. 2 by using B-SGBN

and DL-A-SGBN, respectively. The network structure is

obtained by binarizing the edgesΘwith a threshold of 0.01.
Each row i represents the effective connections (dark dots)
starting from the node i, and each column j represents the
effective connections ending at the node j.

With similar parameter settings, the B-SGBN produces

273 edges for NC, and 224 edges for MCI, while our DL-
A-SGBN produces 285 edges for NC, and 236 edges for
MCI. Note that DL-A-SGBN has an additional bias node

corresponding to the last row and column. Because the bias

node has no parent node, the last column is all zero. We

check the edge difference between the two methods lobe

by lobe, and give the result in Table 5. As shown, the two

methods produce similar network structures both visually

and quantitatively in most brain regions. There are in total

36 different edges (less than 15%) for NC network, and 11

different edges (around 5%) for MCI network. About half
different connections are identified within the temporal lobe

(15 for NC, 5 for MCI), for which we also include subcor-
tical structures such as hippocampus and amygdala. It is

known that temporal lobe (and some subcortical structures)

plays a very important role in the progression of AD. Such a

structural difference in this lobe may potentially reflect the

different capacity of prediction between our DL-A-SGBN

and the B-SGBN.

Table 5. Number of edge difference between the baseline B-
SGBN and the proposed DL-A-SGBN in two groups, respec-
tively: NC (MCI)

Frontal Parietal Occipital Temporal

[1:8] [9:16] [17:24] [25:40]

Frontal 1 (0) 1 (1) 3 (0) 0 (0)

Parietal 0 (1) 0 (0) 3 (0) 4 (0)

Occipital 0 (0) 1 (0) 2 (1) 5 (1)

Temporal 0 (0) 0 (1) 1 (1) 15 (5)
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Figure 2. Structure of Connectivity: (a) NC by B-SGBN, (b) MCI
by B-SGBN, (c) NC by the proposed DL-A-SGBN, (d) MCI by the
proposed DL-A-SGBN.

Traditional brain connectivity analysis focuses on the

analysis of brain structure which is a binarized connectiv-

ity. For example, the network structures from both the B-

SGBN and our DL-A-SGBN indicate the loss of effective

connections (around 17%) in MCI group in almost all lobes
(slightly in the frontal lobe), which agrees well with doc-

umented studies [1, 6]. However, binarizing connectivity

depends on the selection of threshold. If some connection

strength has been weakened by the disease but not reduced

below the threshold, this change will be unnecessarily ig-

nored when merely studying the brain structure. This obser-

vation is affirmed by our learning process that promotes the

discrimination of A-SGBN. Simply optimizing the connec-

tion strength across a subset of selected nodes has already

significantly improved the prediction with only a minimum

(or mostly no) change of brain structure.

Moreover, using SGBN-induced Fisher kernels, we are

able to produce a new kind of features to analyze brain con-

nectivity: the subject specific change of connection strength

between nodes. We investigate the selected features of

MRI-II used in our SBN-induced SVM classifier and visu-

alize three most discriminative connection changes (Fig. 1

right) happening at “middle temporal gyrus left” (in brown)

→“superior parietal lobe left” (in purple), “hippocampus

right” (in blue) →“superior parietal lobe left”, and “inferior

temporal gyrus left” (in green) →“middle occipital gyrus

right” (in cyan). Also discriminative are the connections

from the bias node to “middle occipital gyrus right” and to

“precuneus left”.

5. Conclusion
In this paper, we present an approach to model brain ef-

fective connectivity encoded with essential discriminative

information. With the link of Fisher kernel, our approach

is able to simultaneously produce generative SGBN mod-

els and its associated SVM classifier, both of which possess

sufficient discriminative power for brain network analysis

of AD. In addition, by considering the changing rate of con-

nection strength, our method also provides a new perspec-

tive for brain connectivity analysis.
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