
Automatic Discovery, Association Estimation and Learning of

Semantic Attributes for a Thousand Categories

Ziad Al-Halah Rainer Stiefelhagen
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

{ziad.al-halah, rainer.stiefelhagen}@kit.edu

Abstract

Attribute-based recognition models, due to their impres-

sive performance and their ability to generalize well on novel

categories, have been widely adopted for many computer

vision applications. However, usually both the attribute

vocabulary and the class-attribute associations have to be

provided manually by domain experts or large number of

annotators. This is very costly and not necessarily optimal

regarding recognition performance, and most importantly,

it limits the applicability of attribute-based models to large

scale data sets. To tackle this problem, we propose an end-

to-end unsupervised attribute learning approach. We utilize

online text corpora to automatically discover a salient and

discriminative vocabulary that correlates well with the hu-

man concept of semantic attributes. Moreover, we propose a

deep convolutional model to optimize class-attribute asso-

ciations with a linguistic prior that accounts for noise and

missing data in text. In a thorough evaluation on ImageNet,

we demonstrate that our model is able to efficiently discover

and learn semantic attributes at a large scale. Furthermore,

we demonstrate that our model outperforms the state-of-

the-art in zero-shot learning on three data sets: ImageNet,

Animals with Attributes and aPascal/aYahoo. Finally, we

enable attribute-based learning on ImageNet and will share

the attributes and associations for future research.

1. Introduction

Semantic attributes, being both machine detectable and

human understandable, lend themselves to various applica-

tions in vision and language domain [40]. By creating an

intermediate layer of semantics that cross the boundaries of

object categories, they also show impressive performance

in transfer learning [25] and domain adaptation [12]. How-

ever, attribute annotations for object categories are usually

obtained manually by tens of annotators [16, 26] or domain

experts [47]. Moreover, the attribute vocabulary itself re-

quires careful engineering. It should be shared across the cat-

egories but at the same time be discriminative, interpretable

and visually detectable.
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Figure 1: An encyclopedia article describing an object category.

Many discriminative attributes regarding shape, family and habitat

of the object can be identified already in the first few lines of the

article. We propose a model that utilizes such a knowledge source

to automatically discover and learn visual semantic attributes at a

large scale.

This is clearly a major obstacle for attribute-based ap-

proaches to scale to large number of classes. The cost as-

sociated in providing such annotations is prohibitive which

limits the available attribute data sets either in the number of

classes, attributes or images. Additionally, this non-trivial

and expensive work is needed again when moving across

data sets or expanding the current set with new categories.
We aim in this work to circumvent this need for human

intervention. Our goal is to automatically mine attributes

vocabulary and find their associations to objects in a large

scale setting. We achieve this by utilizing the large text

corpora available in the web. Online encyclopedias represent

a rich source of information which encode the collective

human knowledge over various concepts and categories. It

is an active and comprehensive knowledge source that keeps

growing at impressive rates [1]. Fig. 1 shows a snippet

of an article describing the animal category Wombat. One

can easily observe that numerous distinctive attributes for

this category about its shape, taxonomy and habitat already

appear in the introduction of the article.
Recently, This valuable and massive source of knowledge

attracted a lot of interest in the vision community. One can

identify two main perspectives in that direction. The first,
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learns word embeddings of the object categories from text

using powerful models from natural language processing

[31, 36]. It then adapts a deep neural model for embedding

prediction and zero-shot learning based on visual data [18,

33]. Differently, the second perspective follows a domain

adaptation approach between language and vision. It directly

predicts classifier weights for unseen classes based on an

embedding of the category textual description [15, 7, 37].

While we tap to a similar knowledge source to bridge the gap

between language and vision, in contrast to these approaches,

our objective is to automatically discover an explicit set of

semantic attributes that is compact, discriminative and best

describes the categories in our data.

Contributions The main contributions of our work are as

follows: a) We propose a novel attribute mining approach

from natural textual description that not only accounts for dis-

crimination but also mines a diverse and salient vocabulary

which correlates well with the human concept of semantic

attributes. b) We propose a novel approach to associate these

mined attributes with classes using a deep convolutional

model that leverages visual data to account for the noisy and

missing information in the text corpora. c) We experimen-

tally demonstrate that our deep attribute model is able to

learn and predict attributes with high accuracy on ImageNet,

as well as it generalizes well across data sets and outperforms

state of the art in zero-shot learning on three benchmarks.

d) Finally, as a result of our work, we have collected textual

descriptions for more than a thousand categories; further-

more, we have automatically generated attribute annotations

for ImageNet and deep attribute models that will be made

publicly available1. We believe, this data might be of great

interest for the vision and language research community.

2. Related work

While attribute-based visual recognition gained a continu-

ous rise in popularity in computer vision, collecting attribute

annotations proved to be very expensive. Consequently, this

clearly limits the scalability of attribute-based approaches to

large number of categories. Most available attribute data sets

[16, 25, 47] are limited in terms of the number of attributes,

categories or images. In a recent effort to collect a larger

attribute data set, [34] proposed a cost effective labeling ap-

proach where they collected annotations of 196 attributes

for 29 categories and 84 thousand images with annotation

cost of more than $30,000. Differently, in this work, we

circumvent the need of user supervision to define and an-

notate attributes. We propose an unsupervised end-to-end

approach to automatically mine and learn semantic attributes

for thousands of categories.

Attribute discovery There were few attempts in the litera-

ture to automatically obtain an attribute vocabulary. [40, 39]

1 http://cvhci.anthropomatik.kit.edu/~zalhalah/

mine attributes by crawling the WordNet [32] ontology.

Specifically, they track the “has-part” relations in WordNet

to extract “part” attributes. On the other hand, [17, 13, 14]

use the top ranked images returned by web search engines

queried with a certain vocabulary to estimate the “visualness”

of words. [8] samples pairs of (image, description) from

the Internet to automatically find a set of visual attributes.

Similarly, [46] uses both image-based textual descriptions as

well as a set of image tags provided by users in social media

to identify the attribute vocabulary. Different from previous

work, our approach does not require images aligned with

textual descriptions or tags. Furthermore, we do not rely

on a predefined ontology such as WordNet or target only a

specific type of attributes like “parts”. Instead, we use tex-

tual description at the category level in form of encyclopedia

entries to extract a salient and diverse set of attributes.

Class-attribute association prediction In a different di-

rection, other approaches focused on predicting the class-

attribute associations automatically. [40, 29] estimate the as-

sociations strength from web-based co-occurrence statistics.

However, web-based hit counts estimations are noisy since

it does not take into consideration the context or the specific

relation sought between the category and the attribute. [3]

uses WordNet hierarchy to transfer the attribute associations

of an unseen class from its parent in the ontology. Recently,

[4] proposes to predict attribute associations using semantic

relations in a tensor factorization approach. However, both

[3] and [4] assume the availability of training associations.

Here, we propose a deep model to estimate the class-attribute

associations from scratch. Our model takes advantage of an

initial linguistic prior over the associations from textual de-

scription and improves the estimations in a joint optimization

framework of object and attributes predictions.

Unsupervised zero-shot learning (ZSL) Semantic at-

tributes – with their ability to be shared across categories

– have shown impressive performance in tasks like ZSL.

However, due to their limited scalability, there is an increas-

ing interest in conducting ZSL by tapping to an alternative

knowledge source, for example by exploiting lexical hierar-

chies to transfer visual models between the categories [39] or

learning a hierarchical embedding [2]. A different direction

leverage powerful word embeddings [21, 31] to establish the

semantic link between seen and unseen categories [18, 33].

More closely to our work are the ones from [15, 7] and [37].

These approaches use article embeddings to directly predict

the classifier weights of the novel category in a domain adap-

tion framework. However, most of the unsupervised ZSL

approaches do not result in good discriminative classifiers

when compared to their attribute-based counterpart [4]. We

show in the evaluation, that our unsupervised deep attribute

model can predict novel categories with high accuracy and

it outperforms state-of-the-art in unsupervised ZSL with a

significant margin.
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Figure 2: Discovering an attribute vocabulary from textual descrip-

tions. Our model leverages text from articles and their underlying

latent topics to select a compact, discriminative, diverse and salient

set of semantic attributes.

3. Discovering and Learning Attributes

We propose an end-to-end approach for large scale

attribute-based visual recognition. Starting with a set of

articles describing the object categories, our approach con-

sists of three main steps: 1) We automatically analyze the

articles in order to extract an attribute vocabulary with the

most salient and discriminative words to describe these cate-

gories. Then, 2) we optimize the class-attribute associations

using visual data by a novel deep convolutional model with

a linguistic prior and joint optimization of class and attribute

predictions. Finally, 3) we train a deep neural model for

large scale attribute classification.

3.1. Semantic attribute discovery

Let D = {dj}
J
j=1 be a set of text documents describing

all object categories C = {cm}Mm=1 in the dataset. For

notation simplicity, we assume |D| = |C|, i.e. there is one

document for each category. Let W = {wi}
I
i=1 be the

dictionary of words learned from D. Then, our goal is to

select a subset vocabulary A ⊆ W that best describes C:

A = arg max
S⊆W

F(S) where |S| ≤ b, (1)

where F is a set function that captures the desired properties

of the subset S, and b is the size of the vocabulary.
Ideally, words in A should: 1) discriminate well between

the object categories; 2) describe diverse aspects of the cat-

egories rather than focusing only on one or few properties

(e.g. only colors or parts); and 3) represent salient seman-

tic concepts understandable by humans. Next, we describe

how we capture these different criteria of S in our objective

function (Fig. 2).

Discrimination Let V = {vj = fv(dj) : vj ∈ R
|W |}Jj=1

be a text-based embedding (e.g. fv(·) is based on tf·idf)

learned over the document set D such that vij captures

the word wi importance in document dj . We construct

an undirected fully connected graph G(N,E). Each node

ni ∈ N represents a category ci. Each edge eij(i 6= j) has

a weight gij(S) =
∑

wk∈S |vki − vkj | that captures how

well words in S discriminate one class from the others.

Additionally, each node has a self loop eii with a weight

gii(S) =
∑

j 6=i

∑

wk /∈S |vki − vkj |. To capture the discrim-

inative power of a set S, we employ the entropy rate of a

random walk X on graph G as defined by [28, 50].
In summary, let gi(S) =

∑

j gij(S) be the sum of inci-

dent weights of node ni and the total sum of weights in the

graph is gT =
∑

gi. The transition probability among the

nodes is set to:

pij(S) =

{

gij(S)
gi(S) if i 6= j

1−
∑

j gij(S)

gi(S) if i = j
(2)

Note that pij is a set function and the transition probabil-

ities will change when the selected set S changes. The

incident weights gi for each node in the graph are kept

constant because of the self loops weight gii, and the

stationary distribution for the random walk is defined as

µ = (µ1, µ2, . . . , µ|N |), where µi =
gi
gT

. Then the entropy

rate of a random walk on G is:

Fdis(S) = −
∑

i

µi

∑

j

pij(S)log(pij(S)) (3)

The maximization of Fdis demands the maximization of pij
i.e. the discrimination among all pairs of classes.

Diversity Another desired property of a good set of at-

tributes is that it describes various aspects of the categories.

That is, we want to encourage diversity among the selected

words to reduce the bias towards a specific set of classes and

to mine a vocabulary that describes all categories equally

well. In order to promote diversity, we first uncover the latent

semantic structure among the categories. We leverage here

the unsupervised probabilistic topic models (e.g. LDA [9])

to discover underlying themes in the documents.
Let T = {Tk}

K
k=1 be a set of topics learned from docu-

ments D and dictionary W . We define the diversity objective

criteria as:

Fdiv(S) =
∑

Tk

√

∑

wi∈S

s(wi, Tk) where

s(wi, Tk) =

{

p(wi|Tk) if Tk = argmax
Tj

p(Tj |wi)

0 otherwise

(4)

Fdiv encourages topic diversity in S since adding words

that belong to a previously chosen topic will have diminish-

ing gain because of the square root function. It also accounts

for word importance for the topic since adding a word with

higher p(wi|Tk) results in a higher gain. Moreover, Fdiv

by encouraging diversity also discourages redundancy. A

word and its synonyms are more likely to belong to the same

topic, hence they are less likely to be chosen together. That

is, Fdiv favors a diverse, less redundant and representative

set of words.
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Rank Top Words in Topic

1 instrument play music sound pitch note musical reed player
violin make tone range octave bass family key band fiddle
hole

2 spaniel english welsh cocker springer show cardigan field
pembroke work dock type small sussex average come line
variety would century

3 missile target system wing guide flight use force parachute
engine know projectile rocket air lift guidance kinetic anti
weapon shuttle

...
198 call include allow many time upper consist long much several

little last low reach second slow half make follow suitable

199 use make allow would prevent work take give open cause
come reduce keep provide way protect help less leave prop-
erty

200 use century become modern early world work time begin de-
velop could history new war late development introduce part
include today

Table 1: Ranking of discovered topics according to their signifi-

cance, i.e. how different they are from junk topic prototypes. While

the top ranked topics capture salient concepts like music and dogs,

the low ranked ones are obscure and have no particular theme.

Saliency An important aspect of semantic attributes is that

they represent salient words with relatively clear semantic

concepts, e.g. “leg”, “yellow” and “transparent”. Whereas

words like “become”, “allow” and “various” belong to the

background language structure, hence they are usually am-

biguous and carry less or no semantics by themselves. Cap-

turing word saliency directly is hard due to word polysemy

and since word importance depends on the context. There-

fore, we propose to capture this property using the learned

underlying topic structure among the documents as a proxy.
One can estimate the significance of a topic by comparing

its distribution over the words p(w|topic) and documents

p(d|topic) to junk topics prototypes [5]. A junk topic is one

that has uniform distribution over words (i.e. it doesn’t cap-

ture any specific theme) or over documents (i.e. it captures

the common theme of all documents). By measuring the

distance (e.g. KL divergence) of the discovered topics to

these junk prototypes, we can obtain a ranking of the topics

regarding their significance.
Table 1 shows the highest and lowest ranked topics over

a set of documents using topic significance analysis model

from [5]. One can see that the top ranked topics revolve

around specific themes like “music”, “dogs” and “military”,

while the lowest ranked topics have no theme in particular

and are related to the background structure of the language

or the documents domain.
Let insig(T ) be the set of ρ = 10% lowest ranked topics.

We define a saliency cost function as:

C(S) =
∑

wi∈S

(1 + γ
∑

Tk∈insig(T )

p(Tk|wi)), (5)

where γ controls the contribution of the insignificance score

of a word to the cost function. C(·) favors salient words

which will have a cost close to 1 while it punishes junk

words which have a higher probability to appear in junk

topics.
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Figure 3: (a) The joint optimization of class-attribute associations

using a linguistic prior and (b) the deep attribute model architecture.

Submodular optimization We formulate the vocabulary

selection problem in a submodular knapsack framework [6].

A set function F is submodular if it satisfies the decreasing

marginal gain condition [20] i.e.: F(A ∪ {s}) − F(A) ≥
F(B ∪{s})−F(B) for A ⊆ B. In other words, the benefit

of adding a new element s to the set is higher if it happens

earlier. All the previous functions Fdis, Fdiv and C sat-

isfy the marginal gain condition and are submodular2. We

formulate our main objective function as:

max
S⊆W

F(S) = Fdis(S) + λFdiv(S)

subject to C(S) ≤ b
(6)

where b is the budget and λ a hyper-parameters control-

ling the contribution of Fdiv .
F(·) is submodular since it is a linear combination of

submodular functions [20]. Submodular functions can be

optimized robustly with a guaranteed solution to be near

optimal [23]. We adopt a lazy greedy algorithm [27]. We

start with an empty set S = {}, then we incremently add

elements to S with maximum gain according to F using lazy

evaluations.

3.2. Association optimization with a linguistic prior

In the previous step, we have selected the best attribute

vocabulary A that describes the different categories ci ∈ C

in our data set. Having this set of words, we get an initial

estimate of the class-attribute association matrix Ml = [mij ]
(Fig. 2) using the text-based embedding V learned over D.

mij =

{

+1 if vij > 0
−1 otherwise

(7)

However, this association matrix may contain some noise

since V does not capture context, and not all relations for

a certain category are necessarily represented in the respec-

tive text documents. Usually, simple and obvious attributes

of a class are omitted from text if they are not interesting

enough to mention from the perspective of the author. For

2more details in supplementary
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example, while most animals have attributes like “head”,

“leg” or “skin” these are not always mentioned in text when

describing the animal unless there is something special about

it. Moreover, V is a bag of words representation, i.e. it does

not capture the context of the attributes in text. This results

in a negative relation like “a tiger does not live in ocean”

being captured as a positive association between “tiger” and

“ocean” since V relies only on the presence of the word in

the description.
We propose to improve the initial associations obtained

from language by grounding it to visual data using a deep

convolutional network model. The network is trained to

predict both attributes and categories while at the same time

constraining the weights of the last layer to the initially

estimated associations Ml (see Fig. 3a). Note that this ar-

chitecture resembles the direct attribute prediction model

DAP [25] where the object class is estimated based on the

predicted attributes. We define the training loss function as:

L(x) = Lc(x) + β1La(x) + β2‖M−M
l‖1 (8)

where Lc and La are the cross entropy loss of predicting

the object category and the binary attributes of sample x,

respectively. ‖M−M
l‖1 is an entry-wise L1 regularization

term over the weights of the last fully connected layer M

based on the initial association matrix M
l.

Note that, by using the linguistic prior we force the net-

work to preserve the semantic link between linguistic and

visual data. This prevents the network from finding arbi-

trarily data-driven associations that can not be estimated

anymore from textual description. At the same time, by

controlling β2 we allow for small modification to the associ-

ations when there is a strong visual signal supporting change

to account for noise and missing information in M
l.

We adopt an AlexNet-like architecture [24] for the joint

deep model. That is, we have 5 convolutional layers followed

by two fully connected layers and a Sigmoid activation func-

tion for attribute prediction, then another fully connected

layer with softmax activation for category classification. At

the end of the joint optimization, we get the new binary asso-

ciation matrix of classes and attributes M∗ by thresholding

the weights of the last layer M. The optimized associations

M
∗ redefine the positive and negative label assignments for

each attribute which were intially based on M
l.

3.3. Deep attribute model

Finally, given the optimized associations M
∗ from the

previous step, we train a deep model for attribute prediction

(Fig. 3b). The network has a similar architecture as the one

we used for the joint optimization. However, we remove the

last layer for the category prediction and add a new fully

connected layer before the attribute prediction layer. That

is, the network is made of 5 convolutional layers followed

by three fully connected layers. The last attribute prediction

layer is followed by a Sigmoid activation function. We use

the cross entropy loss to train the network for binary attribute

prediction.

Predicting objects Given an image x, we estimate the cor-

responding object category using the direct attribute predic-

tion model (DAP) [25]. We adopt a summation formulation

rather than the probabilistic one [25] since it’s more efficient

[39, 3], especially in our large scale case. That is, for a class

cm, the estimated prediction score of cm to appear in image

x as:

s(cm|x) =

∑

i s(ai|x)
acm
i

∑

i a
cm
i

(9)

where s(ai|x) is the prediction score of attribute ai in image

x, acmi are the attributes of class cm, and the classification

scores are normalized to have a zero mean and unit stan-

dard deviation. We use the same formulation for classifying

unseen categories in zero-shot learning. However, in this

case the associations of the novel class are estimated directly

from the textual description.

4. Evaluation

In this section, we provide a thorough evaluation of our

model in selecting a set of good attributes, association op-

timization and predicting semantic attributes. Furthermore,

we evaluate our deep attribute model in zero-shot learning

and its generalization properties across data sets.

Data setup Through our experiments, we use the

ILSVRC2012 dataset from ImageNet [42]. It contains 1000
categories and more than 1.2 million images. We collect arti-

cles for each synset in the data set by querying the Wikipedia

API with the different terms in each synset. This results in

1100 articles with around 80500 unique words. All document

are preprocessed to remove non alphabetic characters, and

words are lower cased and stemmed. To avoid bias toward

lengthy articles for some categories, we truncate the articles

length to a maximum of 500 words. We extract a tf·idf (term

frequency·inverse document frequency) embedding for each

document in the set. The tf·idf measures the importance of a

word in a document by accounting for how often this word

appears in the document and how frequent it appears in all

other documents. We use the normalized tf and logarithmic

idf scores [43]. For each synset, we average the embedding

over all its documents to get its final representation.

Implementation details For the attribute discovery, we

learn a set of 200 topics using the Latent Dirichlet Allocation

model [9]. We empirically set λ = 0.001, γ = 20 and the

maximum number of attributes to discover b = 1200. We

set the hyperparameters β1 and β2 for the joint deep model

such that the initial losses from the three terms are of similar

magnitudes. For the final deep attribute model, we initialize

the weights of the convolutional layer from the previous

network trained for the joint optimization. All networks are

trained using Adam [22] for stochastic optimization with an

initial learning rate of 0.001 and a weight decay of 5e-4.
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Figure 4: The ranking performance of the attribute embedding from

our approach against the baselines.

4.1. Selecting the attribute vocabulary

We evaluate the quality of the selected attribute vocab-

ulary from two perspectives: 1) the performance of the at-

tribute embedding in capturing object similarity and 2) the

vocabulary saliency.

Attribute-based class embedding A good attribute repre-

sentation of categories should capture the similarity among

the classes. That is, categories that are visually similar

should share most of their attributes and have similar em-

beddings. To capture the quality of the attribute embedding,

we rank the classes based on their similarity in the attribute

embedding space. We use the normalized discounted cu-

mulative gain (nDCG) [44] to compare among the different

methods:

nDCG =
DCGk

IDCGk
where DCGk =

k
∑

i=1

2reli − 1

log2(i+ 1)

(10)

Such that reli is the relevance of the ith ranked sample, and

the ideal rank score IDCGk is that for the rank of the classes

for each category based on their distances in the ImageNet

hierarchy.
As baselines, we consider several common feature se-

lection methods: 1) max-Relevance and min-Redundancy

(mRmR) [35]; 2) Multi-Cluster Feature Selection (MCFS)

[10]; 3) Local Learning-based Clustering method (LLC-

fs) [49]; 4) Minimum Correlation (MinCorr) which selects

words that have the least correlation with the rest of the

vocabulary.
Fig. 4 shows the ranking quality of all the baselines and

our approach up to position K=10 in the ranking list. Our ap-

proach outperforms all baselines and produces an embedding

that captures the within category similarities. We also con-

sider different variants of our approach by removing some of

the optimization terms from Eq. 6. Each of the terms used

in our submodular optimization contributes positively to the

Model Relevance (%) ↑ Junk (%) ↓ Saliency (%) ↑

mRmR 20.8 53.0 33.9

MinCorr 14.4 20.6 46.9

LLC-fs 29.1 42.9 43.1

MCFS 18.6 13.6 52.5

Ours 44.5 2.6 71.0

Table 2: Saliency scores of the selected vocabularies.

quality of the attribute embedding.

Vocabulary saliency Here, we explore how the selected

vocabulary correlates with human understanding of salient

semantic attributes. To that end, we pick 100 synsets that are

uniformly distributed in the ImageNet hierarchy. For each

category, we select 50 random words from the dictionary

with positive tf·idf scores for that class. We asked 5 annota-

tors to classify the association between each class and its 50
words into 4 categories: 1) positive: such as “The horse has

a tail”; 2) negative: like “The dolphin does not walk”; 3) un-

known: when the annotator does not have the knowledge to

decide the type; 4) junk: when the word itself does not carry

a clear concept to define an association. The majority of the

annotators agree on 84% of the labels. The labels are dis-

tributed as (25.1% positive, 47.8% negative, 1.9% unknown

and 25.2% junk). Out of the 4 categories, we are interested

in the positive and junk categories since they describe the

semantic saliency of the words. The negative and unknown

types do not deliver much information about the semantics

since a word having a negative association might have a pos-

itive one with other classes while the unknown reflects the

lack of knowledge of the annotator. We obtain the probability

of a word from the annotation vocabulary wi ∈ WA to en-

gage in a positive association p(+|wi) or being junk p(J |wi)
by marginalizing over all annotators and object classes. We

then define the weighted relevance of the selected words

S as: Relevance(S) =
∑

wi∈S∩WA p(+|wi)
∑

wj∈WA p(+|wj)
, and similarly

Junk(S) =
∑

wi∈S∩WA p(J|wi)
∑

wj∈WA p(J|wj)
for the junk score. The final

saliency score of S is then defined as the average of both:

Saliency(S) = 0.5(Relevance(S) + (1− Junk(S))).
Table 2 shows the performance of our approach and the

baselines from the previous section. While some of the

baselines performed relatively well in getting a good attribute

embedding, large portions of the selected words by these

methods do not carry a clear semantic concept. Our approach

has a much higher relevance score while at the same time

the lowest junk score among all baselines. This indicates

that the set of attributes discovered by our method correlates

well with the human concept of semantic attributes.

4.2. Attribute prediction

Having selected a set of salient attributes, we evaluate

here the performance of our model in predicting these at-
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Model
Attributes Categories (DAP)

Accuracy AP Top1 AP

Joint Model

w/o Linguistic Prior 55.2 22.4 30.4 19.0

w/ Linguistic Prior 60.3 28.9 45.2 39.5

Attribute Model

w/o Association Opt. 74.8 64.1 51.4 48.3

w/ Association Opt. 76.9 68.2 55.9 54.2

Table 3: Attribute prediction performance.

(a) (b)

Figure 5: Performance of individual attributes in average precision

(AP) and area under receiver operating characteristic (AUC).

tributes in images. Table 3 shows the attribute prediction

accuracy and average precision (AP). It also reports the ob-

ject Top1 classification accuracy and the AP based on the

predicted attributes and when using the DAP model (Eq. 9).

Joint Model In the first section of Table 3, it is interesting

to see that regularizing the weights of the last fc layer with

the language prior improves the performance of attribute pre-

dictions by 5% in accuracy and 6% in AP. At the same time,

it results in a boost in object classification Top1 accuracy by

15%. These results show that side information obtained from

language has a significant impact on the performance of the

deep model. Additionally, the unregularized network learns

quite different associations between classes and attributes

than those in M
l. Only 13% of the positive associations

in this case are shared with those learned from the textual

description. This indicates that the semantic link between

the attributes and the classes is lost in this model. In contrast,

the regularized model preserves the semantics and retains

more than 93% of the positive associations in M
l.

Attribute Model Finally, training the deep attribute model

with the optimized associations M∗ results in a better model

compared to a one trained directly using M
l. This indi-

cates that our joint model managed to account for some

of the noise and missing data in M
l. The deep attribute

model trained with M
∗ has higher attribute and object pre-

diction performance. Moreover, our deep attribute model

achieves 75% Top5 object classification accuracy, by pre-

dicting objects through the semantic attribute layer. This is

an impressive performance of the attribute model since it

Model Split 200 labels 1000 labels

Rohrbach et al. [39] A 34.8 -

PST [38] A 34.0 -

Ours A 46.1 15.9

Ours - BT A 48.0 20.2

Mensink et al. [30] B 35.7 1.9

DeViSE [18] B 31.8 9.0

ConSE [33] B 28.5 -

AMP (SR+SE) [19] B 41.0 -

Ours B 46.3 15.2

Ours - BT B 49.0 20.0

Ours (w/o assoc. opt.) C 45.8 14.8

Ours C 48.1 16.9

Table 4: Zero-shot performance (Top5 accuracy) on 200 unseen

classes from Imagenet.

almost matches the performance of a deep model with the

same architecture trained directly for object classification

(80% accuracy).
Fig. 5 shows the performance of the individual attributes.

Around 80% of the attributes can be predicted with an aver-

age precision better than 0.6.

4.3. Zero­shot learning

An important feature of semantic attributes is their ability

to form a shared knowledge layer which can be transfered

to unseen classes. We evaluate here the performance of

our discovered attributes in classifying unseen classes (i.e.

zero-shot learning). While there is no standard zero-shot

split in ImageNet, there are two common splits used in the

literature and defined over the ILSVRC2010 classes, split A

from [39] and B from [30]. Both of them, split the classes

into 800 seen and 200 unseen categories. We train our model

as before while this time we use only the 800 seen classes

of the respective split and we test on the remaining unseen

classes.
Table 4 shows the Top5 accuracy of our model over the

two splits (A & B). Our deep attribute model outperforms

the state-of-the-art by 11% on split A and by 5% on split B.

Furthermore, we analyze the bias of our model toward seen

classes similar to [18]. In this test setup, both the seen and

unseen labels are considered as candidates when predicting

the object category. Our model achieves 15% accuracy on

split A & B and shows much less bias compared to state of

the art with 6% improvement. Additionally, if we assume

the availability of test data as a batch (Ours-BT), we can

get a better estimation of the mean and standard deviation

for classifiers scores in Eq. 9. This results in additional

improvement of performance by 3%.
Since in the zero-shot settings, we optimize the associa-

tions using only data from the seen categories, we analyze

in the last section of Table 4 (split C) the performance of

our model with and without association optimization. Here

again, we find that the association optimization did not re-

sult in a biased performance towards the seen classes, rather
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Model Side Info. AwA aPY

Supervised ZSL

DAP [26] (AlexNet) A 54.0 31.9

DAP [26] (GoogLeNet) A 59.5 37.1

Unsupervised ZSL

DeViSE [18] W 44.5 25.5

Elhoseiny et al. [15] T 55.3 30.2

ConSE [33] W 46.1 22.0

SJE [2] G + H 60.1 -

HAT [3] H 59.7 31.1

EZSL [41] T 58.5 -

Changpinyo et al. [11] W 57.5 -

Qiao et al. [37] T 66.5 -

Xian et al. [48] W + G + H 66.2 -

CAAP [4] W 68.6 49.0

Ours (binary assoc.) T 77.3 57.6

Ours (continous assoc.) T 79.7 57.5

Table 5: Zero-shot performance of various models on AwA and aPY.

The supervised models use manually defined attributes (A), while

the unsupervised approaches rely on other sources like word embed-

dings such as Word2Vec (W) [31] and GloVe (G) [36]; hierarchy-

based information (H) [32] or textual description (T).

it improved the model performance. Overall, we see that

optimizing the associations is beneficial in both within and

across category prediction.

Across data sets zero-shot learning To compare the per-

formance of our model that we learned in ImageNet with a

manually selected attribute vocabulary, we evaluate our deep

attribute model on two public data sets: 1) Animals with

Attributes (AwA) [25]: which has 50 animal classes split

into 40 seen and 10 unseen categories with 84 predefined se-

mantic attributes. 2) aPascal/aYahoo (aPY) [16]: which has

32 classes split into 20 seen and 12 unseen with 64 semantic

attributes. We collect articles for each of the unseen cate-

gories to extract their associations to our discovered attribute

vocabulary. We consider both using the raw continuous asso-

ciations (i.e. tf·idf values) and binary associations. We test

our model on the unseen categories on both data sets without

any fine tuning of the trained deep model (off-the-shelf).
From Table 5 we see that our model outperforms all unsu-

pervised zero-shot approaches. Compared to methods from

[15, 37] that used similar type of side information as ours,

we have up to 13% improvement. Moreover, our model

outperforms a DAP model based on the manually defined

attribute vocabulary and using image embeddings from an

AlexNet model [24] or even from GoogLeNet [45]. This

demonstrates the impressive generalization properties of our

model across data sets.

Text Length Here, we explore the effect of the article

length on the prediction performance. We vary the length

of the considered section of the articles from 100 to 1000

words. Then we extract the associations of the unseen classes

in AwA and aPY from the truncated articles.
Fig. 6 shows the performance of the model in this case.

We notice that the optimal length of the article increases in

(a) AwA (b) aPY

Figure 6: Zero-shot performance with varying textual description

lengths.

correlation with the granularity of the categories in the data

set. For AwA which contains only animal classes, in average

longer articles (400 to 600 words) are needed to sufficiently

extract discriminant associations. In contrast, categories in

aPY are easier to separate with shorter articles (200 words).

Moreover, we see that most of the important attributes are

mentioned quite early in the article, with performance de-

grading when we consider relatively long articles (more than

800 words). In both data sets, we see that continuous associ-

ations outperform their binary counterpart in predicting the

categories in most cases.

4.4. Discovered Attributes

Using our model, we have discovered and learned 1636

semantic attributes describing 1360 categories with more

than 1.2 million images from ImageNet (ILSVRC2010 &

ILSVRC2012). This amounts to roughly 2 million class-

attribute associations. In average, each attribute is shared

between 29 categories, and each category has about 33 active

attributes. Some of the most shared attributes (with more

than 100 categories) are water, black, red, breed, tail, metal,

coat, device, hunt, plastic, yellow and hair. Some of the least

shared attributes (with less than 10 categories) are cassette,

cowboy, pumpkin, sweater, convertible, ballistic, hump, axe,

drilling, laundry, cash and quilt.

5. Conclusion

We propose a novel end-to-end approach to discover and

learn attributes at a large scale form textual descriptions.

Our model discovers a salient, diverse and discriminative

set of attribute vocabulary that correlates well with human

understanding of semantic attributes. Moreover, in order to

account for noise and missing data in the text corpora, we

propose to use a linguistic prior in a joint deep model to

optimize the class-attribute associations. In an evaluation on

ImageNet, we show that our deep attribute model is able to

learn and predict semantic attributes with high accuracy for

a thousand categories. Our model outperforms the state-of-

the-art in unsupervised zero-shot learning and it generalizes

well across data sets.
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