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Abstract

Mean Field inference is central to statistical physics. It

has attracted much interest in the Computer Vision com-

munity to efficiently solve problems expressible in terms of

large Conditional Random Fields. However, since it mod-

els the posterior probability distribution as a product of

marginal probabilities, it may fail to properly account for

important dependencies between variables.

We therefore replace the fully factorized distribution of

Mean Field by a weighted mixture of such distributions, that

similarly minimizes the KL-Divergence to the true poste-

rior. By introducing two new ideas, namely, conditioning on

groups of variables instead of single ones and using a pa-

rameter of the conditional random field potentials, that we

identify to the temperature in the sense of statistical physics

to select such groups, we can perform this minimization ef-

ficiently. Our extension of the clamping method proposed in

previous works allows us to both produce a more descrip-

tive approximation of the true posterior and, inspired by the

diverse MAP paradigms, fit a mixture of Mean Field ap-

proximations. We demonstrate that this positively impacts

real-world algorithms that initially relied on mean fields.

1. Introduction

Mean Field (MF) is a modeling technique that has been

central to statistical physics for a century. Its ability to

handle stochastic models involving millions of variables

and dense graphs has attracted much attention in our com-

munity. It is routinely used for tasks as diverse as de-

tection [14, 2], segmentation [31, 23, 10, 43], denois-

ing [11, 27, 25], depth from stereo [15, 23] and pose-

estimation [35].

MF approximates a “true” probability distribution by a

fully-factorized one that is easy to encode and manipu-

late [22]. The true distribution is usually defined in prac-

tice through a Conditional Random Field (CRF), and may

not be representable explicitly, as it involves complex inter-

dependencies between variables. In such a case the MF ap-

proximation is an extremely useful tool.

While this drastic approximation often conveys the in-

formation of interest, the true distribution may concentrate

on configurations that are very different, equally likely, and

that cannot be jointly encoded by a product law. Section 3

depicts such a case where groups of variables are correlated

and may take one among many values with equal probabil-

ity. In this situation, MF will simply pick one valid con-

figuration, which we call a mode, and ignore the others.

So-called structured Mean Field methods [32, 7] can help

overcome this limitation. This can be effective but requires

arbitrary choices in the design of a simplified sub-graph for

each new problem, which can be impractical especially if

the initial CRF is very densely connected.

Here we introduce a novel way to automatically add

structure to the MF approximation and show how it can be

used to return several potentially valid answers in ambigu-

ous situations. Instead of relying on a single fully factor-

ized probability distribution, we introduce a mixture of such

distributions, which we will refer to as Multi-Modal Mean

Field (MMMF).

We compute this MMMF by partitioning the state space

into subsets in which a standard MF approximation suffices.

This is similar in spirit to the approach of [39] but a key

difference is that our clamping acts simultaneously on ar-

bitrarily sized groups of variables, as opposed to one at a

time. We will show that when dealing with large CRFs

with strong correlations, this is essential. The key to the

efficiency of MMMF is how we choose these groups. To

this end, we introduce a temperature parameter that con-

trols how much we smooth the original probability distri-

bution before the MF approximation. By doing so for sev-

eral temperatures, we spot groups of variables that may take

different labels in different modes of the distribution. We

then force the optimizer to explore alternative solutions by

clamping them, that is, forcing them to take different values.

Our temperature-based approach, unlike the one of [39],

does not require a priori knowledge of the CRF structure

and is therefore compatible with “black box” models.

In the remainder of the paper, we will describe both MF
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and MMMF in more details. We will then demonstrate that

MMMF outperforms both MF and the clamping method

of [39] on a range of tasks.

2. Background and Related Work

Conditional Random Fields (CRFs) are often used to

represent correlations between variables [37]. Mean Field

inference is a means to approximate them in a computation-

ally efficient way. We briefly review both techniques below.

2.1. Conditional Random Fields

Let X = (X1, . . . , XN ) represent hidden variables and

I an image evidence. A CRF relates the ones to the others

via a posterior probability distribution

P (X | I) = exp (−E(X | I)− log(Z(I))) , (1)

where E(X | I) is an energy function that is the sum of

terms known as potentials φc(·) defined on a set of graph

cliques c ∈ C, log(Z(I)) is the log-partition function that

normalizes the distribution. From now on, we will omit the

dependency with respect to I.

2.2. Mean Field Inference

The set of all possible configurations of X, that we de-

note by X , is exponentially large, which makes the explicit

computation of marginals, Maximum-A-Posteriori (MAP)

or Z intractable and a wide range of variational methods

have been proposed to approximate P (X) [19]. Among

those, Mean Field (MF) inference is one of the most popu-

lar [38, 33]. It involves introducing a distribution Q written

as

Q(X = (x1, . . . , xN )) =
N
∏

i=1

qi(xi) , (2)

where qi( . ) is a categorical discrete distribution defined for

xi in a possible labels space L. The qi are estimated by

minimizing the KL-divergence

KL(Q||P ) =
∑

x∈X

Q(X = x) log
Q(X = x)

P (X = x)
. (3)

Since Q is fully factorized, the terms of the KL-divergence

can be recombined as a sum of an expected energy, con-

taining as many terms as there are potentials and a convex

negative entropy containing one term per variable. Opti-

mization can then be performed using a provably conver-

gent gradient-descent scheme [3].

As will be shown in Section 3, this simplification some-

times comes at the cost of downplaying the dependencies

between variables. The DivMBest methods [29, 4, 9] ad-

dress this issue starting from the following observation:

When looking for an assignment in a graphical model, the

resulting MAP is not necessarily the best because the prob-

abilistic model may not capture all that is known about the

problem. Furthermore, optimizers can get stuck in local

minima. The proposed solution is to sequentially find sev-

eral local optima and force them to be different from each

other by introducing diversity constraints in the objective

function. It has recently been shown that it is provably

more effective to solve for diverse MAPs jointly but un-

der the same set of constraints [20]. However, none of these

methods provide a generic and practical way to choose local

constraints to be enforced over variable sub-groups. Fur-

thermore, they only return a set of MAPs. By contrast, our

approach yields a multi-modal approximation of the pos-

terior distribution, which is a much richer description and

which we will show to be useful.

Another approach to improving the MF approximation is

to decompose it into a mixture of product laws by “clamp-

ing” some of the variables to fixed values, and finding for

each set of values the best factorized distribution under the

resulting deterministic conditioning. By summing the re-

sulting approximations of the partition function, one can

provably improve the approximation of the true partition

function [39]. This procedure can then be repeated itera-

tively by clamping successive variables but is only practical

for relatively small CRFs. At each iteration, the variable to

be clamped is chosen on the basis of the graphical model

weights, which requires intimate knowledge about its inter-

nals, which is not always available.

Our own approach is in the same spirit but can clamp

multiple variables at a time without requiring any knowl-

edge of the graph structure or weights.

Finally, DivMBest approaches do not provide a way to

choose the best solution without looking at the ground-

truth, except for the one of [41] that relies on training a

new classifier for that purpose. By contrast, we will show

that the multi modal Bayesian nature of our output induces a

principled way to use temporal consistency to solve directly

practical problems.

3. Motivation

To motivate our approach, we present here a toy exam-

ple that illustrates a typical failure mode of the standard MF

technique, which ours is designed to prevent. Fig. 1 depicts

a CRF where each pixel represents a binary variable con-

nected to its neighbors by attractive pairwise potentials.

For the sake of illustration, we split the grid into four

zones as follows. The attractive terms are weak on left side

but strong on the right. Similarly, in the top part, the unary

terms favor value of 1 while being completely random in

the bottom part.

The unary potentials are depicted at the top left of Fig. 1

and the result of the standard MF approximation at the bot-

tom in terms of the probability of the pixels being assigned

the label 1. In the bottom right corner of the grid, because

the interaction potentials are strong, all pixels end up being
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assigned high probabilities of being 1 by MF, where they

could just as well have all been assigned high probabilities

to be zero. We explain below how our MMMF algorithm

can produce two equally likely modes, one with all pixels

being zero with high probability and the other with all pixel

being one with high probability.

Clamping

Entropy drop

Prior
Biased 
toward 1

Prior
not 
biased

Strong
Pairwise

Weak
Pairwise

MF MMMF

Input

Figure 1. A typical failure mode of MF resolved by MMMF. Grey

levels indicate marginal probabilities, under the prior (Input) and

under the product laws (MF and MMMF).

4. Multi-Modal Mean Fields

Given a CRF defined with respect to a graphical model

and the probability P (X = x) for all states in X , the state

space introduced in Section 2.1, the standard MF approxi-

mation only models a single mode of the P , as discussed

in Section 2.2. We therefore propose to create a richer

representation that accounts for potential multiple modes

by replacing the fully factorized distribution of Eq. 2 by a

weighted mixture of such distributions that better minimizes

the KL-divergence to P .

The potential roadblock is the increased difficulty of

the minimization problem. In this section, we present an

overview of our approach to solving it, and discuss its key

aspects in the following two.

Formally, let us assume that we have partitioned X into

disjoint subsets Xk for 1 ≤ k ≤ K. We replace the original

Mean Field (MF) approximation by one of the form

P (X = x) ≈ QMM (X = x) =
∑

k

mkQk(x) , (4)

Qk(x) =
∏

i

qki (xi) ,

where Qk is a MF approximation for the states x ∈ Xk with

individual probabilities qki that variable i can take value xi

in a set of labels L, and mk is the probability that a state

belongs to Xk.

We can evaluate the mk and qki values by minimizing

the KL-divergence between QMM and P . The key to mak-

ing this computation tractable is to guarantee that we can

evaluate the qki parameters on each subset separately by per-

forming a standard MF approximation for each. One way

to achieve that is to constrain the support of the Qk distri-

butions to be disjoint, that is,

∀k 6= k′, Qk′ (Xk) = 0 . (5)

In other words, each MF approximation is specialized on

a subset Xk of the state space and is computed to minimize

the KL-Divergence there. In practice, we enrich our approx-

imation by recursively splitting a set of states Xk among our

partition X1, . . . ,XK into two subsets X 1
k and X 2

k to obtain

the new partition X1, . . . ,Xk−1,X
1
k ,X

2
k ,Xk+1, . . . ,XK ,

which is then reindexed from 1 to K+1. Initially, Xk repre-

sents the whole state space. Then we take it to be the newly

created subset in a breadth-first order until a preset num-

ber of subsets has been reached. Each time, the algorithm

proceeds through the following steps:

• It finds groups of variables likely to have different values

in different modes of the distribution using an entropy-

based criterion for the qki .

• It partitions the set into two disjoint subsets according to

a clause that sets a threshold on the number of variables

in this group that take a specific label. X 1
k will contain

the states among Xk that meet this clause and X 2
k the

others.

• It performs an MF approximation within each subset

independently to compute parameters qk,1i and qk,2i for

each of them. This is done by a standard MF approxi-

mation, to which we add the disjointness constraint 5.

This yields a binary tree whose leaves are the Xk subsets

forming the desired state-space partition. Given this parti-

tion, we can finally evaluate the mk. In Section 5, we intro-

duce our cardinality based criterion and show that it makes

minimization of the KL-divergence possible. In Section 6,

we show how our entropy-based criterion selects, at each

iteration, the groups of variables on which the clauses de-

pend.

5. Partitioning the State Space

In this section, we describe the cardinality-based crite-

rion we use to recursively split state spaces and explain

why it allows efficient optimization of the KL-divergence

KL(QMM‖P ), where QMM is the mixture of Eq. 4.

5.1. Cardinality Based Clamping

The state space partition Xk , 1≤k≤K introduced above

is at the heart of our approximation and its quality and

tractability critically depend on how well chosen it is.

In [39], each split is obtained by clamping to zero or one

the value of a single binary variable. In other words, given

a set of states Xk to be split, it is broken into subsets

X 1
k = {x ∈ Xk|xi = 0} and X 2

k = {x ∈ Xk|xi = 1},
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where i is the index of a specific variable. To compute a

Mean Field approximation to P on each of these subspaces,

one only needs to perform a standard Mean Field approxi-

mation while constraining the qi probability assigned to the

clamped variable to be either zero or one. However, this

is limiting for the large and dense CRFs used in practice

because clamping only one variable among many at a time

may have very little influence overall. Pushing the solution

towards a qualitatively different minimum that corresponds

to a distinct mode may require simultaneously clamping

many variables.

To remedy this, we retain the clamping idea but apply it

to groups of variables instead of individual ones so as to find

new modes of the posterior while keeping the estimation of

the parameters mk and qki computationally tractable. More

specifically, given a set of states Xk to be split, we will say

that the split into X 1
k and X 2

k is cardinality-based if

X 1
k = {x ∈ Xk s.t.

∑

u=1...L

✶(xiu = vu) ≥ C} , (6)

X 2
k = {x ∈ Xk s.t.

∑

u=1...L

✶(xiu = vu) < C} , (7)

where the i1, . . . , iL denote groups of variables that are cho-

sen by the entropy-based criterion and v1, . . . , vL is a set of

labels in L. In other words, in one of the splits, more than

C of the variables have the assigned values and in the other

less than C do. For example, for semantic segmentation X 1
k

would be the set of all segmentations in Xk for which at

least C pixels in a region take a given label, and X 2
k the set

of all segmentations for which less than C pixels do.

We will refer to this approach as cardinality clamp-

ing and will propose a practical way to select appropriate

i1, . . . , iL and v1, . . . , vL for each split in Section 6.

5.2. Instantiating the MultiModal Approximation

The cardinality clamping scheme introduced above

yields a state space partition Xk , 1≤k≤K . We now show

that given such a partition, minimizing the KL-divergence

KL(QMM‖P ) using the multi-modal approximation of

Eq. 4 under the disjointness constraint, becomes tractable.

In practice, we relax the constraint 5 to near disjointness

∀k 6= k′, Qk′ (Xk) ≤ ǫ , (8)

where ǫ is a small constant. It makes the optimization prob-

lem better behaved and removes the need to tightly con-

strain any individual variable, while retaining the ability to

compute the KL divergence up to O(ǫ log(ǫ)).

Let m̂ and q̂ stand for all the mk and qki parameters that

appear in Eq. 4. We compute them as

min
m̂,q̂

KL(QMM‖P )= min
m̂,q̂

∑

x∈X

∑

k≤K

mkQk(x) log

(

QMM (x)

P (x)

)

≡ min
m̂

∑

k≤K

mk log(mk)−
∑

k≤K

mkAk , (9)

where Ak = max
qk
i
,i=1...N

∑

x∈X

Qk(x) log

(

e−E(x)

Qk(x)

)

(10)

where Ak is maximized under the near-disjointness con-

straint of Eq. 8.

As proved formally in the supplementary material, the

second equality of Eq. 9 is valid up to a constant and after

neglecting a term of order O(ǫ log ǫ) which appears under

the near disjointness assumption of the supports. Given the

Ak terms of Eq. 10 and under the constraints that the mix-

ture probabilities m̂ sum to one, we must have

mk =
eAk

∑

k′≤K

eAk′

, (11)

and we now turn to the computation of these Ak terms. We

formulate it in terms of a constrained optimization problem

as follows.

5.2.1 Handling Two Modes

Let us first consider the case where we generate only two

modes modeled by Q1(x) =
∏

q1i (xi) and Q2(x) =
∏

q2i (xi) and we seek to estimate the q1i probabilities. The

q2i probabilities are evaluated similarly.

Recall from Section 5.2 that the q1i must be such that the

A1 term of Eq. 10 is maximized subject to the near disjoint-

ness constraint of Eq. 8, which becomes

Q1

(

∑

u=1...L

✶(Xiu = vu) < C

)

≤ ǫ , (12)

under our cardinality-based clamping scheme defined by

Eq. 7. Performing this maximization using a standard La-

grangian Dual procedure [8] requires evaluating the con-

straint and its derivatives. Despite the potentially exponen-

tially large number of terms involved, we can do this in one

of two ways. In both cases, the Lagrangian Dual procedure

reduces to a series of unconstrained Mean Field minimiza-

tions with well known additional potentials.

1. When C is close to 0 or to L, the Lagrangian term can

be treated as a specific form of pattern-based higher-

order potentials, as in [36, 14, 21, 1].

2. When C is both substantially greater than zero and

smaller than L, we treat
∑

u=1...L ✶(Xiu = vu) as a

large sum of independent random variables under Q1.
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We therefore use a Gaussian approximation to replace

the cardinality constraint by a simpler linear one, and

finally add unary potentials to the MF problem. Details

are provided in the supplementary material.

We will encounter the first situation when tracking pedes-

trians and the second when performing semantic segmenta-

tion, as will be discussed in the results section.

5.2.2 Handling an Arbitrary Number of Nodes

Recall from Section 5 that, in the general case, there can

be an arbitrary number of modes. They correspond to

the leaves of a binary tree created by a succession of

cardinality-based splits. Let us therefore consider mode k
for 1 ≤ k ≤ K. Let B be the set of branching points on the

path leading to it. The near disjointness 8, can be enforced

with only |B| constraints. For each b ∈ B, there is a list

of variables ib1, . . . , i
b
Lb , a list of values vb1, . . . , v

b
Lb , a car-

dinality threshold Cb, and a sign for the inequality ≥b that

define a constraint

Qk

(

∑

u=1...Lb

✶(Xib
u
= vbu) ≥b C

b

)

≤ ǫ (13)

of the same form as that of Eq. 12. It ensures disjointness

with all the modes in the subtree on the side of b that mode k
does not belong to. Therefore, we can solve the constrained

maximization problem of Eq. 10, as in Section 5.2.1, but

with |B| constraints instead of only one.

6. Selecting Variables to Clamp

We now present an approach to choosing the variables

i1, . . . , iL and the values v1, . . . , vL, which define the car-

dinality splits of Eqs. 6 and 7, that relies on phase transitions

in the graphical model.

To this end, we first introduce a temperature parameter

in our model that lets us smooth the probability distribu-

tion we want to approximate. This well known parameter

for physicists [18] was used in a different context in vision

by [28]. We study its influence on the corresponding MF

approximation and how we can exploit the resulting behav-

ior to select appropriate values for our variables.

6.1. Temperature and its Influence on Convexity

We take the temperature T to be a number that we use to

redefine the probability distribution of Eq. 1 as

PT (x) =
1

ZT
e
−
1

T
E(x)

, (14)

where ZT is the partition function that normalizes PT so

that its integral is one. For T = 1, PT reduces to P . As

T goes to infinity, it always yields the same Maximum-A-

Posteriori value but becomes increasingly smooth. When

performing the MF approximation at high T , the first term

of the KL-Divergence, the convex negative entropy, domi-

nates and makes the problem convex. As T decreases, the

second term of the KL-Divergence, the expected energy, be-

comes dominant, the function stops being convex, and local

minima can start to appear. In the supplementary material,

we introduce a physics-inspired proof that, in the case of a

dense Gaussian CRF [23], we can approximate and upper-

bound, in closed-form, the critical temperature Tc at which

the KL divergence stops being convex. We validate experi-

mentally this prediction, using directly the denseCRF code

from [23]. This makes it easy to define a temperature range

[1, Tmax] within which to look for Tc. For a generic CRF,

no such computation may be possible and the range must be

determined empirically.

6.2. EntropyBased Splitting

We describe here our approach to splitting X into X1 and

X2 at the root node of the tree. The subsequent splits are

done in exactly the same way. The variables to be clamped

are those whose value change from one local minimum to

another so that we can force the exploration of both minima.

To find them, we start at Tmax, a temperature high

enough for the KL divergence to be convex and progres-

sively reduce it. For each successive temperature, we per-

form the MF approximation starting with the estimate for

the previous one to speed up the computation. When look-

ing at the resulting set of approximations starting from the

lowest temperature ones T = 1, a telltale sign of increas-

ing convexity is that the assignment of some variables that

were very definite suddenly becomes uncertain. Intuitively,

this happens when the CRF terms that bind variables is

overcome by the entropy terms that encourage uncertainty.

In physical terms, this can be viewed as a local phase-

transition [18].

Let T be a temperature greater than 1 and let QT and

Q1 be the corresponding Mean Field approximations, with

their marginal probabilities qTi and q1i for each variable i.
To detect such phase transitions, we compute

δi(T ) = ✶[H(qTi ) > hhigh]✶[H(q1i ) < hlow] , (15)

for all i, where H denotes the individual entropy.
All variables and labels with positive δi become candi-

dates for clamping. If there are none, we increase the tem-

perature. If there are several, we can either pick one at ran-

dom or use domain knowledge to pick the most suitable sub-

set and values as will be discussed in the Results Section.

7. Results

We first use synthetic data to demonstrate that MMMF

can approximate a multi-modal probability density func-
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tion better than both standard MF and the recent approach

of [39], which also relies on clamping to explore multi-

ple modes. We then demonstrate that this translates to an

actual performance gain for two real-world algorithms—

one for people detection [14] and the other for segmenta-

tion [10, 42]—both relying on a traditional Mean Field ap-

proach. We will make all our code and test datasets publicly

available.

The parameters that control MMMF are the number of

modes we use, the cardinality threshold C at each split, the

ǫ value of Eq. 8, the entropy thresholds hlow and hhigh of

Eq. 15, and the temperature Tmax introduced in Section 6.

In all our experiments, we use ǫ = 10−4, hlow = 0.3, and

hhigh = 0.7. As discussed in Section 6, when the CRF

is a dense Gaussian CRF, we can approximate and upper

bound the critical temperature Tc in closed-form and we

simply take Tmax to be this upper bound to guarantee that

Tmax > Tc. Otherwise, we choose Tmax empirically on a

small validation-set and fix it during testing.

7.1. Synthetic Data

To demonstrate that our approach minimizes the KL-

Divergence better than both standard MF and the clamp-

ing one of [39], we use the same experimental protocol to

generate conditional random fields with random weights as

in [13, 40, 39]. Our task is then to find the MMMF approx-

imation with lowest KL-Divergence for any given number

of nodes. When that number is one, it reduces to MF. Note

that the authors of [39] look for an approximation of the log-

partition function, which is strictly the same as minimizing

the KL-Divergence, as demonstrated in the supplementary

material. Because it involves randomly chosen positive and

negative weights, this problem effectively mimics difficult

real-world ones with repulsive terms, uncontrolled loops,

and strong correlations.

In Fig. 2, we plot the KL-Divergence as a function of

the number of modes used to approximate the distribution

on the standard benchmarks. These modes are obtained us-

ing either our entropy-based criterion as described in Sec-

tion 6, or the MaxW one of [39], which we will refer to as

BASELINE-MAXW. It involves sequentially clamping the

variable having the largest sum of absolute values of pair-

wise potentials for edges linking it to its neighbors. It was

shown to be one of the best methods among several others,

which all performed roughly similarly. In our experi-

ments, we used the phase-transition criterion of Section 6

to select candidate variables to clamp. We then either ran-

domly chose the group of L variables to clamp or used the

MaxW criterion of [39] to select the best L variables. We

will refer to the first as OURS-RANDOM and to the sec-

ond as OURS-MAXW. Finally, in all cases, C = L and the

values vu correspond to the ones taken by the MAP of the

mode split.

In Fig. 2, we plot the resulting curves for L = 1 and

L = 3, evaluated on 100 instances. OURS-RANDOM per-

forms better than the method BASELINE-MAXW in most

cases, even though it does not use any knowledge of the

CRF internals, and OURS-MAXW, which does, performs

even better. The results on the 13× 13 grid demonstrate the

advantage of clamping variables by groups when the CRF

gets larger.

7.2. Multimodal Probabilistic Occupancy Maps

The Probabilistic Occupancy Map (POM) method [14]

relies on Mean Field inference for pedestrian detection.

More specifically, given several cameras with overlapping

fields of view of a discretized ground plane, the algorithm

first performs background subtraction. It then estimates the

probabilities of occupancy at every discrete location as the

marginals of a product law minimizing the KL divergence

from the “true” conditional posterior distribution, formu-

lated as in Eq. 1 by defining an energy function. Its value

is computed by using a generative model: It represents hu-

mans as simple cylinders projecting to rectangles in the var-

ious images. Given the probability of presence or absence

of people at different locations and known camera models,

this produces synthetic images whose proximity to the cor-

responding background subtraction images is measured and

used to define the energy.

This algorithm is usually very robust but can fail when

multiple interpretations of a background subtraction image

are possible. This stems from the limited modeling power of

the standard MF approximation, as illustrated in the supple-

mentary material. We show here that, in such cases, replac-

ing MF by MMMF while retaining the rest of the framework

yields multiple interpretations, among which the correct one

is usually to be found.

Fig. 3 depicts what happens when we replace MF by

MMMF to approximate the true posterior, while changing

nothing else to the algorithm. To generate new branches of

the binary tree of Section 5, we find potential variables to

clamp as described in Section 6. Among those, we clamp

the one with the largest entropy gap—H(qTi ) −H(q1i ), us-

ing the notations of Eq. 15—and its neighbors on the grid.

When evaluating our cardinality constraint, we take C to

be 1, meaning that one branch of the tree corresponds to

no one in the neighborhood of the selected location and

the other to at least one person being present in this neigh-

borhood. Since we typically create those locations by dis-

cretizing the ground plane into 10cm × 10cm grid cells,

this forces the two newly instantiated modes to be signifi-

cantly different as opposed to featuring the same detection

shifted by a few centimeters. In Fig. 3, we plot the results

as dotted curves representing the MODA scores as functions

of the distance threshold used to compute them [6]. In all

cases, we used 4 modes for the MMMF approximation and
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Figure 2. KL-divergence using either our clamping method or that of [39] averaged over 100 trials. The vertical bars represent standard

deviations. Attractive means that pairwise terms are drawn uniformly from [0, 6] whereas Repulsive means drawn from [−6, 6]. Grid

indicates a grid topology for the CRF, whereas Random indicates that the connections are chosen randomly such that there are as many as

in the grids. We ran our experiments with both 7× 7 and 13× 13 variables CRFs.

followed the DivMBest evaluation metric [4] to produce a

score by selecting among the 4 detection maps correspond-

ing to each mode the one yielding the highest MODA score.

This produces red dotted MMMF curves that are systemat-

ically above the blue dotted MF.

However, to turn this improvement into a practical tech-

nique, we need a way to choose among the 4 possible inter-

pretations without using the ground truth. We use temporal

consistency to jointly find the best sequence of modes, and

reconstruct trajectories from this sequence. In the orig-

inal algorithm, the POMs computed at successive instants

were used to produce consistent trajectories using the a K-

Shortest Path (KSP) algorithm [5]. This involves building a

graph in which each ground location at each time step corre-

sponds to a node and neighboring locations at consecutive

time steps are connected. KSP then finds a set of node-

disjoint shortest paths in this graph where the cost of go-

ing through a location is proportional to the negative log-

probability of the location in the POM [34]. Since MMMF

produces multiple POMs, we then solve a multiple shortest-

path problem in this new graph, with the additional con-

straint that at each time step all the paths have to go through

copies of the nodes corresponding to the same mode, as de-

scribed in more details in the supplementary material.

The solid blue lines in Fig. 3 depict the MODA scores

when using KSP and the red ones the multi-modal version,

which we label as KSP∗. The MMMF curves are again

above the MF ones. This makes sense because ambiguous

situations rarely persist for more than a few a frames. As a

result, enforcing temporal consistency eliminates them.

7.3. MultiModal Semantic Segmentation

CRF-based semantic segmentation is one of best known

application of MF inference in Computer Vision and many

recent algorithms rely on dense CRF’s [23] for this pur-

Figure 3. Replacing MF by MMMF in the POM algorithm [14].

The blue curves are MODA scores [6] obtained using MF and the

red ones scores using MMMF. They are shown as solid lines when

temporal consistency was enforced and as dotted lines otherwise.

Note that the red MMMF lines are above corresponding blue MF

ones in all cases. (a) 1000 frames from the MVL5 [26] dataset

using a single camera. (b) 400 frames from the Terrace dataset [5]

using two cameras. (c) 80 frames of the EPFL-Lab dataset [5] us-

ing a single camera. (d) 80 frames from the EPFL-Lab dataset [5]

using two cameras.

pose. We demonstrate here that our MMMF approximation

can enhance the inference component of two such recent

algorithms [10, 42] on the Pascal VOC 2012 segmentation

dataset and the MPI video segmentation one [16].

Individual VOC Images We write the posterior in terms

of the CRF of [10], which we try to approximate. To create

a branch of the binary tree of Section 5, we first find the

potential variables to clamp as described in Section 6. As

in 7.2, we select the ones in the sliding window with the

largest entropy gap, H(qTi ) − H(q1i ). We then take C to

be L/2 when evaluating our cardinality constraint, meaning
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that we seek the dominant label among the selected vari-

ables and split the state space into those for which more

than half these variables take this value and those in which

less than half do.

(a) (b)

(c) (d)
Figure 4. Qualitative semantic segmentation. (a) Original image.

(b) Entropy gap. (c) Labels with maximum a Posteriori Probability

after MF approximation. (d) Labels with maximum a Posteriori

Probability for the best mode of the MMMF approximation.

Fig. 4 illustrates the results on an image of the VOC

dataset. To evaluate such results quantitatively, we first use

the DivMBest metric [4], as we did in Section 7.2. We as-

sume we have an oracle that can select the best mode of

our multi-modal approximation by looking at the ground

truth. Fig. 5(a) depicts the results on the validation set of

the VOC 2012 Pascal dataset in terms of the average in-

tersection over union (IU) score as a function of the num-

ber of modes. When only 1 mode is used, the result boils

down to standard MF inference as in [10]. Using 32 yields

a 2.5% improvement over the MF approximation. This may

seem small until one considers that we only modify the al-

gorithm’s inference engine and leave the unary terms un-

changed. In [10, 43], this engine has been shown to con-

tribute approximately 3% to the overall performance, which

means that we almost double its effectiveness. For analysis

purposes, we implemented two baselines:

• Instead of clamping groups of variables, we only

clamp the variable with the maximum entropy gap at

each step. As depicted by the red curve in Fig. 5(a),

this has absolutely no effect and illustrates the impor-

tance of clamping groups of variable instead of single

ones as in [39].

• The DivMBest approach [4] first computes a MAP and

then adds a penalty term to the energy function to find

another MAP that is different from the first. It then re-

peats the process. We adapted this approach for MF

inference. The green curve in Fig. 5(a) depicts the re-

sult, which MMMF outperforms by 1.5%.

Method IU

MF 44.9%

[39] + Temp 44.9%

MMMF + Temp 47.3%

MMMF + Oracle 53.2 %

(a) (b)

Figure 5. Quantitative semantic segmentation (a) VOC 2012. IU

score for best mode as a function of the number of modes. MMMF

in blue, baselines in red and green. (b) MPI dataset [16].

Semantic Video Segmentation. We ran the same ex-

periment on the images of the MPI video segmentation

dataset [16] using the CRF of [42]. In this case, we can

exploit temporal consistency to avoid having to use an or-

acle and nevertheless get an exploitable result, as we did

in Section 7.2. Furthermore, we can do this in spite of the

relatively low frame-rate of about 1Hz.

More specifically, we first define a compatibility mea-

sure between consecutive modes based on label probabili-

ties of matching key-points, which we compute using a key-

point matching algorithm [30]. We then compute a shortest

path over the sequence of modes, taking into account in-

dividual mode probabilities given by Eq. 11. Finally, we

use only the MAP corresponding to the mode chosen by

the shortest path algorithm to produce the segmentation. In

Fig. 5(b), we again report the results in terms of IU score.

This time the improvement is around 2.4%, which indicates

that imposing temporal consistency very substantially im-

proves the quality of the inference. To the best of our knowl-

edge, other state of the art video semantic segmentation

methods are not applicable for such image sequences. [17]

requires non-moving scenes and a super-pixel decomposi-

tion, which prevents using all the dense CRF-based image

segmentors. [24] was only applied to street scenes and re-

quires a much higher frame rate to provide an accurate flow

estimation.

8. Conclusion

We have shown that our MMMF aproach makes it pos-

sible to add structure to the standard MF approximation of

CRFs and to increase the performance of algorithms that

depend on it. In effect, our algorithm creates several al-

ternative MF approximations with probabilities assigned to

them, which effectively models complex situations in which

more than one interpretation is possible.

Since MF has recently been integrated into structured

learning architectures through the Back Mean-Field proce-

dure [12, 25, 43, 1], future work will aim to replace MF by

MMMF in this context as well.

This work was supported in part by the Swiss National Science Foun-

dation, under the grant CRSII2-147693 “Tracking in the Wild”.

1733



References

[1] A. Arnab, S. Jayasumana, S. Zheng, and P. H. S. Torr. Higher

Order Potentials in End-To-End Trainable Conditional Ran-

dom Fields. CoRR, abs/1511.08119, 2015. 4, 8

[2] T. Bagautdinov, P. Fua, and F. Fleuret. Probability Occu-

pancy Maps for Occluded Depth Images. In Conference on

Computer Vision and Pattern Recognition, 2015. 1

[3] P. Baque, T. Bagautdinov, F. Fleuret, and P. Fua. Principled

Parallel Mean-Field Inference for Discrete Random Fields.

In Conference on Computer Vision and Pattern Recognition,

2016. 2

[4] D. Batra, P. Yadollahpour, A. Guzman-rivera, and

G. Shakhnarovich. Diverse M-Best Solutions in Markov

Random Fields. In European Conference on Computer Vi-

sion, pages 1–16, 2012. 2, 7, 8

[5] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple Ob-

ject Tracking Using K-Shortest Paths Optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(11):1806–1819, 2011. 7

[6] K. Bernardin and R. Stiefelhagen. Evaluating Multi-

ple Object Tracking Performance: the Clear Mot Metrics.

EURASIP Journal on Image and Video Processing, 2008,

2008. 6, 7
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