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Abstract

We introduce a method to greatly reduce the amount of

redundant annotations required when crowdsourcing anno-

tations such as bounding boxes, parts, and class labels.

For example, if two Mechanical Turkers happen to click on

the same pixel location when annotating a part in a given

image–an event that is very unlikely to occur by random

chance–, it is a strong indication that the location is cor-

rect. A similar type of confidence can be obtained if a sin-

gle Turker happened to agree with a computer vision esti-

mate. We thus incrementally collect a variable number of

worker annotations per image based on online estimates of

confidence. This is done using a sequential estimation of

risk over a probabilistic model that combines worker skill,

image difficulty, and an incrementally trained computer vi-

sion model. We develop specialized models and algorithms

for binary annotation, part keypoint annotation, and sets of

bounding box annotations. We show that our method can

reduce annotation time by a factor of 4-11 for binary fil-

tering of websearch results, 2-4 for annotation of boxes of

pedestrians in images, while in many cases also reducing

annotation error. We will make an end-to-end version of

our system publicly available.

1. Introduction

Availability of large labeled datasets like ImageNet [5,

21] is one of the main catalysts for recent dramatic perfor-

mance improvement in computer vision [19, 12, 31, 32].

While sophisticated crowdsourcing algorithms have been

developed for classification [46, 44, 45], there is a relative

lack of methods and publicly available tools that use smarter

crowdsourcing algorithms for other types of annotation.

We have developed a simple to use publicly available

tool that incorporates and extends many recent advances in

crowdsourcing methods to different types of annotation like

part annotation and multi-object bounding box annotation,

and also interfaces directly with Mechanical Turk.

Our main contributions are: 1) An online algorithm and

stopping criterion for binary, part, and object crowdsourc-

ing, 2) A worker skill and image difficulty crowdsourcing
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Figure 1: A schematic of our proposed method. 1) The system is ini-

tialized with a dataset of images. Each global step of the method will add

annotations to this dataset. 2) The computer vision system incrementally

retrains using current worker labels. 3) The crowdsourcing model updates

its predictions of worker skills and image labels and decides which images

are finished based on a risk-based quality assurance threshold. Unfinished

images are sent to Amazon Mechanical Turk. 4-5) Workers on AMT an-

notate the images. 6) The crowdsourcing model continues to update its

predictions of worker skills and image labels, and the cycle is repeated

until all images are marked as complete.

model for binary, part, and object annotations, 3) Incorpo-

ration of online learning of computer vision algorithms to

speedup crowdsourcing, 4) A publicly available tool that

interfaces with Mechanical Turk and incorporates these al-

gorithms. We show that contributions 1–3 lead to significant

improvements in annotation time and/or annotation quality

for each type of annotation. For binary classification, an-

notation error with 1.37 workers per image is lower using

our method than when using majority vote and 15 work-

ers per image. For bounding boxes, our method produces

lower error with 1.97 workers per image, compared to ma-

jority vote using 7 workers per image. For parts, a variation

of our system without computer vision was used to annotate

accurately a dataset of 11 semantic parts on 55,000 images,

averaging 2.3 workers per part.

We note that while incorporating computer vision in

the loop speeds up annotation time, computer vision re-
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searchers wishing to collect datasets for benchmarking al-

gorithms may choose to toggle off this option to avoid po-

tential issues with bias. At the same time, we believe that it

is a very valuable feature in applied settings. For example,

a biologist may need to annotate the location of all cells

in a dataset of images, not caring if the annotations come

from humans or machines, but needing to ensure a certain

level of annotation quality. Our method offers an end-to-

end tool for collecting training data, training a prediction

algorithm, combining human and machine predictions and

vetting their quality, while attempting to minimize human

time. This may be a useful tool for several applications.

2. Related Work
Kovashka et al. [17] provide a thorough overview of

crowdsourcing in computer vision. Approaches that pro-

pose methods to combine multiple annotations with an as-

surance on quality are the most similar to our method.

[29, 33] reconcile multiple annotators through majority

voting and worker quality estimates. [45, 44, 23, 43]

jointly model labels and the competence of the annotators.

[13, 23, 22] explore the active learning regime of select-

ing the next data to annotate, as well as which annotator to

query. Our approach differs from these previous methods by

merging the online notion of [45] with the worker modeling

of [44], and we incorporate a computer vision component as

well as provide the framework for performing binary clas-

sification, bounding box and part annotations.

Our work is related to human-in-the-loop active learn-

ing. Prior work in this area has contributed methods for

tasks such as fine-grained image classification [3, 40, 6, 42],

image segmentation [26, 8, 10, 14], attribute-based classifi-

cation [18, 24, 2], image clustering [20], image annotation

[35, 36, 30, 48, 27], human interaction [16] and object anno-

tation [39] and segmentation [28] in videos. For simplicity,

we do not incorporate an active learning component when

selecting the next batch of images to annotate or question to

ask, but this can be included in our framework.

Additional methods to reduce annotation effort include

better interfaces, better task organization [4, 7, 47], and

gamifcation [37, 38, 15, 6].

3. Method
Let X = {xi}

N
i=1 be a set of images we want to label

with unknown true labels Y = {yi}
N
i=1 using a pool of im-

perfect crowd workers. We first describe the problem gen-

erally, where depending on the desired application, each yi
may represent a class label, bounding box, part location, or

some other type of semantic annotation. For each image

i, our goal is to recover a label ȳi that is equivalent to yi
with high probability by combining multiple redundant an-

notations Zi = {zij}
|Wi|
j=1 , where each zij is an imperfect

worker label (i.e., their perception of yi), andWi is that set

of workers that annotated image i.

Importantly, the number of annotations |Wi| can vary

significantly for different images i. This occurs because our

confidence on an estimated label ȳi will depend not only

on the number of redundant annotations |Wi|, but also on

the level of agreement between those annotations Zi, the

skill level of the particular workers that annotated i, and the

agreement with a computer vision algorithm (that is incre-

mentally trained).

3.1. Online Crowdsourcing

We first describe a simplified model that does not in-

clude a worker skill model or computer vision in the loop.

We will augment this simplified model in subsequent sec-

tions. At any given time step, let Z = {Zi}
N
i=1 be

the set of worker annotations for all images. We de-

fine the probability over observed images, true labels, and

worker labels as p(Y, Z) =
∏

i p(yi)
(

∏

j∈Wi
p(zij |yi)

)

,

where p(yi) is a prior probability over possible labels, and

p(zij |yi) is a model of noisy worker annotations. Here we

have assumed that each worker label is independent. The

maximum likelihood solution Ȳ = argmax p(Y |Z) =
argmax p(Y, Z) can be found for each image separately:

ȳi = argmaxyi

(

p(yi)
∏

j∈Wi
p(zij |yi)

)

The risk R(ȳi) =
∫

yi
ℓ(yi, ȳi)p(yi|Zi) associated with

the predicted label is

R(ȳi) =

∫

yi
ℓ(yi, ȳi)p(yi)

∏

j∈Wi
p(zij |yi)

∫

yi
p(yi)

∏

j∈Wi
p(zij |yi)

(1)

where ℓ(yi, ȳi) is the loss associated with the predicted label

ȳi when the true label is yi. A logical criterion is to accept

ȳi once the risk drops below a certain thresholdR(ȳi) ≤ τǫ
(i.e., τǫ is the minimum tolerable error per image). The ba-

sic online crowdsourcing algorithm, shown in Algorithm 1,

processes images in batches (because sending images to ser-

vices like Mechanical Turk is easier in batches). Currently,

we give priority to annotating unfinished images with the

fewest number of worker annotation |Wi|; however, one

could incorporate more sophisticated active learning crite-

ria in future work. Each time a new batch is received, com-

bined image labels ȳi are re-estimated, and the risk criterion

is used to determine whether or not an image is finished or

may require more worker annotations.

3.2. Adding Computer Vision

A smarter algorithm can be obtained by using the actual

pixel contents xi of each image as an additional source of

information. We consider two possible approaches: 1) a

naive algorithm that treats computer vision the same way as

a human worker by appending the computer vision predic-

tion zi,cv to the set of worker labels Wi, and 2) a smarter

algorithm that exploits the fact that computer vision can

provide additional information than a single label output
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Algorithm 1 Online Crowdsourcing

1: input: unlabeled images X = {xi}
N
i=1

2: Initialize unfinished/finished sets: U ← {i}Ni=1, F ← ∅
3: Initialize W̄ , Ī using prior probabilities

4: repeat

5: Select a batch B ⊆ U of unfinished examples

6: For i ∈ B obtain new crowd label zij : Zi ← Zi ∪
zij

7: repeat ⊲ Max likelihood estimation

8: Estimate dataset-wide priors p(di), p(wj)
9: Predict true labels:

∀i, ȳi ← argmaxyi
p(yi|xi, θ̄)p(Zi|yi, d̄i, W̄ )

10: Predict image difficulties:

∀i, d̄i ← argmaxdi
p(di)p(Zi|ȳi, di, W̄ )

11: Predict worker parameters:

∀j , w̄j ← argmaxwj
p(wj)

∏

i∈Ij

p(zij |ȳi, d̄i, wj)

12: until Until convergence

13: Using K-fold cross-validation, train computer vision

on dataset {(xi, ȳi)}i,|Wi|>0, and calibrate probabili-

ties p(yi|xi, θ̄k)
14: Predict true labels:

∀i, ȳi ← argmaxyi
p(yi|xi, θ̄)p(Zi|yi, d̄i, W̄ )

15: for i ∈ B do ⊲ Check for finished labels

16: Ri ←

∫
yi

ℓ(yi,ȳi)p(ȳi|xi,θ̄)
∏

j∈Wi
p(zij |yi,di,wj)

∫
yi

p(ȳi|xi,θ̄)
∏

j∈Wi
p(zij |yi,di,wj)

17: ifRi ≤ τǫ: F ← F ∪ i, U ← U \ i
18: end for

19: until U = ∅
20: return Y ← {ȳi}

N
i=1

(e.g., confidence estimates that a bounding box occurs at

each pixel location in an image).

For the smarter approach, the joint probability over ob-

served images, true labels, and worker labels is:

p(Y, Z, θ|X) = p(θ)
∏

i



p(yi|xi, θ)
∏

j∈Wi

p(zij |yi)



 (2)

where p(yi|xi, θ) is the estimate of a computer vision algo-

rithm with parameters θ.

Training Computer Vision: The main challenge is then

training the computer vision system (estimating computer

vision parameters θ) given that we incrementally obtain new

worker labels over time. While many possible approaches

could be used, in practice we re-train the computer vision

algorithm each time we obtain a new batch of labels from

Mechanical Turk. Each step, we treat the currently pre-

dicted labels ȳi for each image with at least one worker la-

bel |Wi| ≥ 1 as training labels to an off-the-shelf computer

vision algorithm. While the predicted labels ȳi are clearly

very noisy when the number of workers per image is still

small, we rely on a post-training probability calibration step

to cope with resulting noisy computer vision predictions.

We use a modified version of K-fold cross validation: For

each split k, we use (K − 1)/K examples for training and

the remaining (k − 1)/K examples for probability calibra-

tion. We filter out images with |Wi| < 1 from both train-

ing and probability calibration; however, all 1/K images

are used for outputting probability estimates p(yi|xi, θk),
including images with |Wi| = 0. This procedure ensures

that estimates p(yi|xi, θk) are produced using a model that

wasn’t trained on labels from image i.

3.3. Worker Skill and Image Difficulty Model

More sophisticated methods can model the fact that some

workers are more skillful or careful than others and some

images are more difficult or ambiguous than others. Let

W = {wj}
M
j=1 be parameters encoding the skill level of

our pool of M crowd workers, and let D = {di}
n
i=1 be

parameters encoding the level of inherent difficulty of an-

notating each image i (to this point, we are just defining W
and D abstractly). Then the joint probability is

p(Y, Z,W,D, θ|X) = p(θ)
∏

i

(p(di)p(yi|xi, θ))

∏

j

p(wj)
∏

i,j∈Wi

p(zij |yi, di, wj) (3)

where p(di) is a prior on the image difficulty, p(wj) is a

prior on a worker’s skill level, and p(zij |yi, di, wj) mod-

els noisy worker responses as a function of the ground

truth label, image difficulty and worker skill parameters.

Let Ȳ , W̄ , D̄, θ̄ = argmaxY,W,D,θ p(Y,W,D, θ|X,Z) be

the maximum likelihood solution to Eq. 3: In practice, we

estimate parameters using alternating maximization algo-

rithms, where we optimize with respect to the parameters

of one image or worker at a time (often with fast analytical

solutions):

ȳi = argmax
yi

p(yi|xi, θ̄)
∏

j∈Wi

p(zij |yi, di, wj) (4)

d̄i = argmax
di

p(di)
∏

j∈Wi

p(zij |yi, di, wj) (5)

w̄j = argmax
wj

p(wj)
∏

i∈Ij

p(zij |ȳi, d̄i, wj) (6)

θ̄ = argmax
θ

p(θ)
∏

i

p(ȳi|xi, θ) (7)

where Ij is the set of images labeled by worker j. Ex-

act computation of the risk Ri = R(ȳi) is difficult be-

cause labels for different images are correlated through

W and θ. An approximation is to assume our ap-

proximations W̄ , Ī , and θ̄ are good enough R(ȳi) ≈
∫

yi
ℓ(yi, ȳi)p(yi|X,Z, θ̄, W̄ , D̄)

R(ȳi) ≈

∫

yi
ℓ(yi, ȳi)p(yi|xi, θ̄)

∏

j∈Wi
p(zij |yi, d̄i, w̄j)

∫

yi
p(yi|xi, θ̄)

∏

j∈Wi
p(zij |yi, d̄i, w̄j)
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such that Eq. 8 can be solved separately for each image i.

Considerations in designing priors: Incorporating priors

is important to make the system more robust. Due to the

online nature of the algorithm, in early batches the number

of images |Ij | annotated by each worker j is likely small,

making worker skill wj difficult to estimate. Additionally,

in practice many images will satisfy the minimum risk cri-

terion with two or less labels |Wi| ≤ 2, making image dif-

ficulty di difficult to estimate. In practice we use a tiered

prior system. A dataset-wide worker skill prior p(wj) and

image difficulty prior p(di) (treating all workers and images

the same) is estimated and used to regularize per worker and

per image parameters when the number of annotations is

small. As a heuristic to avoid over-estimating skills, we re-

strict ourselves to considering images with at least 2 worker

labels |Wi| > 1 when learning worker skills, image difficul-

ties and their priors, since agreement between worker labels

is the only viable signal for estimating worker skill. We

also employ a hand-coded prior that regularizes the learned

dataset-wide priors.

4. Models For Common Types of Annotations
Algorithm 1 provides pseudo-code to implement the on-

line crowdsourcing algorithm for any type of annotation.

Supporting a new type of annotation involves defining how

to represent true labels yi and worker annotations zij , and

implementing solvers for inferring the 1) true labels ȳi
(Eq. 4), 2) image difficulties d̄i (Eq. 5), 3) worker skills

w̄j (Eq. 6), 4) computer vision parameters θ̄ (Eq. 7), and 5)

riskRi associated with the predicted true label (Eq. 8).

4.1. Binary Annotation

Here, each label yi ∈ 0, 1, denotes the absence/presence

of a class of interest.

Binary worker skill model: We model worker skill wj =
[p1j , p

0
j ] using two parameters representing the worker’s skill

at identifying true positives and true negatives, respec-

tively. Here, we assume zij given yi is Bernoulli, such

that p(zij |yi = 1) = p1j and p(zij |yi = 0) = p0j . As

described in Sec 3.3, we use a tiered set of priors to make

the system robust in corner case settings where there are

few workers or images. Ignoring worker identity and as-

suming a worker label z given y is Bernoulli such that

p(z|y = 1) = p1 and p(z|y = 0) = p0, we add Beta priors

Beta
(

nβp
0, nβ(1− p0)

)

and Beta
(

nβp
1, nβ(1− p1)

)

on

p0j and p1j , respectively, where nβ is the strength of the prior.

An intuition of this is that worker j’s own labels zij softly

start to dominate estimation of wj once she has labeled

more than nβ images, otherwise the dataset-wide priors

dominate. We also place Beta priors Beta (nβp, nβ(1− p))
on p0 and p1 to handle cases such as the first couple batches

of Algorithm 1. In our implementation, we use p = .8 as

a general fairly conservative prior on binary variables and

nβ = 5. This model results in simple estimation of worker

skill priors p(wj) in line 8 of Algorithm 1 by counting the

number of labels agreeing with combined predictions:

pk =
nβp+

∑

ij 1[zij = ȳi = k, |Wi| > 1]

nβ +
∑

ij 1[ȳi = k, |Wi| > 1]
, k = 0, 1 (8)

where 1[] is the indicator function. Analogously, we esti-

mate worker skills wj in line 11 of Algorithm 1 by counting

worker j’s labels that agree with combined predictions:

pkj =
nβp

k +
∑

i∈Ij
1[zij = ȳi = k, |Wi| > 1]

nβ +
∑

i∈Ij
1[ȳi = k, |Wi| > 1]

, k = 0, 1 (9)

For simplicity, we decided to omit a notion of image diffi-

culty in our binary model after experimentally finding that

our simple model was competitive with more sophisticated

models like CUBAM [44] on most datasets.

Binary computer vision model: We use a simple computer

vision model based on training a linear SVM on features

from a general purpose pre-trained CNN feature extractor

(our implementation uses VGG), followed by probability

calibration using Platt scaling [25] with the validation splits

described in Sec. 3.2. This results in probability estimates

p(yi|xi, θ) = σ(γ θ·φ(xi)) for each image i, where φ(xi) is

a CNN feature vector, θ is a learned SVM weight vector, γ
is probability calibration scalar from Platt scaling, and σ()
is the sigmoid function.

4.2. Part Keypoint Annotation

Part keypoint annotations are popular in computer vision

and included in datasets such as MSCOCO [21], MPII hu-

man pose [1], and CUB-200-2011 [41]. Here, each part

is typically represented as an x, y pixel location l and bi-

nary visibility variable v, such that yi = (li, vi). While

we can model v using the exact same model as for binary

classification (Section 4.1), l is a continuous variable that

necessitates different models. For simplicity, even though

most datasets contain several semantic parts of an object,

we model and collect each part independently. This simpli-

fies notation and collection; in our experience, Mechanical

Turkers tend to be faster/better at annotating a single part in

many images than multiple parts in the same image.

Keypoint worker skill image difficulty model: Let li be

the true location of a keypoint in image i, while lij is the

location clicked by worker j. We assume lij is Gaus-

sian distributed around li with variance σ2
ij . This vari-

ance is governed by the worker’s skill or image difficulty

σ2
ij = eijσ

2
j + (1 − eij)σ

2
i , where σ2

j represents worker

noise (e.g., some workers are more precise than others) and

σ2
i represents per image noise (e.g., the precise location of a

bird’s belly in a given image maybe inherently ambiguous),

and eij is a binary variable that determines if the variance

will be governed by worker skill or image difficulty. How-

ever, worker j sometimes makes a gross mistake and clicks
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Figure 2: Example part annotation sequence showing the common sit-

uation where the responses from 2 workers correlate well and are enough

for the system to mark the images as finished.

somewhere very far from the Gaussian center (e.g., worker

j could be a spammer or could have accidentally clicked

an invalid location). mij indicates whether or not j made

a mistake–with probability pmj –, in which case lij is uni-

formly distributed in the image. Thus

p(lij |yi, di, wj) =
∑

mij∈0,1

p(mij |p
m
j )p(lij |li,mij , σij)

(10)

where p(mij |p
m
j ) = mijp

m
j + (1 − mij)(1 − pmj ),

p(lij |li,mij , σij) =
eij
|xi|

+ (1 − eij)g(‖lij − li‖
2;σ2

ij),

|xi| is the number of pixel locations in i, and g(x2;σ2)
is the probability density function for the normal distri-

bution. In summary, we have 4 worker skill parameters

wj = [σj , p
m
j , p0j , p

1
j ] and one image difficulty parameter

di = σi. As described in Sec 4.1, we place a dataset-

wide Beta prior Beta (nβp
m, nβ(1− pm)) on pmj , where

pm is a worker agnostic probability of making a mistake

and an additional Beta prior Beta (nβp, nβ(1− p)) on pm.

Similarly, we place Scaled inverse chi-squared priors on

σ2
j and σ2

i , such that σ2
j ∼ scale− inv−χ2(nβ , σ

2) and

σ2
i ∼ scale− inv−χ2(nβ , σ

2) where σ2 is a dataset-wide

variance in click location.

Inferring worker and image parameters: These pri-

ors would lead to simple analytical solutions toward infer-

ring the maximum likelihood image difficulties (Eq. 5) and

worker skills (Eq. 6), if mij , eij , and θ were known. In

practice, we handle latent variables mij and eij using ex-

pectation maximization, with the maximization step over all

worker and image parameters, such that worker skill param-

eters are estimated as

σ2
i =

nβσ
2 +

∑

j∈Wi
(1− Eeij)(1− Emij)‖lij − li‖

2

nβ + 2 +
∑

j∈Wi
(1− Eeij)(1− Emij)

(11)

σ2
j =

nβσ
2 +

∑

i∈Ij
Eeij(1− Emij)‖lij − li‖

2

n+ 2 +
∑

i∈Ij
Eeij(1− Emij)

(12)

pmj =
nβp

m +
∑

i∈Ij
Emij

nβ + |Ij |
(13)

These expressions all have intuitive meaning of being like

standard empirical estimates of variance or binomial param-

eters, except that each example might be soft-weighted by

Emij or Eeij , and nβ synthetic examples have been added

from the global prior distribution. Expectations are then

Eeij =
gj

gi + gj
, Emij =

1/|xi|

1/|xi|+ (1− Eeij)gi + Eeijgj

gi = g(‖lij − li‖
2;σ2

i ), gj = g(‖lij − li‖
2;σ2

j ) (14)

We alternate between maximization and expectation steps,

where we initialize with Emij = 0 (i.e., assuming an anno-

tator didn’t make a mistake) and Eeij = .5 (i.e., assuming

worker noise and image difficulty have equal contribution).

Inferring true labels: Inferring ȳi (Eq. 4) must be done in

a more brute-force way due to the presence of the computer

vision term p(yi|xi, θ). Let Xi be a vector of length |xi| that

stores a probabilistic part detection map; that is, it stores the

value of p(yi|xi, θ) for each possible value of yi. Let Zij be

a corresponding vector of length |xi| that stores the value

of p(zij |yi, di, wj) at each pixel location (computed using

Eq. 101). Then the vector Yi = Xi

∏

j∈Wi
Zij densely

stores the likelihood of all possible values of yi, where prod-

ucts are assumed to be computed using component-wise

multiplication. The maximum likelihood label ȳi is simply

the argmax of Yi.

Computing risk: Let Li be a vector of length |xi| that

stores the loss ℓ(yi, ȳi) for each possible value of yi. We

assume a part prediction is incorrect if its distance from

ground truth is bigger than some radius (in practice, we

compute the standard deviation of Mechanical Turker click

responses on a per part basis and set the radius equal to 2

standard deviations). The risk associated with predicted la-

bel ȳi according to Eq. 8 is thenRi = L
T
i Yi/‖Yi‖1

4.3. MultiObject Bounding Box Annotations

Similar types of models that were used for part keypoints

can be applied to other types of continuous annotations like

bounding boxes. However, a significant new challenge is

introduced if multiple objects are present in the image, such

that each worker may label a different number of bounding

boxes, and may label objects in a different order. Checking

for finished labels means ensuring not only that the bound-

aries of each box is accurate, but also that there are no false

negatives or false positives.

Bounding box worker skill and image difficulty model:

An image annotation yi = {bri }
|Bi|
r=1 is composed of a

set of objects in the image where box bri is composed of

x,y,x2,y2 coordinates. Worker j’s corresponding annotation

zij = {b
k
ij}

|Bij |
k=1 is composed of a potentially different num-

ber |Bij | of box locations with different ordering. However,

if we can predict latent assignments {akij}
|Bij |
k=1 , where bkij is

worker j’s perception of true box b
ak
ij

i , we can model anno-

1In practice, we replace eij and mij with Eeij and Emij in Eq. 10,

which corresponds to marginalizing over latent variables eij and mij in-

stead of using maximum likelihood estimates
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Figure 3: Bounding box annotation sequences. The top sequence high-

lights a good case where only the computer vision system and one human

are needed to finish the image. The bottom sequence highlights the aver-

age case where two workers and the computer vision system are needed to

finish the image.

tation of a matched bounding box exactly as for keypoints,

where 2D vectors l have been replaced by 4D vectors b.
Thus as for keypoints the difficulty of image i is repre-

sented by a set of bounding box difficulties: di = {σ
r
i }

|Bi|
r=1,

which measure to what extent the boundaries of each object

in the image are inherently ambiguous. A worker’s skill

wj = {pfpj , pfnj , σj} encodes the probability pfpj that an an-

notated box bkij is a false positive (i.e., akij = ∅), the proba-

bility pfnj that a ground truth box bri is a false negative (i.e.,

∀k, a
k
ij 6= r), and the worker’s variance σ2

j in annotating

the exact boundary of a box is modeled as in Sec. 4.2. The

number of true positives ntp, false positives nfp, and false

negatives be nfn can be written as ntp =
∑|Bij |

k=1 1[akij 6= ∅],
nfn = |Bi| − ntp, nfp = |Bij | − ntp. This leads to annota-

tion probabilities

p(zij |yi, di, wj) =
∏

k=1...Bij ,a
k
ij
6=∅

g

(

∣

∣

∣

∣

b
ak
ij

i − bkij

∣

∣

∣

∣

2

;σk2

ij

)

(pfnj )nfn(1− pfnj )ntp(pfpj )nfp(1− pfpj )ntp (15)

As in the previous sections, we place dataset-wide priors on

all worker and image parameters.

Computer vision: We train a computer vision detector

based on MSC-MultiBox [32], which computes a short-

list of possible object detections and associated detection

scores: {(bki,cv,m
k
i,cv)}

|Bi,cv|
k=1 . We choose to treat computer

vision like a worker, with learned parameters [pfpcv, p
fn
cv, σcv].

The main difference is that we replace the false positive

parameter pfpcv with a per bounding box prediction of the

probability of correctness as a function of its detection score

mk
i,cv. The shortlist of detections is first matched to boxes

in the predicted label ȳi = {bri }
|Bi|
r=1. Let rki,cv be 1 or −1

if detected box bki,cv was matched or unmatched to a box

in ȳi. Detection scores are converted to probabilities using

Platt scaling and the validation sets described in Sec. 3.2.

Inferring true labels and assignments: We devise an ap-

proximate algorithm to solve for the maximize likelihood

label ȳi (Eq. 4) concurrently with solving for the best as-

signment variables akij between worker and ground truth

bounding boxes:

ȳi, ai = argmax
yi,ai

log
∑

j∈Wi

log p(zij |yi, di, wj) (16)

where p(zij |yi, di, wj) is defined in Eq. 15. We formu-

late the problem as a facility location problem [9], a type

of clustering problem where the objective is to choose a

set of ”facilities” to open up given that each ”city” must

be connected to a single facility. One can assign custom

costs for opening each facility and connecting a given city

to a given facility. Simple greedy algorithms are known

to have good approximation guarantees for some facility

location problems. In our formulation, facilities will be

boxes selected to add to the predicted combined label ȳi
and city-facility costs will be costs associated with assign-

ing a worker box to an opened box. Due to space limitations

we omit derivation details; however, we set facility open

costs Copen(bkij) =
∑

j∈Wi
− log pfnj and city-facility costs

Cmatch(bkij , b
k′

ij′) = − log(1−pfnj )+log pfnj −log(1−p
fp
j )−

log g(‖bkij−b
k′

ij′‖
2;σ2

j ) for matching worker box bkij to facil-

ity bk
′

ij′ , while not allowing connections where j = j′ unless

k = k′, j = j′. We add a dummy facility with open cost

0, such that cities matched to it correspond to worker boxes

that are false positives: Cmatch(bkij , dummy) = − log pfpj .

Computing risk: We assume that the loss ℓ(ȳi, yi) is de-

fined as the number of false positive bounding boxes plus

the number of false negatives, where boxes match if their

area of intersection over union is at least 50%. To simplify

calculation of risk (Eq. 8), we assume our inferred assign-

ments akij between worker boxes and true boxes are valid.

In this case, the risk Ri is the expected number of false

positives (computed by summing over each bri and comput-

ing the probability that it is a false positive according to

Eq. 15), the expected number of true positives that were too

inaccurate to meet the area of intersection over union crite-

rion (computed using the method described in Section 4.2),

and the expected number of false negatives in portions of

the image that don’t overlap with any true box bri . Compu-

tation of the latter is included in supplementary details due

to space limitations.

5. Experiments
We used a live version of our method to collect parts for

the NABirds dataset. Additionally, we performed ablation

studies on datasets for binary, part, and bounding box an-

notation based on simulating results from real-life MTurk

worker annotations.

Evaluation Protocol: For each image, we collected an

over-abundance of MTurk annotations per image which

were used to simulate results by adding MTurk annotations

in random order. For lesion studies, we crippled portions of

Algorithm 1 as follows: 1) We removed online crowdsourc-

ing by simply running lines 7-14 over the whole dataset
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Figure 4: Crowdsourcing Binary Classification Annotations: (a) Comparison of methods. Our full model prob-worker-cvonline-0.02 obtains results as

good as typical baselines with 15 workers (majority-vote and prob) using only 1.37 workers per image on average. (b) Histogram of the number of human

annotations required for each image. (c) The image on the left represents an average annotation situation where only the computer vision label and one

worker label are needed to confidently label the image. The image on the right (which is not a scorpion) represents a difficult case in which many workers

disagreed on the label.

with k workers per image and sweeping over choices of k,

2) We removed the worker skill, image difficulty model by

using dataset-wide priors, 3) We removed computer vision

by using label priors p(yi) instead of computer vision esti-

mates p(yi|xi, θ). As a baseline, the majority-vote method

in plots 4a,5a,5c shows what we consider to be the most

standard and commonly used method/baseline for crowd-

sourcing. For binary annotation, this selects the label with

the most worker votes. For parts, it selects the median

worker part location (i.e., the one that matches the most

other worker annotations with minimal loss). The same ba-

sic method is used for bounding boxes, adding a box if the

majority of workers drew a box that could be matched to

it. Fig. 4a,5a,5c show results for different lesioned meth-

ods. In each method name, the tag worker means that a

worker skill and image difficulty model was used, the tag

online means that online crowdsourcing was used (with pa-

rameter τǫ = .005, unless a different number appears in the

method name), the tag cvnaive means that a naive method

to incorporate computer vision was used (by treating com-

puter vision like a human worker, see Sec. 3.2), and the

tag cv means that computer vision probabilities described

in Sec. 4.1-4.2,4.3 were used.

Binary Annotation: We collected 3 datasets (scorpions,

beakers, and cardigan sweaters) which we believe to be rep-

resentative of the way datasets like ImageNet[5] and CUB-

200-2011[41] were collected. For each category, we col-

lected 4000 Flickr images by searching for the category

name. 15 MTurkers per image were asked to filter search re-

sults. We obtained ground truth labels by carefully annotat-

ing images ourselves. Fig. 4a summarizes performance for

the scorpion category (which is typical, see supplementary

material for results on more categories), whereas Fig. 4c

shows qualitative examples.

The full model prob-worker-cvonline-0.02 obtained re-

sults as good as typical baselines with 15 workers (majority-

vote and prob) using only 1.37 workers per image on av-

erage. The method prob-online corresponds to the online

crowdsourcing method of Welinder et al. [45], which used

5.1 workers per image and resulted in an error of 0.045; our

full method prob-worker-cvonline-0.005 obtained lower er-

ror 0.041 with only 1.93 workers per image. We see that

incorporating a worker skill model reduced converged er-

ror by about 33% (comparing prob-worker to majority-vote

or prob). Adding online crowdsourcing roughly halved

the number of annotations required to obtain compara-

ble error (comparing prob-worker-online vs. prob-worker).

Adding computer vision reduced the number of annotations

per image by an additional factor of 2.4 with compara-

ble error (comparing prob-worker-cvonline-0.005 to prob-

worker-online). It also reduced annotations by a factor

of 1.8 compared to the naive method of using computer

vision (prob-worker-cvnaive-online), showing that using

computer vision confidence estimates is useful. Interest-

ingly, in Fig. 4b we see that adding computer vision al-

lowed many images to be predicted confidently using no

worker labels. Lastly, comparing prob-worker-cvonline-

0.02 to prob-worker-cvonline-0.005, which resulted in er-

rors of 0.051 and 0.041, respectively, and 1.37 vs. 1.93
workers per image, we see that the error tolerance param-

eter τǫ offers an intuitive parameter to tradeoff annotation

time and quality.

Bounding Box Annotation: To evaluate bounding box an-

notation, we used a 1448 image subset of the Caltech Road-

side Pedestrian dataset [11]. We obtained ground truth an-

notations and 7 MTurk annotations per image from the cre-

ators of the dataset. We incur error for all false positives and

negatives using a .5 IOU overlap criterion.

In Fig. 5a we see that the full model prob-worker-

cvonline-0.02 obtained slightly lower error than majority-

vote while using only 1.97 workers per image. This is en-

couraging given that most publicly available crowdsourcing
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Figure 5: Crowdsourcing Multi-Object Bounding Box and Part Annotations: (a) Our full model prob-worker-cvonline-0.02 obtains slightly lower

error than majority-vote while using only 1.97 workers per image. (b) Histogram of the number of human annotators per image. (c) The worker skill model

(prob-worker) led to 10% reduction in error over the majority-vote baseline, and the online model cut annotation time roughly in half. (d) Histogram of the

number of human annotators per part.

tools for bounding box annotation use simple crowdsourc-

ing methods. Incorporating a probabilistic model (compar-

ing prob to majority-vote) reduced the error by a factor of

2, demonstrating that it is useful to account for probabili-

ties of false positive and false negative boxes, and precision

in drawing box boundaries. Online crowdsourcing reduced

the number of required workers per image by a factor of 1.7

without increasing error (comparing prob-worker-online to

prob-worker), while adding computer vision (method prob-

worker-online-.005) reduced annotation by an additional

29%. Examining Fig. 5b, we see that computer vision al-

lowed many images to be be confidently annotated with a

single human worker. The naive computer vision method

prob-worker-cvnaive-online performed as well as our more

complicated method.

Part Annotation: To evaluate part keypoint annotation, we

used the 1000 image subset of the NABirds dataset [34], for

which a detailed analysis comparing experts to MTurkers

was performed in [34]. This subset contained 10 MTurker

labels per image of 11 semantic keypoint locations as well

as expert part labels. Although our algorithm processed

each part independently, we report error averaged over all

11 parts, using the loss defined in Sec. 4.2. We did not im-

plement a computer vision algorithm for parts; however, a

variant of our algorithm (prob-worker-online) was used by

the creators of the dataset to collect its published part anno-

tations (11 parts on 55,000 images), using only 2.3 worker

annotations per part on average.

Simulated results on the 1000 image subset are shown in

Fig. 5c. We see that the worker skill model (prob-worker)

led to 10% reduction in error over the majority-vote base-

line, and online model cut annotation time roughly in half,

with most parts finishing with 2 worker clicks (Fig.4b)

Discussion and Failure Cases: All crowdsourcing meth-

ods resulted in some degree of error when crowd labels

converged to something different than expert labels. The

most common reason was ambiguous images. For exam-

ple, most MTurkers incorrectly thought scorpion spiders (a

type of spider resembling scorpions) were actual scorpions.

Visibility of a part annotation can become ambiguous as an

object rotates from frontal to rear view. However, all vari-

ants of our method (with and without computer vision, with

and without online crowdsourcing) resulted in higher qual-

ity annotations than majority vote (which is commonly used

for many computer vision datasets). Improvement in anno-

tation quality came primarily from modeling worker skill.

Online crowdsourcing can increase annotation errors; how-

ever, it does so with an interpretable parameter for trading

off annotation time and error. Computer vision also reduces

annotation time, with greater gains coming as dataset size

increases.

6. Conclusion

In this work, we introduced crowdsourcing algorithms

and online tools for collecting binary, part, and bounding

box annotations. We showed that each component of the

system–a worker skill / image difficulty model, an online

stoppage criterion for collecting a variable number of anno-

tations per image, and integration of computer vision in the

loop–, each led to significant reductions in annotation time

and/or annotation error for each type of annotation. In fu-

ture work, we plan to extend the approach to other types of

annotation like segmentation and video, use inferred worker

skill parameters to block spammers or choose which worker

should annotate an image, and incorporate active learning

criteria to choose which images to annotate next or choose

between different types of user interfaces.
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