
Detecting Visual Relationships with Deep Relational Networks

Bo Dai Yuqi Zhang Dahua Lin

Department of Information Engineering, The Chinese University of Hong Kong

db014@ie.cuhk.edu.hk zy016@ie.cuhk.edu.hk dhlin@ie.cuhk.edu.hk

Abstract

Relationships among objects play a crucial role in image

understanding. Despite the great success of deep learn-

ing techniques in recognizing individual objects, reason-

ing about the relationships among objects remains a chal-

lenging task. Previous methods often treat this as a clas-

sification problem, considering each type of relationship

(e.g. “ride”) or each distinct visual phrase (e.g. “person-

ride-horse”) as a category. Such approaches are faced with

significant difficulties caused by the high diversity of visual

appearance for each kind of relationships or the large num-

ber of distinct visual phrases. We propose an integrated

framework to tackle this problem. At the heart of this frame-

work is the Deep Relational Network, a novel formulation

designed specifically for exploiting the statistical depen-

dencies between objects and their relationships. On two

large data sets, the proposed method achieves substantial

improvement over state-of-the-art.

1. Introduction

Images in the real world often involve multiple objects

that interact with each other. To understand such images,

being able to recognize individual objects is generally not

sufficient. The relationships among them also contain cru-

cial messages. For example, image captioning, a popular

application in computer vision, can generate richer captions

based on relationships in addition to objects in the images.

Thanks to the advances in deep learning, the past several

years witness remarkable progress in several key tasks in

computer vision, such as object recognition [2], scene clas-

sification [3], and attribute detection [4]. However, visual

relationship detection remains a very difficult task. On Vi-

sual Genome [5], a large dataset designed for structural

image understanding, the state-of-the-art can only obtain

11.79% of Recall@50 [1]. This performance is clearly far

from being satisfactory.

A natural approach to this problem is to treat it as a clas-

sification task. Early attempts [6] used to consider different

combinations of objects and relationship predicates (known
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Figure 1: Visual relationships widely exist in real-world images.

Here are some examples from the VRD [1] dataset, with relation-

ship predicates “sit” and “carry”. We develop a method that can

effectively detect such relationships from a given image. On top

of that, a scene graph can be constructed.

as visual phrases) as different classes. While it may work in

a restricted context where the number of possible combina-

tions is moderate, such strategy would be met with a funda-

mental difficulty in general – an extremely large number of

imbalanced classes. As a case in point, Visual Genome [5]

contains over 75K distinct visual phrases, and the number

of samples for each phrase ranges from just a handful to

over 10K. Even the most sophisticated classifier would suf-

fer facing such a large and highly imbalanced class space.

An alternative strategy is to consider each type of re-
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lationship predicates as a class. Whereas the number of

classes is drastically smaller, along with this change also

comes with an undesirable implication, namely the substan-

tially increased diversity within each class. To be more spe-

cific, phrases with different object categories are considered

to be in the same class, as long as they have the same type of

relationship predicates. Consequently, the images in each

class are highly diverse – some images in the same class

may even share nothing in common, e.g. “mountain-near-

river” and “person-near-dog”. See Figure 1 for an illus-

tration. Our experiments suggest that even with the model

capacity of deep networks, handling the intra-class diversity

at this level remains very difficult.

In this work, we develop a new framework to tackle the

problem of visual relationship detection. This framework

formulates the prediction output as a triplet in the form of

(subject, predicate, object), and jointly infers their class

labels by exploiting two kinds of relations among them,

namely spatial configuration and statistical dependency.

Such relations are ubiquitous, informative, and more impor-

tantly they are often more reliable than visual appearance.

It is worth emphasizing that the formulation of the pro-

posed model is significantly different from previous rela-

tional models such as conditional random fields (CRFs)

[7]. Particularly, in our formulation, the statistical inference

procedure is embedded into a deep neural network called

Deep Relational Network (DR-Net) via iteration unrolling.

The formulation of DR-Net moves beyond the conventional

scope, extending the expressive power of Deep Neural Net-

works (DNNs) to relational modeling. This new way of for-

mulation also allows the model parameters to be learned in

a discriminative fashion, using the latest techniques in deep

learning. On two large datasets, the proposed framework

outperforms not only the classification-based methods but

also the CRFs based on deep potentials.

To sum up, the major contributions of this work consist

in two aspects: (1) DR-Net, a novel formulation that com-

bines the strengths of statistical models and deep learning;

and (2) an effective framework for visual relationship de-

tection1, which brings the state-of-the-art to a new level.

2. Related Work

Over the past decade, there have been a number of stud-

ies that explore the use of visual relationships. Earlier ef-

forts often focus on specific types of relationships, such as

positional relations [8–12] and actions (i.e. interactions be-

tween objects) [13–23]. In most of these studies, relation-

ships are usually extracted using simple heuristics or hand-

crafted features, and used as an auxiliary components to fa-

cilitate other tasks, such as object recognition [24–32], im-

age classification and retrieval [33,34], scene understanding

1code available at github.com/doubledaibo/drnet

and generation [35–41], as well as text grounding [42–44].

They are essentially different from our work, which aims to

provide a method dedicated to generic visual relationship

detection. On a unified framework, our method can recog-

nize a wide variety of relationships, such as relative posi-

tions (“behind”), actions (“eat”), functionals (“part of”),

and comparisons (“taller than”).

Recent years have seen new methods developed specifi-

cally for detecting visual relationships. An important fam-

ily of methods [6,45,46] consider each distinct combination

of object categories and relationship predicates as a distinct

class (often referred to as a visual phrase). Such methods

would face difficulties in a general context, where the num-

ber of such combinations can be very large. An alternative

paradigm that considers relationship predicates and object

categories separately becomes more popular in recent ef-

forts. Vedantam et al. [47] presented a study along this

line using synthetic clip-arts. This work, however, relies

on multiple synthetic attributes that are difficult to obtain

from natural images. Fang et al. [48] proposed to incorpo-

rate relationships in an image captioning framework. This

work treats object categories and relationship predicates

uniformly as words, and does not discuss how to tackle the

various challenges in relationship detection.

The method proposed recently by Lu et al. [1] is the most

related. In this method, pairs of detected objects are fed to

a classifier, which combines appearance features and a lan-

guage prior for relationship recognition. Our method differs

in two aspects: (1) We exploit both spatial configurations

and statistical dependencies among relationship predicates,

subjects, and objects, via a Deep Relational Network, in-

stead of simply fusing them as different features. (2) Our

framework, from representation learning to relational mod-

eling, is integrated into a single network that is learned in

an end-to-end fashion. Experiments show that the proposed

framework performs substantially better in all different task

settings. For example, on two large datasets, the Recall@50

of relationship predicate recognition are respectively raised

from 47.9% to 80.8% and from 53.5% to 88.3%.

3. Visual Relationship Detection

Visual relationships play a crucial role in image under-

standing. Whereas a relationship may involve multiple par-

ties in general, many important relationships, including rel-

ative positions (e.g. “above”) and actions (e.g. “ride”) oc-

cur between exactly two objects. In this paper, we focus

on such relationships. In particular, we follow a widely

adopted convention [1, 6] and characterize each visual re-

lationship by a triplet in the form of (s, r, o), e.g. (girl, on,

horse) and (man, eat, apple). Here, s, r, and o respectively

denote the subject category, the relationship predicate, and

the object category. The task is to locate all visual relation-

ships from a given image, and infer the triplets.
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Figure 2: The proposed framework for visual relationship detection. Given an image, it first employs an object detector to locate individual

objects. Each object also comes with an appearance feature. For each pair of objects, the corresponding local regions and the spatial masks

will be extracted, which, together with the appearance features of individual objects, will be fed to the DR-Net. The DR-Net will jointly

analyze all aspects and output qs, qr , and qo, the predicted category probabilities for each component of the triplet. Finally, the triplet

(s, r, o) will be derived by choosing the most probable categories for each component.

3.1. Overall Pipeline

As mentioned, there are two different paradigms for rela-

tionship detection: one is to consider each distinct triplet as

a different category (also known as visual phrases [6]), the

other is to recognize each component individually. The for-

mer is not particularly suitable for generic applications, due

to difficulties like the excessively large number of classes

and the imbalance among them. In this work, we adopt the

latter paradigm and aim to take its performance to a next

level. Particularly, we focus on developing a new method

that can effectively capture the rich relations (both spatial

and semantic) among the three components in a triplet and

exploit them to improve the prediction accuracy.

As shown in Figure 2, the overall pipeline of our frame-

work comprises three stages, as described below.

(1) Object detection. Given an image, we use an object

detector to locate a set of candidate objects. In this work,

we use Faster RCNN [2] for this purpose. Each candidate

object comes with a bounding box and an appearance fea-

ture, which will be used in the joint recognition stage for

predicting the object category.

(2) Pair filtering. The next step is to produce a set of

object pairs from the detected objects. With n detected ob-

jects, we can form n(n − 1) pairs. We found that a con-

siderable portion of these pairs are obviously meaningless

and it is unlikely to recognize important relationships there-

from. Hence, we introduce a low-cost neural network to

filter out such pairs, so as to reduce the computational cost

of the next stage. This filter takes into account both the

spatial configurations (e.g. objects too far away are unlikely

to be related) and object categories (e.g. certain objects are

unlikely to form a meaningful relationship).
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Figure 3: This figure illustrates the process of spatial feature vec-

tor generation. The structure of our spatial module is also pre-

sented in this figure.

(3) Joint recognition. Each retained pair of objects will

be fed to the joint recognition module. Taking into account

multiple factors and their relations, this module will pro-

duce a triplet as the output.

3.2. Joint Recognition

In joint recognition, multiple factors are taken into con-

sideration. These factors are presented in detail below.

(1) Appearance. As mentioned, each detected object

comes with an appearance feature, which can be used to in-

fer its category. In addition, the type of the relationship may

also be reflected in an image visually. To utilize this infor-

mation, we extract an appearance feature for each candidate

pair of objects, by applying a CNN [49, 50] to an enclos-

ing box, i.e. a bounding box that encompasses both objects

with a small margin. The appearance inside the enclosing

box captures not only the objects themselves but also the

surrounding context, which is often useful when reasoning
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about the relationships.

(2) Spatial Configurations. The relationship between

two objects is also reflected by the spatial configurations

between them, e.g. their relative positions and relative sizes.

Such cues are complementary to the appearance of individ-

ual objects, and resilient to photometric variations, e.g. the

changes in illumination.

To leverage the spatial configurations, we are facing a

question: how to represent it in a computer? Previous

work [9] suggests a list of geometric measurements. While

simple, this way may risk missing certain aspects of the con-

figurations. In this work, we instead use dual spatial masks

as the representation, which comprise two binary masks,

one for the subject and the other for the object. The masks

are derived from the bounding boxes and may overlap with

each other, as shown in Figure 3. The masks are down-

sampled to the size 32× 32, which we found empirically is

a good balance between fidelity and cost. (We have tried

mask sizes of 8, 16, 32, 64 and 128, resulting top-1 re-

calls are 0.47, 0.48, 0.50, 0.51 and 0.51.) The dual spa-

tial masks for each candidate pair will be compressed into a

64-dimensional vector via three convolutional layers.

(3) Statistical Relations. In a triplet (s, r, o), there ex-

ist strong statistical dependencies between the relationship

predicate r and the object categories s and o. For example,

(cat, eat, fish) is common, while (fish, eat, cat) or (cat, ride,

fish) is very unlikely. On Visual Genome, the entropy of the

prior distribution p(r) is 2.88, while that of the conditional

distribution p(r|s, o) is 1.21. This difference is a clear evi-

dence of the statistical dependency.

To exploit the statistical relations, we propose Deep Re-

lational Network (DR-Net), a novel formulation that incor-

porates statistical relational modeling into a deep neural net-

work framework. In our experiments, we found that the

use of such relations can effectively resolve the ambiguities

caused by visual or spatial cues, thus substantially improv-

ing the prediction accuracy.

(4) Integrated Prediction. Next, we describe how these

factors are actually combined. As shown in Figure 2, for

each candidate pair, the framework extracts the appearance

feature and the spatial feature, respectively via the appear-

ance module and the spatial module. These two features

are subsequently concatenated and further compressed via

two fully-connected layers. This compressed pair feature,

together with the appearance features of individual objects

will be fed to the DR-Net for joint inference. Through mul-

tiple inference units, whose parameters capture the statis-

tical relations among triplet components, the DR-Net will

output the posterior probabilities of s, r, and o. Finally, the

framework produces the prediction by choosing the most

probable classes for each of these components.

In the training, all stages in our framework, namely ob-

ject detection, pair filtering and joint recognition are trained

respectively. As for joint recognition, different factors will

be integrated into a single network and jointly fine-tuned to

maximize the joint probability of the ground-truth triplets.

4. Deep Relational Network

As shown above, there exist strong statistical relations

among the object categories s and o and the relationship

predicates r. Hence, to accurately recognize visual relation-

ships, it is important to exploit such information, especially

when the visual cues are ambiguous.

4.1. Revisit of CRF

The Conditional Random Field (CRF) [7] is a classical
formulation to incorporate statistical relations into a dis-
criminative task. Specifically, for the task of recognizing
visual relationships, the CRF can be formulated as

p(r, s, o|xr,xs,xo) =
1

Z
exp (Φ(r, s, o|xr,xs,xo;W)) . (1)

Here, xr is the compressed pair feature that combines both
the appearance of the enclosing box and the spatial configu-
rations; xs and xo are the appearance features respectively
for the subject and the object; W denotes the model pa-
rameters; and Z is the normalizing constant, whose value
depends on the parameters W. The joint potential Φ can be
expressed as a sum of individual potentials as

Φ = ψa(s|xs;Wa) + ψa(o|xo;Wa) + ψr(r|xr;Wr)

+ ϕrs(r, s|Wrs) + ϕro(r, o|Wro) + ϕso(s, o|Wso). (2)

Here, the unary potential ψa associates individual objects

with their appearance; ψr associates the relationship pred-

icate with the feature xr; while the binary potentials ϕrs,

ϕro and ϕso capture the statistical relations among the rela-

tionship predicate r, the subject category s, and the object

category o.

CRF formulations like this have seen wide adoption in

computer vision literatures [51, 52] over the past decade,

and have been shown to be a viable way to capture statisti-

cal dependencies. However, the success of CRF is limited

by several issues: First, learning CRF requires computing

the normalizing constant Z, which can be very expensive

and even intractable, especially when cycles exist in the un-

derlying graph, like the formulation above. Hence, approxi-

mations are often used to circumvent this problem, but they

sometimes result in poor estimates. Second, when cyclic

dependencies are present, variational inference schemes

such as mean-field methods [53] and loopy belief propa-

gation [54], are widely used to simplify the computation.

This often leaves a gap between the objective of inference

and that of training, thus leading to suboptimal results.

4.2. From CRF to DRNet

Inspired by the success of deep neural networks [49,50],

we explore an alternative approach to relational modeling,

that is, to unroll the inference into a feed-forward network.
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Consider the CRF formulated above. Given s and o, then

the posterior distribution of r is given by

p(r|s, o,xr;W) ∝ exp (ψr(r|xr;Wr)+

ϕrs(r, s|Wrs) + ϕro(r, o|Wro)) . (3)

In typical formulations, ψr(r|xr) is often devised to be a

linear functional of xr for each r. Let Wrs and Wro be

matrices such that Wrs(r, s) = ϕrs(r, s) and Wro(r, o) =
ϕro(r, o), and let qr be a vector of the posterior probabili-

ties for r, then the formula above can be rewritten as2

qr = σ (Wrxr +Wrs1s +Wro1o) . (4)

Here, σ denotes the softmax function. 1s and 1o are one-

hot indicator vectors for s and o. It can be shown that this

is the optima to the optimization problem below:

max
q

Eq [ψr(r|xr;Wr)+

ϕrs(r, s|Wrs) + ϕro(r, o|Wro)] +Hq(q). (5)

Based on this optimization problem, the solution given in

Eq.(4) can be generalized to the case where s and o are not

deterministic and the knowledge of them are instead given

by probabilistic vectors qs and qo, as follows:

qr = σ (Wrxr +Wrsqs +Wroqo) . (6)

Similar derivation also applies to the inference of s and o

conditioned on other components. Together, we can obtain

a set of updating formulas as below:

q′

s = σ (Waxs +Wsrqr +Wsoqo) ,

q′

r = σ (Wrxr +Wrsqs +Wroqo) ,

q′

o = σ (Waxo +Wosqs +Worqr) . (7)

These formulas take the current probability vectors qs, qr,

and qo as inputs, and output the updated versions q′

s, q′

r and

q′

o. From the perspective of neural networks, these formu-

las can also be viewed as a computing layer. In this sense,

the iterative updating procedure can be unrolled into a net-

work that comprises a sequence of such layers. We call this

network the Deep Relational Network (DR-Net), as it relates

multiple variables, and refer to its building blocks, i.e. the

computing layers mentioned above, as inference units.

Discussion DR-Net is for relational modeling, which is

different from those methods for feature/modality combina-

tion. Specifically, object categories and relationship predi-

cates are two distinct domains that are statistically related.

The former is not an extra feature of the latter; while the lat-

ter is not a feature of the former either. DR-Net captures the

2A proof of this statement is provided in the supplemental materials.

relations between them via the links in the inference units,

rather than combining them using a fusion layer.

The basic formulation in Eq.7 comes with several sym-

metry constraints: Wsr = WT
rs, Wso = WT

os, and

Wro = WT
or. In addition, all inference units share the

same set of weights. However, from a pragmatic standpoint,

one may also consider lifting these constraints, e.g. allow-

ing each inference units to have their own weights. This

may potentially increase the expressive power of the net-

work. We will compare these two settings, namely with and

without weight sharing, in our experiments.

A DR-Net can also be considered as a special form of the

Recurrent Neural Network (RNN) – at each step it takes in

a fixed set of inputs, i.e. the observed features xs, xr, and

xo, and refines the estimates of posterior probabilities.

4.3. Comparison with Other Formulations

There are previous efforts that also explore the incorpo-

ration of relational structures with deep networks [51, 55–

57]. The deep structured models presented in [55, 56, 58]

combine a deep network with an MRF or CRF on top to cap-

ture the relational structures among their outputs. In these

works, classical message-passing methods are used in train-

ing and inference. Zheng et al. [51] proposed a framework

for image segmentation, which adopts an apparently similar

idea, that is, to reformulate a structured model into a neural

network by turning inference updates into neural layers. In

addition to the fact that this work is in a fundamentally dif-

ferent domain (high-level understanding vs. low-level vi-

sion), they focused on capturing dependencies among el-

ements in the same domain, e.g. those among pixel-wise

labels. From a technical view, DR-Net is more flexible,

e.g. it can handle graphs with nodes of different cardinal-

ities and edges of different types. In [51], the message pass-

ing among pixels is approximately instantiated using CNN

filters and this is primarily suited for grid structures; while

in DR-Net, the inference steps are exactly reproduced us-

ing fully-connected layers. Hence, it can be applied to cap-

ture relationships of arbitrary structures. SPENs introduced

in [57] define a neural network serving as an energy func-

tion over observed features for multi-label classification.

SPENs are used to measure the consistency of configura-

tions, while DR-Net is used to find a good configuration of

variables. Also, no inference unrolling is involved in SPENs

learning.

5. Experiments

We tested our model on two datasets: (1) VRD: the

dataset used in [1], containing 5, 000 images and 37, 993 vi-

sual relationship instances that belong to 6, 672 triplet types.

We follow the train/test split in [1]. (2) sVG: a substantially

larger subset constructed from Visual Genome [5]. sVG

contains 108K images and 998K relationship instances that
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Predicate Recognition Union Box Detection Two Boxes Detection

Recall@50 Recall@100 Recall@50 Recall@100 Recall@50 Recall@100
V

R
D

VP [6] 0.97 1.91 0.04 0.07 - -

Joint-CNN [48] 1.47 2.03 0.07 0.09 0.07 0.09

VR [1] 47.87 47.87 16.17 17.03 13.86 14.70

DR-Net 80.78 81.90 19.02 22.85 16.94 20.20

DR-Net + pair filter - - 19.93 23.45 17.73 20.88

sV
G

VP [6] 0.63 0.87 0.01 0.01 - -

Joint-CNN [48] 3.06 3.99 1.24 1.60 1.21 1.58

VR [1] 53.49 54.05 13.80 17.39 11.79 14.84

DR-Net 88.26 91.26 20.28 25.74 17.51 22.23

DR-Net + pair filter - - 23.95 27.57 20.79 23.76

Table 1: Comparison with baseline methods, using Recall@50 and Recall@100 as the metrics. We use “-” to indicate “not applicable”.

For example, no results are reported for DR-Net + pair filter on Predicate Recognition, as in this setting, pairs are given, and thus pair

filtering can not be applied. Also, no results are reported for VP on Two Boxes detection, as VP detects the entire instance as a single entity.

A1 A2 S A1S A1SC A1SD A2SD A2SDF

V
R

D Predicate Recognition 63.39 65.93 64.72 71.81 72.77 80.66 80.78 -

Union Box Detection 12.01 12.56 13.76 16.04 16.37 18.15 19.02 19.93

Two Boxes Detection 10.71 11.22 12.16 14.38 14.66 16.12 16.94 17.73

sV
G

Predicate Recognition 72.13 72.54 75.18 79.10 79.18 88.00 88.26 -

Union Box Detection 13.24 13.84 14.01 16.04 16.08 20.21 20.28 23.95

Two Boxes Detection 11.35 11.98 12.07 13.77 13.81 17.42 17.51 20.79

Table 2: Comparison of different variants of the proposed method, using Recall@50 as the metric.

belong to 74, 361 triplet types. All instances are randomly

partitioned into disjoint training and testing sets, which re-

spectively contain 799K and 199K instances.

5.1. Experiment Settings

Model training. In all experiments, we trained our model

using Caffe [59]. The appearance module is initialized with

a model pre-trained on ImageNet, while the spatial module

and the DR-Net are initialized randomly. After initializa-

tion, the entire network is jointly optimized using SGD.

Performance metrics. Following [1], we use Recall@K

as the major performance metric, which is the the fraction

of ground-truth instances that are correctly recalled in top

K predictions. Particularly, we report Recall@100 and Re-

call@50 in our experiments. The reason of using recall

instead of precision is that the annotations are incomplete,

where some true relationships might be missing.

Task settings. Like in [1], we studied three task settings:

(1) Predicate recognition: this task focuses on the accu-

racy of predicate recognition, where the labels and the lo-

cations of both the subject and object are given. (2) Union

box detection: this task treats the whole triplet as a union

bounding box. A prediction is considered correct if all three

elements in a triplet (s, r, o) are correctly recognized, and

the IoU between the predicted box and the ground-truth is

above 0.5. (3) Two boxes detection: this is similar to the

one above, except that it requires the IoU metrics for the

subject and the object are both above 0.5. This is relatively

more challenging.

5.2. Comparative Results

Compare with baselines. We compared our method with

the following methods under all three task settings outlined

above. (1) Visual Phrase(VP) [6]: a representative ap-

proach that treats each distinct triplet as a different class.

and employs a DPM detector [60] for each class. (2) Joint-

CNN [48]: a neural network [49] that has 2N+K-way out-

puts, jointly predicts the class responses for subject, ob-

ject, and relationship predicate. (3) Visual Relationship

(VR) [1]: This is the state-of-the-art and is the most closely

related work.

Table 1 compares the results. On both datasets, we ob-

served: (1) VP [6] performs very poorly, failing in most

cases, as it is difficult to cope with such a huge and imbal-

anced class space. (2) Joint-CNN [48] also works poorly, as

it’s hard for the CNN to learn a common feature representa-

tion for both relationship predicates and objects. (3) VR [1]

performs substantially better than the two above. However,

the performance remains unsatisfactory. (4) The proposed

method outperforms the state-of-the-art method VR [1] by a

considerable margin in all three tasks. Compared to VR, it

improves the Recall@100 of predicate recognition by over
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VR [1] (sky, in, water) (giraffe, have, tree) (woman, ride, bicycle) (cat, have, hat)

A1 (sky, on, water) (giraffe, have, tree) (woman, behind, bicycle) (cat, on, hat)

S (sky, above, water) (giraffe, in, tree) (woman, wear, bicycle) (cat, have, hat)

A1S (sky, above, water) (giraffe, behind, tree) (woman, wear, bicycle) (cat, have, hat)

A1SC (sky, above, water) (giraffe, behind, tree) (woman, ride, bicycle) (cat, have, hat)

A1SD (sky, above, water) (giraffe, behind, tree) (woman, ride, bicycle) (cat, wear, hat)

Table 3: This table lists predicate recognition results for some object pairs. Images containing these pairs are listed in the first row, where

the red and green boxes respectively correspond to the subjects and the objects. The most probable predicate predicted by different methods

are listed in the following rows, in which black indicates wrong prediction and red indicates correct prediction.
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Figure 4: This figure shows the performance on the union-box

detection task with different IoU thresholds.

30% on both datasets. Thanks to the remarkably improved

accuracy in recognizing the relationship predicates, the per-

formance gains on the other two tasks are also significant.

(5) Despite the significant gain compared to others, the re-

calls on union box detection and two boxes detection re-

mains weak. This is primarily ascribed to the limitations of

the object detectors. As shown in Figure 4, we observe that

the object detector can only obtain about 30% of object re-

call, measured by Recall@50. To improve on these tasks, a

more sophisticated object detector is needed.

Compare different configs. We also compared differ-

ent variants of the proposed method, in order to iden-

tify the contributions of individual components listed be-

low: (1)Pair (F)ilter: the pair filter discussed in section

3, used to filter out object pairs with trivial relationships.

(2)(A)ppearance Module: the appearance module, which

has two versions, A1: based on VGG16 [49], which is also

the network used in VR [1], A2: based on ResNet101 [50].

(3)(S)patial Module: the network to capture the spatial

configs, as mentioned in section 3. (4)(C)RF: a classical

CRF formulation, used as a replacement of the DR-Net to

capture statistical dependencies. (5)(D)R-Net: the DR-Net

discussed in section 4. The name of a configuration is the

concatenation of abbrevations of involved components, e.g.,

the configuration named A1SC contains an appearance mod-

ule based on VGG16, a spatial module, and a CRF.

In Table 2, we compared A1, A2, S, A1S, A1SC, A1SD,

A2SD and A2SDF. The results show: (1) Using better net-

works (ResNet-101 vs. VGG16) can moderately improve

the performance. However, even with state-of-the-art net-

work A2, visual relationship detection could not be done

effectively using appearance information alone. (2) The

combination of appearance and spatial configs considerably

outperforms each component alone, suggesting that visual

appearances and spatial configurations are complementary

to each other. (3) The statistical dependencies are impor-

tant. However, CRF is not able to effectively exploit them.

With the use of DR-Net, the performance gains are signif-

icant. We evaluated the perplexities of the predictions for

our model with and without DR-Net, which are 2.64 and

3.08. These results show the benefit of exploiting statistical

dependencies for joint recognition.

Table 3 further shows the predicted relationships on sev-

eral example images. The first two columns show that the

incorporation of spatial configuration can help detect posi-

tional relationships. The third column shows that the use

of statistical dependencies can help to resolve the ambigu-

ities in the relationship predicates. Finally, the fourth col-

umn shows that for subtle cases, DR-Net can identify the

relationship predicate more accurately than the config that

relies on CRF.
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Figure 5: This figure shows the recall curves of two possible set-

tings in DR-Net. In each setting, we change the number of infer-

ence units to see how the recall changes.

Average Similarity

VR [1] A1 S A1S A1SD

0.2076 0.2081 0.2114 0.2170 0.2271

Table 4: This table lists the average similarities between gener-

ated scene graphs and the ground truth. All methods are named

after their visual relationship detectors.

Compare architectural choices. This study is to com-

pare the effect of different choices in the DR-Net architec-

ture. The choices we study here include: the number of in-

ference units and whether the relational weights are shared

across these units. The comparison is conducted on sVG.

Figure 5 shows the resultant curves. From the results

we can see: (1) On both settings, the recall increases as

the number of inference units increases. The best model

can improve the recall from 56% to 73%, as the number

of inference units increases. With weight sharing, the re-

call saturates with 12 inference units; while without sharing,

the recall increases more rapidly, and saturates when it has

8 inference units. (2) Generally, with same number of in-

ference units, the network without weight sharing performs

relatively better, due to the greater expressive power.

5.3. Scene Graph Generation

Our model for visual relationship detection can be used

for scene graph generation, which can serve as the basis for

many tasks, e.g. image captioning [61, 62], visual question

answering [63] and image retrieval [9].

The task here is to generate a directed graph for each

image that captures objects, object attributes, and the rela-

tionships between them [9]. See Figure 6 for an illustration.

We compared several configs of our method, including A1,

S, A1S and A1SD, with VR [1] on this task, on a dataset

sVG-a, which extends sVG with attribute annotations. All

methods are augmented with an attribute recognizer.

For each test image, we measure the similarity [64] be-

tween the generated scene graph and the ground truth. We
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nextto
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Figure 6: This figure illustrates some images and their corre-

sponding scene graphs. The scene graphs are generated according

to section 5.3. In the scene graphs, the black edges indicate wrong

prediction, and the red edges indicate correct prediction.

report average similarity over all test images as our metric.

Table 4 compares the results of these approaches, where

A1SD achieves the best result. This comparison indicates

that with better relationship detection, one can obtain better

scene graphs.

6. Conclusion

This paper presented a new framework for visual rela-

tionship detection, which integrates a variety of cues: ap-

pearance, spatial configurations, as well as the statistical

relations between objects and relationship predicates. At

the heart of this framework is the Deep Relational Network

(DR-Net), a novel formulation that extends the expressive

power of deep neural networks to relational modeling. On

Visual Genome, the proposed method not only outperforms

the state of the art by a remarkable margin, but also yields

promising results in scene graph generation, a task that rep-

resents higher level of image understanding. These experi-

mental results clearly demonstrate the significance of statis-

tical relations in visual relationship detection, and DR-Net’s

strong capability in modeling complex relations.
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