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Abstract

Variable Projection (VarPro) is a framework to solve op-

timization problems efficiently by optimally eliminating a

subset of the unknowns. It is in particular adapted for Sep-

arable Nonlinear Least Squares (SNLS) problems, a class

of optimization problems including low-rank matrix factor-

ization with missing data and affine bundle adjustment as

instances. VarPro-based methods have received much at-

tention over the last decade due to the experimentally ob-

served large convergence basin for certain problem classes,

where they have a clear advantage over standard methods

based on Joint optimization over all unknowns. Yet no clear

answers have been found in the literature as to why VarPro

outperforms others and why Joint optimization, which has

been successful in solving many computer vision tasks, fails

on this type of problems. Also, the fact that VarPro has

been mainly tested on small to medium-sized datasets has

raised questions about its scalability. This paper intends to

address these unsolved puzzles.

1. Introduction

Optimization methods play an ubiquitous role in com-

puter vision and related fields, and improvements in their

performance can enable new capabilities and applications.

In recent years, it has been understood that significant im-

provements in convergence can come from the use of a non-

minimal parametrization. Examples include convex relax-

ations for binary segmentation (e.g. [8]), and lifting meth-

ods for MAP inference (e.g. [16, 29]), 3D model fitting [7],

and robust costs [31]. In these examples it has been proved

theoretically or shown empirically that a non-minimal rep-

resentation of the unknowns leads to solutions with sig-

nificantly lower objective values, often because the ”non-

lifted” optimization stalls far from a good optimum. In con-

trast, there is one class of problems where the opposite is

frequently observed in the literature: using a non-minimal

parametrization for low-rank matrix factorization problems

(a) Estimated 3D points (b) Estimated cameras

Figure 1: For an affine bundle adjustment problem, stan-

dard Joint optimization (Schur-complement bundle adjust-

ment with inner point iterations) does not reach a useful re-

construction from an arbitrary initialization (Red). In con-

trast, VarPro (Blue) often finds the best known optimum

from random starts. This paper shows how the ostensibly

small differences between the two methods give rise to very

different convergence properties.

with missing data has notably inferior performance than

methods based on Variable Projection (VarPro). Variable

Projection optimally eliminates some of the unknowns in

an optimization problem, and is therefore especially ap-

plicable to separable non-linear least-squares problems de-

scribed below. Low-rank matrix factorization is a problem

class appearing in signal processing (e.g. blind source sep-

aration), in machine learning (e.g. factor analysis), but also

in 3D computer vision to obtain e.g. affine and non-rigid

reconstructions. The success of VarPro methods is often

reported in the literature (especially for geometric recon-

struction problems), but to our knowledge there is lack of

understanding why Variable Projection is so beneficial in

this case.

Our work sheds some light on the relation between Vari-

able Projection methods and Joint optimization methods us-

ing explicit factors for low-rank matrix factorization. It will

be revealed in this paper that Joint optimization suffers from

an intrinsic numerical ill-conditioning for matrix factoriza-

tion problems, and therefore is prone to “stalling”.
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Although we will focus on matrix factorization tasks, our

analysis holds also for the more general class of Separable

Nonlinear Least Squares problems [10]. A Separable Non-

linear Least Squares (SNLS) problem is defined as mini-

mizing

kG(u)v − z(u)k22 (1)

over u 2 R
p and v 2 R

q where these two vectors are non-

overlapping subsets of system variables and where the func-

tions G : Rp ! R
s⇥q and z : Rp ! R

s are generally non-

linear in u. This type of problem has a characteristic that

its residual vector is linear in at least one set of system pa-

rameters. Due to this generality, SNLS problems arise in

various parts of engineering and science [11], ranging from

exponential fitting [23] to chemistry, mechanical engineer-

ing and medical imaging.

A specific class of SNLS problems on which our investi-

gation is focussed is L2-norm rank-imposed matrix factor-

ization with/out the mean vector, which solves

min
U,V

∥

∥W% (UV> − M)
∥

∥

2

F
(2)

where M 2 R
m⇥n is the observation matrix, W 2 R

m⇥n

is the weight matrix, which masks all the missing ele-

ments by performing the element-wise (Hadamard) prod-

uct, U 2 R
m⇥r and V 2 R

n⇥r are the two low-rank fac-

tors and k·kF is the Frobenius norm. If a mean vector is

used, then the last column of V is set to all-1 vector. It is

trivial to transform (2) into (1). This branch of problems

is visible in several computer vision and machine learning

applications; bundle adjustment using affine cameras [27],

non-rigid structure-from-motion using basis shapes or point

trajectory basis functions [5], photometric stereo assum-

ing ambient light and Lambertian surfaces [2] and recom-

mender systems [3] just to name a few.

This paper presents the following contributions:

+ In §3, we provide an extensive review of the known

methods for solving separable nonlinear least squares

(SNLS) problems, namely Joint optimization with or

without Embedded Point Iterations (EPI) and Variable

Projection (VarPro). Unlike previous work we explic-

itly consider the effect of Levenberg-style damping,

without which none of the alternatives perform well.

+ In §4, we unify the aforementioned methods and show

that the Joint methods and VarPro effectively share the

same algorithmic structure but differ in details.

+ In §5, we provide empirical analysis of how the Joint

methods fail while VarPro succeeds despite the small

algorithmic difference between the two branches of

methods.

+ In §4.3, we propose a simple scalable strategy for

VarPro which could be applied to large-scale and po-

tentially dense SNLS problems such as matrix factor-

ization with missing data and affine bundle adjustment.

Conversely, there are limitations of this work: the scope

of this paper is confined to L2-norm minimization. There

are still remaining questions to be answered, such as why

the Joint methods end up in the observed failure points.

1.1. Related work

Variable Projection (VarPro) was first proposed by Golub

and Pereyra [10] for the general SNLS problem, and was

applied to principal components analysis (i.e. matrix fac-

torization) by Wiberg [30]. Over the last two decades, the

computer vision and machine learning literature has seen

a plethora of low-rank matrix factorization algorithms [9]

which solves (2). Many of those algorithms were based

on the space-efficient alternating least squares algorithm,

with extremely poor convergece properties. Buchanan and

Fitzgibbon [6] introduced damping with a damped New-

ton algorithm, but continued to ignore Wiberg. Okatani

and Deguchi [21] reconsidered Wiberg, showing its strong

convergence properties, and then Okatani et al.[22] com-

bined damping and Wiberg to boost convergence rates to

near 100% on some previously-difficult problems. At the

same time Gotardo’s CSF [12] algorithm showed similar

improvements. These rank-r minimization algorithms were

later unified [13] to be from the same root of Variable Pro-

jection.

Various papers pointed out some structural similarity be-

tween Joint optimization and VarPro. Ruhe and Wedin [25]

and Okatani et al. [22] pointed out the similarity between

the update equations of VarPro and Joint optimization but

this was confined to the Gauss-Newton algorithm where no

damping is present. Strelow [26] pointed out that VarPro

performs additional minimization over the eliminated pa-

rameters. The Ceres solver [1], which is a widely-used non-

linear optimization library, also assumes the same. We show

that these are not exactly performing VarPro, and removal

of damping in some places takes a key role in implementing

“pure” VarPro and widening the convergence basin.

With regards to scalable implementation of VarPro,

Boumal et al.’s RTRMC [4] is in principle indirectly solv-

ing the VarPro reduced problem, which is what we pro-

pose. However, their algorithm is based on the regular-

ized problem so their algorithm performs well for machine

learning recommender systems and other random matrices

but suffers from numerical instability when performed on

SfM problems [13], where the regularizer is not a good idea

because it essentially puts priors on Us and Vs. We pro-

vide a numerically stable scalable VarPro algorithm which

is tested and works well on matrix factorization problems

of various sizes and densities.
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1.2. Notations

Throughout this paper, we make use of the following def-

initions and rule for any real thin matrix A:

A
−λ := (A>A+ λI)−1

A
> (3)

A
† := (A>A)−1

A
> = A

−0 (4)

2. The Levenberg-Marquardt (LM) algorithm

We start by illustrating the Levenberg-Marquardt (LM)

algorithm [19, 20], which is widely used for solving gen-

eral nonlinear least squares problems, and it also forms

the basis of the Joint optimization and Variable Projec-

tion (VarPro) methods for solving separable nonlinear least

squares (SNLS) problems.

LM is an iterative algorithm for solving general nonlin-

ear least squares problems (of which SNLS is a subset). It

aims to solve

min
x

kε(x)k22 , (5)

where x 2 R
n is a vector of variables and ε : Rn ! R

s is

the residual vector. A solution obtained using this algorithm

is at best guaranteed to be a local minimum.

Given a current solution xk the quantity of inter-

est is the update ∆xk to improve upon xk, forming

xk+1 = xk +∆xk. Linearizing the residual yields

ε(xk+1) = ε(xk +∆xk) ⇡ εk + Jk∆xk, (6)

where εk := ε(xk) and Jk := J(xk) := ∂ε(xk)/∂x,

which is the Jacobian at xk. The Gauss-Newton (GN) step

is obtained by solving the unregularized subproblem

argmin
∆x

kεk + Jk∆xk22 , (7)

Solving (7) assumes that the cost is locally quadratic in

∆xk, and therefore xk+∆xk may not necessarily decrease

the true objective kε(x)k22. LM regularizes the update by

adding a penalty term with a damping parameter λk 2 R,

∆xk = argmin
∆x

kεk + Jk∆xk22 + λk k∆xk22 . (8)

The key intuition behind this augmentation is that the added

term makes the quadratic assumption to be valid near xk

only. λk controls the size of the region which can be trusted

as quadratic. To elaborate, if the step ∆xk improves the

actual cost, the update is accepted and λk+1 is decreased,

making (8) closer to the GN update in (7). Otherwise, the

update is rejected and λk is increased, forcing the algorithm

to behave more like gradient descent. Pseudocode for a

straightforward implementation is given in the supplemen-

tary material.

The solution of (8) is explicitly given by

∆xk = argmin
∆x

∥

∥

∥

∥



εk

0

]

+



Jkp
λkI

]

∆x

∥

∥

∥

∥

2

2

= −


Jkp
λkI

]† 
εk

0

]

= −(J>k Jk + λkI)
−1
J
>
k εk = Jk

−λk
εk. (9)

Computing ∆xk can either be achieved by solving (9) di-

rectly using a matrix decomposition algorithm such as QR

or Cholesky, or via an iterative method such as precondi-

tioned conjugate gradients (PCG).

3. Review of methods for solving separable

nonlinear least squares (SNLS) problems

In this section, we review each of the Joint optimization

and Variable Projection (VarPro) methods in detail. These

are re-illustrated with consistent notation to allow easier

comparison between the methods and provide a comprehen-

sive build-up to our contributions in the forthcoming sec-

tions.

We additionally define the following terms specific to the

type of SNLS problem:

ε(u,v) := G(u)v − z(u) (10)

Ju(u,v) :=
∂ε(u,v)

∂u
=

d[G(u)]v

du
− dz(u)

du
(11)

Jv(u) :=
∂ε(u,v)

∂v
= G(u) (12)

Qv(u) := I− Jv(u)Jv(u)
†. (13)

3.1. Joint optimization

Joint optimization uses the Gauss-Newton approxima-

tion with respect to both variables u 2 R
p and v 2 R

q . The

unknowns u and v are stacked to form x := [u;v] 2 R
p+q ,

and LM (see §2) is applied to solve

min
x

kε(x)k22 := min
x=[u;v]

kε(u,v)k22 . (14)

Hence, the update equations for Joint optimization fol-

low (9) with ∆xk := [∆uk;∆vk], εk := ε(uk,vk) and

Jk = [Ju(uk,vk) ; Jv(uk)] =: [Juk
; Jvk

]. i.e.

"

J>uk
Juk

+ λkI J>uk
Jvk

J>vk
Juk

J>vk
Jvk

+ λkI

#



∆uk

∆vk

]

= −
"

J>uk
εk

J>vk
εk

#

.

(15)

Schur complement reduced system The Schur comple-

ment is often suggested to solve (15) efficiently (e.g. [28]):

instead of solving for a (p+ q)⇥ (p+ q) system matrix,
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(

J
>
uk
(I− Jvk

J
−λk
vk

)Juk
+ λkI

)

∆uk = −J>uk
(I− Jvk

J
−λk

vk
)εk Joint (17)

(

J
>
uk
(I− Jvk

J
−λk
vk

)Juk
+ λkI

)

∆uk = −J>uk
(I− Jvk

J
−0
vk

)εk = −J>uk
εk Joint+EPI (22)

(

J
>
uk
(I− Jvk

J
−0
vk

)Juk
+ λkI

)

∆uk = −J>uk
(I− Jvk

J
−0
vk

)εk = −J>uk
εk VarPro (33)

Figure 2: The key equations for ∆uk according to the three SNLS optimization approaches. The apparently small differences

in where damping is applied give rise to very different convergence properties.

the Schur complement reduces the problem to two subprob-

lems of size p⇥ p and q ⇥ q, respectively,

Sλk
:= I− Jvk

J
−λk
vk

(16)

∆uk = −
(

J
>
uk
Sλk

Juk
+ λkI

)−1

J
>
uk
Sλk

εk (17)

∆vk = −J−λk
vk

(εk + Juk
∆uk) (18)

More importantly, the Schur complement matrix

J>uk
Sλk

Juk
reveals the local quadratic model assumed

by Joint optimization solely in terms of ∆u and will play

the central role in § 4.

3.2. Embedded Point Iterations (EPI)

Embedded point iterations (EPI) is a method proposed

to accelerate classical bundle adjustment [17] by using a

nested optimization approach: after computing the stan-

dard Gauss-Newton or LM updates, one set of unknowns

(w.l.o.g. v) are optimized with u fixed. EPI derives its

name from how it is used in bundle adjustment, where v

represents the 3D point structure. Since v is optimized in

each iteration with respect to the current value of u, it can

be interpreted as a variant of Variable Projection. Conse-

quently, it is sometimes identified with actual VarPro [1]

but the difference to VarPro is that the Joint optimization

model is used to update u (i.e. using (17) instead of (33)).

For SNLS problems, due to the residual ε(u,v) being

linear in v, the optimal iterate vk+1 can be computed in

closed form given uk+1 := uk +∆uk,

vk+1 = argmin
v

kε(uk+1,v)k22

= argmin
v

kG(uk+1)v − z(uk+1)k22
= G(uk+1)

†
z(uk+1). (19)

Note that vk+1 is independent of the previous value of

v, and therefore (18) can be bypassed altogether in this

case. The fact that the previous iterate vk is optimal for

kε(uk,v)k22 implies that

0 = Jv(uk)
>
ε(uk,vk) = J

>
vk
εk. (20)

Hence, (15) simplifies to
"

J>uk
Juk

+ λkI J>uk
Jvk

J>vk
Juk

J>vk
Jvk

+ λkI

#



∆uk

∆vk

]

= −
"

J>uk
εk

0

#

(21)

and using the Schur complement we finally obtain

∆uk = −
(

J
>
uk
Sλk

Juk
+ λkI

)−1

J
>
uk
εk. (22)

3.3. Variable Projection (VarPro)

VarPro reduces the problem of minimizing (1) over

u and v into solving a nonlinear problem over u only. First,

observe that the optimal value of v given u is

v
⇤(u) := argmin

v

kG(u)v − z(u)k22 = G(u)†z(u). (23)

Inserting (23) into (1) yields the reduced problem,

min
u

kε⇤(u)k22 := min
u

kε(u,v⇤(u))k22 (24)

= min
u

∥

∥

(

G(u)G(u)† − I
)

z(u)
∥

∥

2

2
. (25)

(25) can also be viewed as problem defined in a reduced

subspace since we can reformulate the residual in (25) as

ε
⇤(u) =

(

I− G(u)G(u)†
)

(G(u)v − z(u))

=
(

I− Jv(u)Jv(u)
†
)

ε(u,v)

= Qv(u)ε(u,v) (26)

for any value of v, where Qv(u) is the orthogonal projec-

tor defined in (13). Since v is projected out, the reduced

model solely in terms of u is orthogonal, i.e. “agnostic”, to

perturbations of v.

VarPro uses LM (see §2) to solve (25) and therefore re-

quires the Jacobian of the reduced residual ε⇤(u). The total

derivative of (24) reads as

J
⇤
u(u) :=

dε⇤(u)

du
=

∂ε(u,v⇤(u))

∂v

dv⇤(u)

du
+

∂ε(u,v⇤(u))

∂u

= Jv(u,v
⇤(u))

dv⇤(u)

du
+ Ju(u,v

⇤(u)), (27)

where Ju and Jv are the Jacobians of the original resid-

ual (10). dv⇤(u)/du can be derived analytically by using

the differentiation rule of pseudo-inverse matrices in (4) as

follows.
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Computing dv⇤(u)/du and its approximations Differ-

entiating v
⇤(u) using the product rule yields

dv⇤(u)

du
=

d
⇥

G(u)†
⇤

z(u)

du
+ G(u)†

dz(u)

du
. (28)

By noting that G(u) = Jv(u) and applying the differentia-

tion rule for a pseudo-inverse matrix, we obtain the follow-

ing result (see [14] for details):

dv⇤(u)

du
= −Jv(u)†Ju(u,v⇤(u))

− (Jv(u)
>
Jv(u))

−1
d[Jv(u)]

>
ε
⇤(u)

du
. (29)

Inserting (29) into (27) yields

J
⇤
u(u) = Qv(u)Ju(u,v

⇤(u))− Jv(u)
†> d[Jv(u)]

>
ε
⇤(u)

du
.

(30)

Note that (29) (and therefore (30)) contains a contains a sec-

ond order derivative of the residual (via d[Jv(u)]/du), and

consequently approximations have been proposed to reduce

the computation cost. One option is to use the coarse ap-

proximation dv⇤(u)/du ⇡ 0, which is termed RW3 (fol-

lowing the taxonomy of Ruhe and Wedin [25]). The under-

lying assumption is, that u and v are indepedent, and the

resulting method is essentially a block-coordinate method

(which has shown generally poor performance for matrix

factorization problems [6, 22, 12, 13]).

Another approximation, called RW2 (Ruhe and Wedin

Algorithm 2), discards the second term in (29), leading to

dv⇤(u)

du
⇡ −Jv(u)†Ju(u,v⇤(u)) (31)

) J
⇤
u(u) ⇡ Qv(u)Ju(u,v

⇤(u)). (32)

Despite the naming convention, RW2 was first proposed

by Kaufman [18] as an efficient way to implement VarPro.

There is significant empirical evidence [18, 25, 11, 12, 13]

over the past 40 years that RW2-VarPro has similar conver-

gence property to the fully-derived VarPro while benefiting

from reduced computational complexity. Consequently, we

will focus on the RW2-approximated version of VarPro and

and assume that VarPro refers to RW2-VarPro unless other-

wise stated.

Update equations By feeding the approximated Jacobian

from (32) into (9), we obtain the update equation for VarPro

at iteration k:

∆uk = −(J>uk
(I− Jvk

J
†
vk
)Juk

+ λkI)
−1
J
>
k εk (33)

where Juk
:= Ju(uk,v

⇤(uk)), Jvk
:= Jv(uk) and

εk := ε(uk,vk) = ε(uk,v
⇤(uk)). The above derivation

uses the property that Q2v(uk) = (I − Jvk
J†vk

)2 =

I− Jvk
J†vk

. Once u is updated, v is solved in closed form

to be optimal for the new u.

Improving numerical stability In (33), computing

Jvk
J†vk

= Jvk
(J>vk

Jvk
)−1J>vk

accurately can be difficult

if Jvk
is ill-conditioned. One solution is to use the

economy-size QR decomposition to form Jvk
= JvQ,k

JvR,k
,

where JvQ,k
forms an orthonormal basis of col(Jvk

) and

JvR,k
is a square upper triangular matrix, then compute

Jvk
J†vk

= JvQ,k
J>vQ,k

. For matrix factorization problems,

Jvk
is block-diagonal, and therefore JvQ,k

can be obtained

by performing the QR decomposition on each sub-block.

4. Unifying methods

In this section, we show how the Joint optimization and

Variable Projection (VarPro) methods, which were sepa-

rately reviewed in §3, are exactly related. We specifically

compare between Joint optimization (Joint), Joint optimiza-

tion with Embedded Point Iterations (Joint+EPI) and Vari-

able Projection with RW2 approximation (VarPro).

4.1. Comparing initial conditions

Given an arbitrary initial point (u0,v0), Joint and

Joint+EPI start from (u0,v0) whereas VarPro be-

gins from (u0,v
⇤(u0)) since the reduced residual

ε
⇤(u0) = ε(u0,v

⇤(u0)) does not incorporate the initial

value of v.

To show that this is not the major cause of the per-

formance difference between the methods, we will as-

sume that all methods are initialized from (u0,v0), where

v0 = v
⇤(u0), such that the initial conditions are identical.

4.2. Comparing update equations

In light of (17), (22), and (33) we are now in the posi-

tion to directly compare the updates for ∆uk induced by the

different methods in Fig. 2. We also made use of the follow-

ing relations to emphasize the connection between the var-

ious update rules: J†vk
= J−0

vk
, and εk = (I− Jvk

J−0
vk

)εk
when vk = v

⇤(uk). using (26). It is apparent in Fig. 2 that

the only difference between three methods for SNLS, which

often behave very differently in practice, is the role of the

damping parameter λk: Joint optimization enables damping

of ∆vk via λk in both the system matrix on the l.h.s. and

in the reduced residual on the r.h.s., Joint optimization with

EPI disables damping of ∆vk in the reduced residual, and

VarPro disables damping of ∆vk entirely.

In addition to how ∆u is determined in each iteration,

the three algorithms also differ in the update for ∆v: Joint

optimization uses the locally linear model to obtain the next

iterate vk, whereas Joint+EPI and VarPro fully optimize v

given the new value uk+1 = uk +∆uk.

The simple observations in particular regarding the up-

dates of u have several important consequences:

1. First, they establish that VarPro for SNLS is in terms of

derivation and implementation related to (but different
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from) the more familiar Joint optimization approach

combined with a Schur complement strategy. As a

consequence, numerical implementations of VarPro

should be comparable in terms of run-time to regular

Joint optimization. We will discuss this topic in §4.3.

2. Second, it allows us to reason about the differences be-

tween Joint optimization and VarPro. In §5 we analyze

the impact of damping of ∆v in matrix factorization

problems, and how it distorts the update directions un-

favorably in Joint optimization.

3. Finally, it is straightforward to unify these algorithms

and to choose between them. In summary, there are

two independent decisions: (i) is EPI enabled? (ii) is

the damping paramete for ∆v, which we denote by

λv, initialized to 0 (and remains at 0 during the it-

erations)? This gives rise to four algorithms: Joint,

Joint+EPI, VarPro, and a Joint optimization method

with unequal damping (λu 6= 0, λv = 0) on the un-

knowns as fourth alternative (see also Table 1). The

steps in these algorithms are presented in [14].

4.3. A scalable algorithm for VarPro

Since there is little difference in implementation between

the Joint and VarPro approaches, it should be theoretically

possible to adapt any large-scale implementation for Joint

optimization to use Variable Projection (VarPro). For large

and dense problems, using a conjugate gradient-based algo-

rithm to indirectly solve (33) would be preferred.

However, this alone may not replicate VarPro’s large

convergence basin. For matrix factorization problems, even

though Boumal et al.’s RTRMC [4] indirectly solves the

VarPro problem using a preconditioned conjugate gradi-

ent solver, it shows poor performance on several SfM

datasets [13]. We believe that this is due to the ill-

conditioned nature of these datasets, and therefore main-

taining some degree of numerical stability is crucial in

widening the convergence basin on this type of problem.

Our strategy comes down to solving a numerically more-

stable QR-factorized reduced system in §3.3 with the MIN-

RES solver [24], which is a conjugate gradient-type method

for solving

min
x

kAx− bk22 (34)

where A is a symmetric matrix which can be definite, indef-

inite or singular.

We later demonstrate that the convergence basin of

VarPro (using a direct solver) is mostly carried over to our

strategy for affine bundle adjustment, which can be formu-

lated as a matrix factorization problem.

5. Early stopping of Joint optimization

In this section we outline why Joint optimization is prone

to early stopping (or stalling) for SNLS (for example, see

λv 6= 0 λv = 0

EPI off
Joint (Joint+zero λv)

(4%) (0%)

EPI on
Joint+EPI VarPro

(24% ) (94 %)

Table 1: A taxonomy of methods based on the findings of §4

and the corresponding average probabilities of reaching the

best optimum on the trimmed dinosaur sequence in Table 2.

Figure 3). This is in particular the case for matrix fac-

torization problems, where “flat-lining” of the objective is

frequently observed when using Joint optimization. It is

tempting to assume that in such cases the Joint optimization

method has reached a suboptimal local solution (or at least

a stationary point), but the analysis below will reveal that in

general this is not the case. Recalling Fig. 2, we can write

the update equation for ∆u as follows,

(

J
>
u (I− JvJ

−λv

v )Ju + λuI
)

∆u = b, (35)

where λu > 0, λv ≥ 0 and b is one of the r.h.s. in Fig. 2.

Let the singular value decomposition of Jv be given by

Jv =
⇥

U Ũ
⇤



Σ
0

]

V> (36)

with Σ = diag(σ1, . . . , σq) and Ũ = null(J>v ). Then,

J
−λv

v =
(

J
>
v Jv + λvI

)−1
J
>
v = V(Σ2 + λvI)

−1V>
J
>
v

= V(Σ2 + λvI)
−1ΣU>. (37)

Consequently,

I− JvJ
−λv

v =
h

U , Ũ
i h

U , Ũ
i>

− UΣ2(Σ2 + λvI)
−1U>

= Ũ Ũ> + U
(

I− Σ2(Σ2 + λvI)
−1

)

U>

= Ũ Ũ> + UΣ̃2
λv

U>, (38)

where Σ̃λv
is defined as diag(σ̃1, . . . , σ̃q), in which

σ̃i :=
p

λv/(σ2
i + λv) for i = 1, . . . , q. Observe that

(35) is also the first order optimality condition for

min
∆u

∥

∥

∥

(

Ũ + UΣ̃λv

)>
Ju∆u

∥

∥

∥

2

2
+ λuk∆uk2 − 2b>

∆u

= min
∆u

∥

∥

∥

∥



Ũ>

Σ̃λv
U>

]

Ju∆u

∥

∥

∥

∥

2

2

+ λuk∆uk2 − 2b>
∆u

(39)

since Ũ>U = 0. (39) reveals the local quadratic model of

the least squares objective w.r.t. ∆u used by the algorithm.

If λv = 0, i.e. trust-region damping on v is deactivated,

then the leading quadratic term models the objective only

in the null-space of J>v .

132



0 100 200 300 400 500

Successful iteration number

5

10

15

20

lo
g

1
0
 (

c
o

s
t)

Joint

Joint+EPI

Joint with unequal damping

VarPro

Figure 3: Convergence plots for each algorithm. For this

example, VarPro converges to the best known optimum

(4.23 ⇥ 103) in less than 100 iterations whereas Joint and

Joint+EPI both exhibit flat-lining behaviours. Joint with un-

equal damping terminates quickly at a bad minimum.

If all singular values σi are relatively large compared to

the current value of λv, then σ̃i ⇡ 0, and the perturbations

in the linear model (and in the update direction ∆u) are

negligible. If in contrast λv > 0 and one or several singular

values σi are (close to) zero for some i, then σ̃i ⇡ 1. In

the limit λ ! 1, we have Σ̃λv
= I, and due to [Ũ ,U ] be-

ing a rotation matrix, (39) degenerates to a block-coordinate

method for u, which is known to perform poorly on matrix

factorization problems [22, 13]).

We can focus in the following on the analysis of the

block-coordinate method, since if σi ⌧ λv only for some i,
then Σ̃λv

⇡ diag(1, . . . , 1, 0, . . . , 0) and solving (39) cor-

responds essentially to a block-coordinate approach. Now

we assume that Jv is rank deficient. For simplicity we will

make the even stronger assumption that Jv ⇡ 0 (and there-

fore σi ⌧ λv and Σ̃λv
⇡ I).

To illustrate an intuitive idea, we focus on the updates

∆v computed by VarPro and Joint optimization in their re-

spective linear systems. Note that for VarPro and Joint+EPI,

these updates are not actually used in updating v as EPI

takes care of it, but they still play a key role in determining

the updates ∆u since u and v are correlated in SNLS prob-

lems. As written in (18), the Joint optimization family of

algorithms compute

∆vjoint = −J−λv

v (ε+ Ju∆u) ⇡ − 1

λv

J
>
v (ε+ Ju∆u)

and therefore

k∆vjointk ⇡ 1

λv

∥

∥J
>
v (ε+ Ju∆u)

∥

∥

using our assumption σi ⌧ λv for all i. On the other hand,

our analysis in §4 shows that VarPro has no damping on v,

and therefore its corresponding update ∆v is

∆vvarpro = −J†v (ε+ Ju∆u)

5 10 15 20 25 30 35

Camera ID

5

10

15

20

25

30

35

C
a

m
e

ra
 I

D

0

20

40

60

80

100

120

140

160

(a) VarPro (best optimum)
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(b) Joint+EPI (failure)

Figure 4: Angles between the directions of output affine

cameras from the trimmed dinosaur dataset in the projec-

tive frame. (b) shows that some neighbouring cameras (e.g.

between ID 1 to 8) are closely aligned together when it fails

to reach the best known optimum value of 4.23⇥ 103.

leading to

k∆vvarprok ≥ 1

σ̄2

∥

∥J
>
v (ε+ Ju∆u)

∥

∥ ,

where σ̄ = maxi σi. Consequently, we obtain that

k∆vjointk / k∆vvarprok ⇡ σ̄2/λv ⌧ 1 under our assump-

tions. Hence, the update ∆vjoint will be much smaller than

the update ∆vvarpro. In the more general setting with Jv

being near singular instead of close to the zero matrix we

obtain that ∆vjoint will be much shorter than ∆vvarpro in

the certain directions. The lack of update ∆vjoint (in certain

directions) is reflected in the local quadratic model (39) for

∆u: reducing residuals is entirely the responsibility of ∆u.

Note, that if Jv is far from being singular, J−λv

v is close

to J†v and ∆vjoint ⇡ ∆vvarpro. Thus, in this case Joint and

VarPro optimization behave similarly.

To see how this affects the algorithm performance, we

resort to an example of affine bundle adjustment, where u is

a set of camera parameters and v is a set of 3D points. For

this problem, nearly-singular Jv can arise when a bundle

of rays corresponding to a 3D point is almost collinear. In

such a case, the Joint optimization submodel fixes ∆v (the

point update) in the depth direction, and consequently this

places more burden on the camera parameters to reduce the

objective. On the other hand, VarPro allows unconstrained

point updates ∆v, allowing camera updates ∆u to make

more adventurous moves.

6. Experimental results

To verify our analysis in §4 and §5, we conducted two ex-

periments solving affine bundle adjustment, which can be

formulated as a matrix factorization problem [27]. It has

been shown empirically [15] that the obtained affine solu-

tions could be used to bootstrap projective bundle adjust-

ment.

In the first experiment, we tested our VarPro-MINRES

strategy against Joint optimization (Joint), Joint optimiza-
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Dataset f n Missing (%) Joint Joint+EPI VarPro VarPro-MinRes*

Blue teddy bear (trimmed) 196 827 80.7 10 (238) 20 (155) 88 (22.3) 76 (21.9)

Corridor 11 737 50.2 40 (8.71) 4 (14.8) 100 (1.07) 100 (0.78)

Dinosaur (trimmed) 36 319 76.9 4 (5.95) 24 (9.38) 94 (1.55) 99 (3.96)

Dinosaur including outliers 36 4983 90.8 0 (28.6) 0 (62.1) 100 (13.9) 36 (38.9)

House 10 672 57.7 44 (4.90) 8 (9.71) 100 (0.30) 100 (0.41)

Road scene #47 11 150 47.1 44 (1.88) 32 (3.00) 100 (0.16) 100 (0.17)

Stockholm Guildhall (trimmed) 43 1000 18.0 92 (45.1) 48 (35.7) 100 (22.8) 100 (3.12)

Wilshire 190 411 60.7 38 (409) 94 (9.90) 100 (7.64) 100 (1.96)

Ladybug (skeleton) 49 7776 91.6 0 (77.3) 0 (155) 50 (49.7) 0 (155)

Trafalgar Square (skeleton) 21 11315 84.7 0 (76.2) 0 (160) 100 (14.7) 100 (56.4)

Dubrovnik (skeleton) 16 22106 76.3 38 (159) 0 (346) 100 (23.6) 100 (32.9)

Venice (skeleton) 52 64053 89.6 0 (913) 0 (1495) 80 (123) 60 (329)

Table 2: Experimental results for affine bundle adjustment on various datasets. For each dataset and each algorithm, the

percentages of runs which converged to the best known optimum of that dataset is reported with corresponding median

runtime in seconds inside the parentheses. *We have a comparatively less efficient implementation of VarPro-MINRES

while other algorithms are based on our patched version of the Ceres Solver [1] library.

tion with Embedded Point Iterations (Joint+EPI) and Vari-

able Projection (VarPro) on a variety of SfM datasets.

VarPro-MINRES was less efficiently implemented in MAT-

LAB while the other methods were implemented within the

Ceres Solver framework [1]. As our code analysis showed

that the current Ceres version implements Joint+EPI rather

than VarPro, we patched Ceres to properly support VarPro

(without MINRES) based on the unification work from §4.

For each run on each algorithm, we sampled each el-

ement of u0 from N (0, 1) and then used u0 to generate

v0 = v
⇤(u0) in order to ensure equal initial conditions

across all algorithms. On each dataset, we ran each algo-

rithm for a fixed number of times and reported the fraction

of runs reaching the best known optimum of the dataset.

For some datasets, the best optimum values are known (e.g.

dinosaur and trimmed dinosaur), but for others we used

the best objective values we observed in all runs across all

implemented algorithms. We set the function tolerance to

10−9 and the maximum number of successful iterations to

300. For VarPro-MINRES, we set the relative tolerance to

10−6 and the maximum number of inner iterations to 300.

The reported objective values in Fig. 3 and Fig. 4 are half of

the values computed from (2).

Table 2 shows that VarPro-MINRES mostly retains the

large basin of convergence observed for standard VarPro.

Note that its slower speed for larger sparse dataset may be

due to to its comparatively inefficient implementation.

In the second experiment, we observed the behaviours of

the four algorithms described in §4 on the trimmed dinosaur

dataset [6] from a random starting point. This circular

motion-derived sequence consists of 36 reasonably weak-

perspective cameras and 319 inlier point tracks. 76.9% of

the elements are missing and exhibit a banded occlusion

pattern without a loop closure. Table 1 shows that the use

of EPI improves the success rate on its own but must be

accompanied by the removal of the damping factor λv (i.e.

switch to VarPro) to dramatically boost the algorithm per-

formance.

Fig. 3 illustrates the typical “stalling” behaviour shared

by Joint and Joint+EPI. In §5, we claimed that this be-

haviour is observed when a batch of camera rays are nearly

collinear in affine bundle adjustment. This statement is ver-

ified in Fig. 4 and Fig. 1, which shows that the angles be-

tween some affine camera directions (e.g. a set of cameras

from ID 1 to ID 8) are very small at the point of failure

for the Joint optimization-based algorithm. Such collinear

alignment of rays is not observed in the optimum reached

by VarPro.

7. Conclusions

In this paper, we showed that Joint optimization and

Variable Projection (VarPro), which are two apparently

very different methods of solving separable nonlinear least

squares problems, can be unified. The most important dif-

ference between Joint optimization and VarPro is the un-

balanced trust-region assumption in the latter method. The

revealed connection between the two methods shows that

VarPro can be in principle implemented as efficiently as

standard Joint optimization, which allows VarPro to be

demonstrated on significantly larger datasets than reported

in the literature. We also tackled the question why VarPro

has much higher success rates than Joint optimization for

certain problem classes important in computer vision.
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