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Abstract

Object detectors have hugely profited from moving to-

wards an end-to-end learning paradigm: proposals, fea-

tures, and the classifier becoming one neural network

improved results two-fold on general object detection.

One indispensable component is non-maximum suppression

(NMS), a post-processing algorithm responsible for merg-

ing all detections that belong to the same object. The de

facto standard NMS algorithm is still fully hand-crafted,

suspiciously simple, and — being based on greedy clus-

tering with a fixed distance threshold — forces a trade-off

between recall and precision. We propose a new network

architecture designed to perform NMS, using only boxes

and their score. We report experiments for person detection

on PETS and for general object categories on the COCO

dataset. Our approach shows promise providing improved

localization and occlusion handling.

1. Introduction

All modern object detectors follow a three step recipe:

(1) proposing a search space of windows (exhaustive by

sliding window or sparser using proposals), (2) scor-

ing/refining the window with a classifier/regressor, and (3)

merging windows that might belong to the same object.

This last stage is commonly referred to as “non-maximum

suppression” (NMS) [10, 9, 21, 7, 20, 16].

The de facto standard for NMS is a simple hand-crafted

test time post-processing, which we call GreedyNMS.

The algorithm greedily selects high scoring detections and

deletes close-by less confident neighbours since they are

likely to cover the same object. This algorithm is simple,

fast, and surprisingly competitive compared to proposed al-

ternatives.

The most notable recent performance breakthrough in

general object detection was marked by R-CNN [10], which

effectively replaced features extraction and classifiers by

a neural network, almost doubling performance on Pas-

cal VOC. Another significant improvement was to absorb

Convnet

Figure 1: We propose a non-maximum suppression conv-

net that will re-score all raw detections (top). Our network

is trained end-to-end to learn to generate exactly one high

scoring detection per object (bottom, example result).

the object proposal generation into the network [21], while

other works avoid proposals altogether [21, 20], leading to

both speed and quality improvements. We can see a general

trend towards end-to-end learning and it seems reasonable

to expect further improvements by doing complete end-to-

end training of detectors. NMS is one step in the pipeline

that, for the most part, has evaded the end-to-end learn-

ing paradigm. All of the above detectors train the classifier

in a procedure that ignores the fact that the NMS problem

exists and then runs GreedyNMS as a disconnected post-

processing.

There is a need to overcome GreedyNMS due to its sig-

nificant conceptual shortcomings. GreedyNMS makes hard

decision by deleting detections and bases this decision on

one fixed parameter that controls how wide the suppression

is. A wide suppression would remove close-by high scor-

ing detections that are likely to be false positives that hurt

precision. On the other hand, if objects are close (e.g. in

crowded scenes), close-by detections can be true positives,

in which case suppression should be narrow to improve re-
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call. When objects are close-by, GreedyNMS is doomed to

sacrifice precision or recall independent of its parameter.

It is desirable to learn NMS to overcome these limita-

tions. An NMS approach based on neural network could

learn to adapt to the data distribution, overcome the trade-

off of GreedyNMS, and importantly could be incorporated

into a detector. In this paper we propose the first “pure NMS

network” which is able to do the task of non-maximum sup-

pression without image content or access to decisions of

another algorithm. Our network renders the need for final

GreedyNMS post-processing superfluous.

In section 3 we start by discussing with the underlying

issue: why is NMS needed at all? We discuss the task of

detection and how it relates to the specifics of detectors and

NMS. We identify two necessary ingredients that current

detectors are lacking and design an NMS network that con-

tains these ingredients (section 4); the result is conceptually

different than both GreedyNMS and current detectors. In

section 5, we report promising results that show that this

network is indeed capable of replacing GreedyNMS. We re-

port both single- (PETS pedestrians) and multi-class results

(COCO dataset), both showing improvements over Gree-

dyNMS.

We believe this work opens the door to true end-to-end

detectors.

2. Related work

Clustering detections. The de facto standard algorithm,

GreedyNMS, has survived several generations of detectors,

from Viola&Jones [32], over the deformable parts model

(DPM) [7], to the current state-of-the-art R-CNN family

[10, 9, 21]. Several other clustering algorithms have been

explored for the task of NMS without showing consistent

gains: mean-shift clustering [6, 35], agglomerative cluster-

ing [2], affinity propagation clustering [17], and heuristic

variants [25]. Principled clustering formulations with glob-

ally optimal solutions have been proposed in [27, 23], al-

though they have yet to surpass the performance of Gree-

dyNMS.

Linking detections to pixels. Hough voting establishes

correspondences between detections and the image evi-

dence supporting them, which can avoid overusing image

content for several detections [15, 1, 14, 34]. Overall per-

formance of hough voting detectors remains comparatively

low. [37, 5] combine detections with semantic labelling,

while [36] rephrase detection as a labelling problem. Ex-

plaining detections in terms of image content is a sound for-

mulation but these works rely on image segmentation and

labelling, while our system operates purely on detections

without additional sources of information.

Co-occurrence. One line of work proposes to detect pairs

of objects instead of each individual objects in order to han-

dle strong occlusion [24, 29, 19]. It faces an even more

complex NMS problem, since single and double detections

need to be handled. [22] bases suppression decisions on es-

timated crowd density. Our method does neither use image

information nor is it hand-crafted to specifically detect pairs

of objects.

Auto-context. Some methods improve object detection by

jointly rescoring detections locally [30, 4] or globally [31]

using image information. These approaches tend to produce

fewer spread-out double detections and improve overall de-

tection quality, but still require NMS. We also approach the

problem of NMS as a rescoring task, but we completely

eliminate any post-processing.

Neural networks on graphs. A set of detections can be

seen as a graph where overlapping windows are represented

as edges in a graph of detections. [18] operates on graphs,

but requires a pre-processing that defines a node ordering,

which is ill-defined in our case.

End-to-end learning for detectors. Few works have ex-

plored true end-to-end learning that includes NMS. One

idea is to include GreedyNMS at training time [33, 12],

making the classifier aware of the NMS procedure at test

time. This is conceptually more satisfying, but does not

make the NMS learnable. Another interesting idea is to di-

rectly generate a sparse set of detections, so NMS is un-

necessary, which is done in [26] by training an LSTM that

generates detections on overlapping patches of the image.

At the boundaries of neighbouring patches, objects might

be predicted from both patches, so post-processing is still

required. [13] design a convnet that combines decisions

of GreedyNMS with different overlap thresholds, allow-

ing the network to choose the GreedyNMS operating point

locally. None of these works actually completely remove

GreedyNMS from the final decision process that outputs a

sparse set of detections. Our network is capable of perform-

ing NMS without being given a set of suppression alterna-

tives to chose from and without having another final sup-

pression step.

3. Detection and non-maximum suppression

In this section we review non-maximum suppression

(NMS) and why it is necessary. In particular, we point out

why current detectors are conceptually incapable of produc-

ing exactly one detection per object and propose two neces-

sary ingredients for a detector to do so.

Present-day detectors do not return all detections that

have been scored, but instead use NMS as a post-processing

step to remove redundant detections. In order to have true

end-to-end learned detectors, we are interested in detectors

without any post-processing. To understand why NMS is

necessary, it is useful to look at the task of detection and

how it is evaluated.
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Object detection. The task of object detection is to map

an image to a set of boxes: one box per object of interest

in the image, each box tightly enclosing an object. This

means detectors ought to return exactly one detection per

object. Since uncertainty is an inherent part of the detection

process, evaluations allow detections to be associated to a

confidence. Confident erroneous detections are penalized

more than less confident ones. In particular mistakes that

are less confident than the least confident correct detection

are not penalized at all.

Detectors do not output what we want. The detection

problem can be interpreted as a classification problem that

estimates probabilities of object classes being present for

every possible detection in an image. This viewpoint gives

rise to “hypothesize and score” detectors that build a search

space of detections (e.g. sliding window, proposals) and es-

timate class probabilities independently for each detection.

As a result, two strongly overlapping windows covering the

same object will both result in high score since they look at

almost identical image content. In general, instead of one

detection per object, each object triggers several detections

of varying confidence, depending on how well the detection

windows cover the object.

GreedyNMS. Since the actual goal is to generate exactly

one detection per object (or exactly one high confidence

detection), a common practice (since at least 1994 [3]) is

to assume that highly overlapping detections belong to the

same object and collapse them into one detection. The pre-

dominant algorithm (GreedyNMS) accepts the highest scor-

ing detection, then rejects all detections that overlap more

than some threshold ϑ and repeats the procedure with the

remaining detections, i.e. greedily accepting local maxima

and discarding their neighbours, hence the name. This al-

gorithm eventually also accepts wrong detections, which is

no problem if their confidence is lower than the confidence

of correct detections.

GreedyNMS is not good enough. This algorithm works

well if (1) the suppression is wide enough to always sup-

press high scoring detections triggered by same object and

(2) the suppression is narrow enough to never suppress high

scoring detections of the next closest object. If objects are

far apart condition (2) is easy to satisfy and a wide suppres-

sion works well. In crowded scenes with high occlusion

between objects there is a tension between wide and nar-

row suppression. In other words with one object per image

NMS is trivial, but highly occluded objects require a better

NMS algorithm.

3.1. A future without NMS

Striving for true end-to-end systems without hand

crafted algorithms we shall ask: Why do we need a hand

crafted post processing step? Why does the detector not

directly output one detection per object?

Independent processing of image windows leads to over-

lapping detection giving similar scores, this is a requirement

of robust functions: similar inputs lead to similar outputs.

A detector that outputs only one high scoring detection per

object thus has to be also conditioned on other detections:

multiple detections on the same object should be processed

jointly, so the detector can tell there are repeated detections

and only one of them should receive a high score.

Typical inference of detectors consist of a classifier that

discriminates between image content that contains an ob-

ject and image content that does not. The positive and neg-

ative training examples for this detector are usually defined

by some measure of overlap between objects and bound-

ing boxes. Since similar boxes will produce similar confi-

dences anyway, small perturbation of object locations can

be considered positive examples, too. This technique aug-

ments the training data and leads to more robust detectors.

Using this type of classifier training does not reward one

high scoring detection per object, and instead deliberately

encourages multiple high scoring detections per object.

From this analysis we can see that two key ingredients

are necessary in order for a detector to generate exactly one

detection per object:

1. A loss that penalises double detections to teach the de-

tector we want precisely one detection per object.

2. Joint processing of neighbouring detections so the de-

tector has the necessary information to tell whether an

object was detected multiple times.

In this paper, we explore a network design that accommo-

dates both ingredients. To validate the claim that these are

key ingredients and our the proposed network is capable of

performing NMS, we study our network in isolation with-

out end-to-end learning with the detector. That means the

network operates solely on scored detections without im-

age features and as such can be considered a “pure NMS

network”.

4. Doing NMS with a convnet

After establishing the two necessary requirements for a

convnet (convolutional network) to perform NMS in sec-

tion 3, this section presents our network that addresses both

(penalizing double detections in §4.1, joint processing of

detections in §4.2).

Our design avoids hard decisions and does not discard

detections to produce a smaller set of detections. Instead,

we reformulate NMS as a rescoring task that seeks to de-

crease the score of detections that cover objects that al-

ready have been detected, as in [13]. After rescoring, simple

thresholding is sufficient to reduce the set of detections. For

evaluation we pass the full set of rescored detections to the

evaluation script without any post processing.
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4.1. Loss

A detector is supposed to output exactly one high scoring

detection per object. The loss for such a detector must in-

hibit multiple detections of the same object, irrespective of

how close these detections are. Stewart and Andriluka [26]

use a Hungarian matching loss to accomplish that: success-

fully matched detections are positives and unmatched detec-

tions are negatives. The matching ensures that each object

can only be detected once and any further detection counts

as a mistake. Henderson and Ferrari [12] present an average

precision (AP) loss that is also based on matching.

Ultimately a detector is judged by the evaluation crite-

rion of a benchmark, which in turn defines a matching strat-

egy to decide which detections are correct or wrong. This

is the matching that should be used at training time. Typ-

ically benchmarks sort detections in descending order by

their confidence and match detections in this order to ob-

jects, preferring most overlapping objects. Since already

matched objects cannot be matched again surplus detections

are counted as false positives that decrease the precision of

the detector. We use this matching strategy.

We use the result of the matching as labels for the clas-

sifier: successfully matched detections are positive training

examples, while unmatched detections are negative training

examples for a standard binary loss. Typically all detec-

tions that are used for training of a classifier have a label

associated as they are fed into the network. In this case

the network has access to detections and object annotations

and the matching layer generates labels, that depend on the

predictions of the network. Note how this class assignment

directly encourages the rescoring behaviour that we wish to

achieve.

Let di denote a detection, yi ∈ {−1, 1} indicate whether

or not di was successfully matched to an object, and let

f denote the scoring function that jointly scores all detec-

tions on an image f ([di]
n

i=1
) = [si]

n

i=1
. We train with the

weighted logistic loss

L(si, yi) =

N∑

i=1

wyi
· log (1 + exp (−si · yi)) .

Here loss per detection is coupled to the other detections

through the matching that produces yi.
The weighting wyi

is used to counteract the extreme

class imbalance of the detection task. We choose the

weights so the expected class conditional weight of an ex-

ample equals a parameter E (w1I (yi = 1)) = γ.

When generalising to the multiclass setting, detections

are associated to both a confidence and a class. Since we

only rescore detections, we allow detections to be “switched

off” but not to change their class. As a result, we only match

detections to objects of the same class, but the classifica-

tion problem remains binary and the above loss still applies.
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Figure 2: High level diagram of the Gnet. FC denotes

fully connected layers. All features in this diagram have

128 dimensions (input vector and features between the lay-

ers/blocks), the output is a scalar.

When representing the detection scores, we use a one-hot

encoding: a zero vector that only contains the score at the

location in the vector that corresponds to the class. Since

mAP computation does not weight classes by their size, we

assign the instance weights in a way that their expected class

conditional weight is uniformly distributed.

4.2. “Chatty” windows

In order to effectively minimize the aforementioned loss,

we need our network to jointly process detections. To this

end we design a network with a repeating structure, which

we call blocks (sketched in figure 3). One block gives each

detection access to the representation of its neighbours and

subsequently updates its own representation. Stacking mul-

tiple blocks means the network alternates between allowing

every detection “talk” to its neighbours and updating its own

representation. We call this the GossipNet (Gnet), because

detections talk to their neighbours to update their represen-

tation.

There are two non-standard operations here that are key.

The first is a layer, that builds representations for pairs of

detections. This leads to the key problem: an irregular

number of neighbours for each detection. Since we want to

avoid the discretisation scheme used in [13], we will solve

this issue with pooling across detections (the second key).

Detection features. The blocks of our network take the de-

tection feature vector of each detection as input and outputs

an updated vector (see high-level illustration in figure 2).

Outputs from one block are input to the next one. The

values inside this c = 128 dimensional feature vector are

learned implicitly during the training. The output of the last

block is used to generate the new detection score for each

detection.
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Figure 3: One block of our Gnet visualised for one detection. The representation of each detection is reduced and then

combined into neighbouring detection pairs and concatenated with detection pair features (hatched boxes, corresponding

features and detections have the same colour). Features of detection pairs are mapped independently through fully connected

layers. The variable number of pairs is reduced to a fixed-size representation by max-pooling. Pairwise computations are

done for each detection independently.

The first block takes an all-zero vector as input. The

detections’ information is fed into the network in the “pair-

wise computations” section of figure 3 as described below.

In future work this zero input could potentially be replaced

with image features.

Pairwise detection context. Each mini-batch consists of

all n detections on an image, each represented by a c dimen-

sional feature vector, so the data has size n× c and access-

ing to another detection’s representations means operating

within the batch elements. We use a detection context layer,

that, for every detection di, generates all pairs of detections

(di, dj) for which dj sufficiently overlaps with di (IoU >

0.2). The representation of a pair of detections consists of

the concatenation of both detection representations and g di-

mensional detection pair features (see below), which yields

an l = 2c + g dimensional feature. To process each pair

of detections independently, we arrange the features of all

pairs of detections along the batch dimension: if detection

di has ki neighbouring detection that yields a batch of size

K × l, where K =
∑n

i=1
(ki + 1) since we also include

the pair (di, di). Note that the number of neighbours ki (the

number of pairs) is different for every detection even within

one mini-batch. To reduce the variable sized neighbourhood

into a fixed size representation, our architecture uses global

max-pooling over all detection pairs that belong to the same

detection (K × l → n × l), after which we can use normal

fully connected layers to update the detection representation

(see figure 3).

Detection pair features. The features for each detection

pair used in the detection context consists of several prop-

erties of a detection pair: (1) the intersection over union

(IoU), (2-4) the normalised distance in x and y direction

and the normalised l2 distance (normalized by the average

of width and height of the detection), (4-5) scale difference

of width and height (e.g. log (wi/wj)), (6) aspect ratio dif-

ference log (ai/aj), (7-8) the detection scores of both de-

tections. In the multi-class setup, each detection provides a

scores vector instead of a scalar thus increasing the number

of pair features. We feed all these raw features into 3 fully

connected layers, to learn the g detection pair features that

are used in each block.

Block. A block does one iteration allowing detections to

look at their respective neighbours and updating their repre-

sentation (sketched in figure 3). It consists of a dimension-

ality reduction, a pairwise detection context layer, 2 fully

connected layers applied to each pair independently, pool-

ing across detections, and two fully connected layers, where

the last one increases dimensionality again. The input and

output of a block are added as in the Resnet architecture

[11]. The first block receives zero features as inputs, so

all information that is used to make the decision is boot-

strapped from the detection pair features. The output of the

last block is used by three fully connected layers to predict

a new score for each detection independently (figure 2).

Parameters. Unless specified otherwise our networks have

16 blocks. The feature dimension for the detection features

is 128 and is reduced to 32 before building the pairwise

detection context. The detection pair features also have

32 dimensions. The fully connected layers after the last

block output 128 dimensional features. When we change

the feature dimension, we keep constant the ratio between

the number of features in each layer, so indicating the de-

tection feature dimension is sufficient.

Message passing. The forward pass over serveral stacked

blocks can be interpreted as message passing. Every de-

tection sends messages to all of its neighbours in order to

negotiate which detection is assigned an object and which

detections should decrease their scores. Instead of hand-

crafting the message passing algorithm and its rules, we de-

liberately let the network latently learn the messages that

are being passed.
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4.3. Remarks

The Gnet is fundamentally different than GreedyNMS in

the sense that all features are updated concurrently, while

GreedyNMS operates sequentially. Since Gnet does not

have access to GreedyNMS decisions (unlike [13]), it is sur-

prising how close performance of the two algorithms turns

out to be in section 5. Since we build a potentially big net-

work by stacking many blocks, the Gnet might require large

amounts of training data. In the experiments we deliberately

choose a setting with many training examples.

The Gnet is a pure NMS network in the sense that it has

no access to image features and operates solely on detec-

tions (box coordinates and a confidence). This means the

Gnet cannot be interpreted as extra layers to the detector.

The fact that it is a neural network and that it is possible to

feed in a feature vector (from the image or the detector) into

the first block makes it particularly suitable for combining

it with a detector, which we leave for future work.

The goal is to jointly rescore all detections on an im-

age. By allowing detections to look at their neighbours and

update their own representation, we enable conditional de-

pendence between detections. Together with the loss that

encourages exactly one detection per object, we have sat-

isfied both conditions from section 3. We will see in sec-

tion 5 that the performance is relatively robust to parameter

changes and works increasingly well for increasing depth.

5. Experiments

In this section we experimentally evaluate the proposed

architecture on the PETS and COCO dataset. We report

results for persons, and as well for the multi-class case.

Person category is by far the largest class on COCO, and

provides both crowded images and images with single per-

sons. Other than overall results, we also report separately

high and low occlusion cases. We are interested in perfor-

mance under occlusion, since this is the case in which non-

maximum suppression (NMS) is hard. All-in-all we show

a consistent improvement over of GreedyNMS, confirming

the potential of our approach.

All results are measured in average precision (AP),

which is the area under the recall-precision curve. The

overlap criterion (for matching detections to objects) is tra-

ditionally 0.5 IoU (as for Pascal VOC, noted as AP0.5).

COCO also uses stricter criteria to encourage better locali-

sation quality, one such metric averages AP evaluated over

several overlap criteria in the range [0.5, 0.95] in 0.05 incre-

ments, which we denote by AP0.95
0.5 .

5.1. PETS: Pedestrian detection in crowds

Dataset. PETS [8] is a dataset consisting of several

crowded sequences. It was used in [13] as a roughly sin-

gle scale pedestrian detection dataset with diverse levels
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Figure 5: Performance on the PETS test set for different

occlusion ranges.

of occlusion. Even though we aim for a larger and more

challenging dataset we first analyse our method in the setup

proposed in [13]. We use the same training and test set as

well as the same detections from [28], a model built specif-

ically to handle occlusions. We reduce the number of de-

tections with an initial GreedyNMS of 0.8 so we can fit the

joint rescoring of all detections into one GPU. (Note that

these detections alone lead to bad results, worse than “Gree-

dyNMS > 0.6” in 4, and this is very different to having input

of GreedyNMS of 0.5 as an input like in [13]).

Training. We train a model with 8 blocks and a 128 di-

mensional detection representation for 30k iterations, start-

ing with a learning rate of 10−3 and decrease it by 0.1 every

10k iterations.

Baselines. We compare to the (typically used) classic

GreedyNMS algorithm using several different overlap

thresholds, and the Strong Tnet from [13]. Since all meth-

ods operate on the same detections, the results are fully

comparable.

Analysis. Figure 4 compares our method with the Gree-

dyNMS baseline and the Tnet on the PETS test set. Start-
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ing from a wide GreedyNMS suppression with the threshold

ϑ = 0 shows almost a step function, since high scoring true

positives suppress all touching detections at the cost of also

suppressing other true positives (low recall). Gradually in-

creasing ϑ improves the maximum recall but also introduces

more high scoring false positives, so precision is decreasing.

This shows nicely the unavoidable trade-off due to having

a fixed threshold ϑ mentioned in section 3. The reason for

the clear trade-off is the diverse occlusion statistics present

in PETS.

Tnet performs better than the upper envelope of the

GreedyNMS, as it essentially recombines output of Gree-

dyNMS at a range of different thresholds. In comparison

our Gnet performs slightly better, despite not having access

to GreedyNMS decisions at all. Compared to the best Gree-

dyNMS performance, Gnet is able to improve by 4.8 AP.

Figure 5 shows performance separated into high and low

occlusion cases. Again, the Gnet performs slightly better

than Tnet. Performance in the occlusion range [0, 0.5) looks

very similar to the performance overall. For the highly oc-

cluded cases, the performance improvement of Gnet com-

pared to the best GreedyNMS is bigger with 7.3 AP. This

shows that the improvement for both Gnet and Tnet is

mainly due to improvements on highly occluded cases as

argued in section 3.

5.2. COCO: Person detection

Dataset. The COCO datasets consists of 80k training and

40k evaluation images. It contains 80 different categories

in unconstrained environments. We first mimic the PETS

setup and evaluate for persons only, and report multi-class

results in section 5.3.

Since annotations on the COCO test set are not available

and we want to explicitly show statistics per occlusion level,

we train our network on the full training set and evaluate us-

ing two different subsets of the validation set. One subset is

used to explore architectural choices for our network (mini-

val, 5k images1) and the most promising model is evaluated

on the rest of the validation set (minitest, 35k images).

We use the Python implementation of Faster R-CNN

[21]2 for generating detections. We train a model only on

the training set, so performance is slightly different than the

downloadable model, which has been trained on the training

and minitest sets. We run the detector with default param-

eters, but lower the detection score threshold and use de-

tection before the typical non-maximum suppression step.

There is no further preprocessing.

Training. We train the Gnet with ADAM for 2 · 106 itera-

tions, starting with a learning rate of 10−4 and decreasing

1We use the same as used by Ross Girshick https://github.

com/rbgirshick/py-faster-rcnn/tree/master/data.
2https://github.com/rbgirshick/py-faster-rcnn
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Figure 6: AP0.95
0.5 versus number of blocks (2, 4, 8, 16) for

low and high occlusion respectively on COCO persons

minival. Average over six runs, error bars show the stan-

dard deviation.

All
Occlusion

[0, 0.5)

Occlusion

[0.5, 1]

Method AP0.5 AP0.95
0.5 AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

v
al GreedyNMS>0.5 65.6 35.6 65.2 35.2 35.3 12.1

Gnet, 8 blocks 67.3 36.9 66.9 36.7 36.7 13.1
te

st GreedyNMS>0.5 65.0 35.5 61.8 33.8 30.3 11.0

Gnet, 8 blocks 66.6 36.7 66.8 36.1 33.9 12.4

Table 1: Comparison between Gnet and GreedyNMS on

COCO persons minival and minitest. Results for the full

set and separated into occlusion levels.

it to 10−5 after 106 iterations. The detection feature di-

mension is 128, the number of blocks is specified for each

experiment.

Speed. On average we have 67.3 person detection per im-

age, which the 16 block Gnet can process in 14ms/image on

a K40m GPU and unoptimised Tensorflow code.

Baselines. We use GreedyNMS as a baseline. To show it

in its best light we tune the optimal GreedyNMS overlap

threshold on the test set of each experiment.

Analysis. Figure 6 shows AP0.95
0.5 versus number of blocks

in Gnet. The optimal GreedyNMS thresholds are 0.5 and

0.4 for low and high occlusion respectively. Already with

one block our network performs on par with GreedyNMS,

with two blocks onwards we see a ∼1 AP point gain. As in

PETS we see gains both for low and high occlusions. With

deeper architectures the variance between models for the

high occlusion case seems to be decreasing, albeit we ex-

pect to eventually suffer from over-fitting if the architecture

has too many free parameters.

We conclude that our architecture is well suited to re-

place GreedyNMS and is not particularly sensitive to the

number of blocks used. Table 1 shows detailed results for

Gnet with 8 blocks. The results from the validation set

(minival) transfer well to the test case (minitest), provid-
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Figure 7: AP0.95
0.5 improvement of Gnet over the best Gree-

dyNMS threshold for each of the (sorted) 80 COCO classes.

Gnet improves on ∼ 70 out of 80 categories. On aver-

age Gnet provides a ∼1 mAP0.95
0.5 point gain over per-class

tuned GreedyNMS (23.5 → 24.3% mAP0.95
0.5 ).

ing a small but consistent improvement over a well tuned

GreedyNMS. Qualitative results are included in the supple-

mentary material.

We consider these encouraging results, confirming that

indeed the Gnet is capable of properly performing NMS

without access to image features or GreedyNMS decisions.

5.3. COCO multi­class

As discussed in section 4, Gnet is directly applicable to

the multi-class setup. We use the exact same parameters and

architecture selected for the persons case. The only change

is the replacement of the score scalar by a per-class score

vector in the input and output (see §4.2). We train one multi-

class Gnet model for all 80 COCO categories.

Figure 7 shows the mAP0.95
0.5 improvement of Gnet over

a per-class tuned GreedyNMS. We obtain improved results

on the bulk of the object classes, and no catastrophic fail-

ure is observed, showing that Gnet is well suited to handle

all kind of object categories. Averaged across classes Gnet

obtains 24.3% mAP0.95
0.5 , compared to 23.5% for a test-set

tuned GreedyNMS. Overall we argue Gnet is a suitable re-

placement for GreedyNMS.

Supplementary material includes the detailed per-class

table.

6. Conclusion

In this work we have opened the door for training de-

tectors that no longer need a non-maximum suppression

(NMS) post-processing step. We have argued that NMS

is usually needed as post-processing because detectors are

commonly trained to have robust responses and process

neighbouring detections independently. We have identified

two key ingredients missing in detectors that are necessary

to build an NMS network: (1) a loss that penalises double

detections and (2) joint processing of detections.

We have introduced the Gnet, the first “pure” NMS net-

work that is fully capable of performing the NMS task with-

out having access to image content nor help from another

algorithm. Being a neural network, it lends itself to being

incorporated into detectors and having access to image fea-

tures in order to build detectors that can be trained truly

end-to-end. These end-to-end detectors will not require any

post-processing.

The experimental results indicate that, with enough

training data, the proposed Gnet is a suitable replacement

for GreedyNMS both for single- or multi-class setups. The

network surpasses GreedyNMS in particular for occluded

cases and provides improved localization.

In its current form the Gnet requires large amounts of

training data and it would benefit from future work on data

augmentation or better initialisation by pre-training on syn-

thetic data. Incorporating image features could have a big

impact, as they have the potential of informing the network

about the number of objects in the image.

We believe the ideas and results discussed in this work

point to a future where the distinction between detector and

NMS will disappear.
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