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Abstract

Nonlinear regression is a common statistical tool to

solve many computer vision problems (e.g., age estimation,

pose estimation). Existing approaches to nonlinear regres-

sion fall into two main categories: (1) The universal ap-

proach provides an implicit or explicit homogeneous feature

mapping (e.g., kernel ridge regression, Gaussian process

regression, neural networks). These approaches may fail

when data is heterogeneous or discontinuous. (2) Divide-

and-conquer approaches partition a heterogeneous input

feature space and learn multiple local regressors. How-

ever, existing divide-and-conquer approaches fail to deal

with discontinuities between partitions (e.g., Gaussian mix-

ture of regressions) and they cannot guarantee that the par-

titioned input space will be homogeneously modeled by lo-

cal regressors (e.g., ordinal regression). To address these

issues, this paper proposes Soft-Margin Mixture of Regres-

sions (SMMR), a method that directly learns homogeneous

partitions of the input space and is able to deal with dis-

continuities. SMMR outperforms the state-of-the-art meth-

ods on three popular computer vision tasks: age estimation,

crowd counting and viewpoint estimation from images.

1. Introduction

Nonlinear regression is a common statistical tool to solve

many computer vision applications such as age estima-

tion [21], crowd counting [2] or pose estimation [27, 18].

These methods typically learn a mapping from hand-crafted

features (e.g., Histogram of Oriented Gradients(HoG),

Scale-Invariant Feature Transform(SIFT)) to the desired

output (e.g., facial attributes, pose angles, landmarks). Re-

cently, deep learning architectures (e.g., [33, 35]) directly

learn a convolutional nonlinear mapping from images to

outputs and achieved state-of-the-art results. Despite the

exciting advances in deep learning, it is unclear how opti-

mal these techniques are in the case of naturalistic input data

that is heterogeneous, non-uniformly sampled, or discontin-
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Figure 1. Nonlinear regression for the problem of age estimation

(number on top of the face image). Gray dots denote data points.

Gray lines denote the ground truth nonlinear regressor between

input features and outputs. The colored dotted curves denote the

predictions for different methods. (a) Gaussian Process Regres-

sion (GPR), the red dotted curve and Gaussian Mixture Regression

(GMR), the blue dotted curve. (b) Soft-Margin Mixture of Regres-

sions (SMMR), the green dotted curve (Best viewed in color).

uous. Recall that in many real problems it is labor intensive

to collect well-sampled training data and heuristic to select

training batches [13]; Moreover, the features learned are

difficult to be shared among different databases. To address

these issues in the standard regression and deep learning

methods, novel nonlinear regression approaches are needed

to deal with heterogeneous and discontinuous data.

Existing approaches to nonlinear regression fall into two

main categories: (1) Universal approaches and (2) Divide-

and-conquer approaches. Universal approaches find a im-

plicit or explicit global non-linear mapping. Examples of
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this category are Kernel Ridge Regression (KRR) [1], Ker-

nel Support Vector Regression (KSVR) [21], Kernel Partial

Least Square Regression (PLSR) [11], the covariance func-

tion in Gaussian Process Regression (GPR) [2], the Logis-

tic function used in Bayesian approaches, or the Sigmoid

and Rectifier functions used in neural networks. Given dis-

continuous and heterogeneous training data, an universal re-

gressor is inevitably biased by the data distribution. That is,

the model will incur in low regression error in densely sam-

pled space while high error in everywhere else. To model

heterogeneous data, divide-and-conquer approaches learn

multiple local regressors. For instance, the hierarchical-

based [14] and tree-based regression [15] make hard par-

titions according to outputs, and the subsets of samples

may not be homogeneous for learning local regressors. Fi-

nite Mixture of Regressions (FMR), such as Gaussian Mix-

ture of Regressions (GMR) [26], distributes regression er-

ror among local regressors by maximizing likelihood in the

joint input-output space. The output of an input feature is

then computed as a weighted combination of outputs by all

local regressors. In existing FMR approaches[34, 19], re-

gressors learned with more training data tend to dominate

the final output estimation.

Figure 1 (a) illustrates above disadvantages in the prob-

lem of age estimation from images. Each gray ”·” denotes

a data sample, that corresponds to an input image feature

(e.g., a BIF vector [21] and an output scalar (i.e., the age of

the subject). The gray lines denote the true regressor from

inputs to outputs. We trained regressors using an example

of universal approaches (GPR) and an example of divide-

and-conquer approach (GMR) on all data samples. Then

we plotted their output predictions as colored dotted curves

in Figure 1. In this example the data is (1) heterogeneous:

the data cloud on the left is drawn from a Gaussian distri-

bution and the data cloud on the right drawn from exponen-

tial distribution; (2) non-uniformly sampled. Using GPR

(Universal approach), the output predictions (the red dotted

curve in Figure 1 (a)), fit the true regression (the gray line

in Figure 1 (a)) poorly when the data samples are scattered

and discontinuous. Using GMR, two local regressors were

learned, one for the point cloud on the left and the other

for the point cloud on the right. The output prediction of

GMR (the blue dotted curve in Figure 1 (a)) was computed

as a weighted sum of predictions by the two local regres-

sors. Because the densely sampled data on the right pro-

duces much higher weights, the output prediction of GMR

on the left was dominated by the prediction on the right.

As a result, the output prediction of GMR (the blue dotted

curve in Figure 1 (a)) is far from the true regression.

To address the above mentioned problems, we propose

Soft-Margin Mixture of Regressions (SMMR) for solving

heterogeneous regression problems. SMMR simultane-

ously finds homogeneous partitions in the joint input-output

space using max-margin classification, and learns a local re-

gressor for each partition. Using the hinge-loss as mixing

proportions, SMMR minimizes the regression error in the

soft margin between partitions. SMMR uses the hinge loss

to model the transition between regressors, it produces ”0”

weights within partitions and smooth weights between par-

titions. This property prevents one regressor from dominat-

ing other regressors in estimating final outputs. By contrast,

SVR just uses the hinge loss on the regression error to ex-

clude outliers in training samples. Our approach effectively

reduces the overall regression error. Observe that output

predictions made by SMMR (the green dotted curve in Fig-

ure 1 (b)) accurately fit the true regression (the gray line in

Figure 1 (b)). We applied SMMR to three computer vision

tasks: facial age estimation, crowd counting and viewpoint

estimation, and in all of the problems SMMR outperformed

state-of-the-art results.

2. Related Work

This section reviews the regression approaches devel-

oped for facial age estimation, crowd counting, and object

viewpoint estimation.

Facial age estimation from images has extensive applica-

tions in visual surveillance, access control, and demograph-

ics analysis. Using hand-craft features (e.g., AAM [4] or

BIF [21]) as inputs, a variety of universal regression ap-

proaches were used: Gaussian Process Regression (GPR)

[37], Kernel Support Vector Regression (KSVR) [21], Ker-

nel Partial Least Square Regression (KPLS) [11]. However,

Human face matures in non-stationary patterns [22] at dif-

ferent age. Facial aging effects appear as changes in the

shape of the face during childhood and changes in skin tex-

ture during adulthood. Dividing data by ages, hierarchical

models [14] and group-specific regression have produced

good results. While this hierarchical model tries to over-

come the error mitigation by empirically splitting the la-

bel space with overlapping ranges, it may not find homo-

geneous subsets for learning local regressors. Ordinal re-

gression [5, 22] performs a series of binary classification to

partition the samples according to ages, and estimates ages

by summing over classifier outputs. Moreover, ordinal re-

gression is limited to scalar outputs.

Crowd counting [2] is an essential video analysis tool for

public surveillance, security assessment and traffic statis-

tics. The goal of crowd counting is to estimate number

of persons from images. Using hand-crafted features [3],

universal approaches, e.g. Ridge Regression [7], Gaussian

Process Regression [2] and kernel-based regression [1] have

been applied to crowd counting. Many divide-and-conquer

approaches outperform above universal approaches. Chan

et al. [2] firstly segmented the image into components of

homogeneous patches, then used Gaussian Process Regres-

sion to estimate the number of people per segment. Zhang
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et al. [35] adapted a CNN model for the sampling differ-

ences between training and testing data. To compute the

similarity between the training and testing data, perspective

maps were required between training and test scene.

Object viewpoint estimation was solved as either a clas-

sification problem and a regression problem. Here, we fo-

cus on the regression problem. Two strategies have been

explored: (1) Using 3D information to model the config-

uration of object parts[38, 32, 28]. For instance, Pepik et

al. [24] extended the 2D Deformable Part Models (DPM)

to 3D DPM, and performed interpolation inference to pro-

duce the continuous estimation. (2) Using 2D image fea-

tures to estimate Object viewpoints. Torki et al. [29] built

a manifold representation of an object class and a regres-

sion from manifold to object viewpoint. Recent work per-

formed divide-and-conquer: He et al. [16] partitioned data

under different viewpoints by classification, and performed

refined estimation by regression. Fenzi et al. [9] learned an

object class representation by aggregating local features us-

ing spectral clustering. Local regressors were then learned

for each cluster and used to estimate viewpoint by weighted

combination. Hara and Chellappa[15] used a K-Clusters

Regression Forest: k-means clustering + regression forest.

These partition approaches relies solely on either inputs or

output. In a partitioned subset, the input-output correlation

may not be homogeneous making it difficult to learn accu-

rate local regressors.

3. Finite mixture of regression

Finite Mixture of Regression (FMR) is the most basic

divide-and-conquer approach. Most other approaches can

be understood as extensions of FMR, including our SMMR

approach.

Denote1 xi ∈ ℜdx the vector representation of the ith

input feature and yi ∈ ℜdy the output vector of xi (i =
1, · · · , n). Finite Mixture of Regression (FMR) splits the n
pairs of samples {xi,yi}s into k subsets, and learn a local

regressor for each subset. Without loss of generality, the re-

gressor of the jth subset (j = 1, · · · , k) is a linear mapping

f(y|x, z = j) = φ(y;βT
j x̂,σ

2
j ), (1)

where β ∈ ℜdy×(dx+1) is the regression coefficients, x̂ =
[1,x]. z is a latent variable that denotes the affiliation of

{x,y} to a subset. φ(·) is a density function of regression

1 Bold capital letters denote matrices X, bold lower-case letters a col-

umn vector x. xj represents the jth column of the matrix X. All non-

bold letters represent scalar variables. xij denotes the scalar in the row

i and column j of the matrix X and the scalar i-th element of a column

vector xj . Ik ∈ ℜk×k denotes the identity matrix. ‖x‖2 denotes the

L2-norm of the vector x. tr(A) =
∑

i aii is the trace of the matrix A.

‖A‖2
F

= tr(AT
A) = tr(AA

T ) designates the Frobenious norm of

matrix A.

error, e.g., Gaussian error N (0,σ2). The conditional den-

sity of FMR is computed by summing over local regressors:

p(y|x) =
∑

z

p(z|x)p(y|x, z)

=
k∑

j=1

πjφ(y|β
T
j x̂,σ

2
j ),

(2)

where πj is the mixing proportions of the jth regressor to

the FMR output. πjs are positive and
∑k

j=1 πj = 1. The

output yi is estimated as a weighted combination over all

local regressors

y =

k∑

j=1

πjβ
T
j x̂. (3)

Note the standard FMR makes no assumption on the

marginal distribution of x. The mixing proportions πjs are

constants to samples, meaning an universal regression.

Extensions of FMR compute input-dependent πjs to

handle heterogeneous data. Given a test input xt, Young

et al. [34] compute πjs as the sum of similarities between

xt and all training xis belong to the jth local regression;

Huang et al. [19] grid to fit kernel-based function; Gaussian

Mixture Regression (GMR) assumes xis of a local regres-

sion follows the Gaussian distribution, and πj is the likeli-

hood of xt to the jth Gaussian distribution. All these ap-

proaches suffer from the same limitation: Local regressors

trained with more data and/or larger variance always pro-

duces larger πjs. As a result, the output prediction is domi-

nated by local regressors with large πjs (See Figure 1 (a)).

Other extensions avoid above problem by hard-partition

of input space according to outputs, and compute output

estimation only in the partitioned space, e.g., Hierarchical

Mixture of Experts (HME) [20] and Ordinal regression [5].

These approaches rely on perfect hard-partition (classifica-

tion), and do not necessarily learn accurate local regressors.

This is because only the outputs were used to supervise the

partition, the local input-output correlation may not be ho-

mogeneous.

4. Soft-Margin Mixture of Regressions

SMMR overcomes above limitations by jointly learning

soft-margin partition and local regressors.

The training algorithm of SMMR consists of four main

operations: (1) partitions the input space with multi-class

Max-margin classification; (2) computes soft-margin mix-

ing proportions using the hinge-loss in classification; (3)

learns local regressors using training samples fall in each

class where the regression errors weighted by soft-margin

mixing proportions; (4) assigns samples to the class whose

regressor produces the smallest regression error. These op-

erations are alternated until convergence.
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Two critical observations can be made from above op-

erations: (i) Because the soft-margin mixing proportions

computed by the hinge-loss is zero outside of margin, by

operation (2) , mixture of local regressors only take place

in the margin between classes. (ii) By operation (4) , local

regressors are updated using homogeneous subsets of data.

The heterogeneous portion of the input space are contained

in the margin.

Formally, given a training dataset xi,yi (i = 1, · · · , n)

with latent variable z, where z ∈ {1, . . . , k}. The mapping

from x to z is a classifier function

p(z|x) = wTϕ(x) + b, (4)

Where ϕ(·) is a mapping the input space into high/infinite

dimensional feature space, e.g., Reproducing Kernel Hilbert

Space(RPHS). The mapping from x to y is a regression

function

y = βT
j x̂, (5)

In operation (1) , following, the max-margin partition is

solved with one-against-one multi-class classification [17]:

min
w

jj′ ,bjj
′
,ξjj

′

1

2
||wjj′ ||2 + C

∑

i

ξjj
′

i (6)

(wjj′)Tϕ(xi) + bjj
′

≥ 1− ξjj
′

i , if zi = j,

(wjj′)Tϕ(xi) + bjj
′

≤ −1 + ξjj
′

i , if zi = j′,

ξjj
′

i ≥ 0,

where j and j′ are index of classes (j, j′ = 1, . . . , k; j 6=
j′).

In operation (2) , the mixing proportion function

πj(x,w, b) for sample xi (denoted as πij) is computed

as follows: for any j′ 6= j, if xi belongs to the

jth class, (wjj′)Tϕ(xi) + bjj
′

> 0, then rij =∑k

j′ 6=j [(w
jj′)Tϕ(xi)+bjj

′

]+ quantifies the certainty of as-

signing xi to the jth class. The operator [f ]+ = f when

f > 0, and [f ]+ = 0 when f ≤ 0. The mixing propor-

tion πij is computed by normalizing rij with the soft-max

technique:

πij =
exp(r

(t)
ij /2h2)

∑k

j=1 exp(r
(t)
ij /2h2)

, (7)

Where each class πij = p(z = j|x) ∼ [0, 1], and
∑k

j πij =
1. h is the bandwidth of the soft-max operator. The larger

h, the “softer” the assignment for each xi.

In operation (3) , to jointly learn classifiers and local

regressors, the objective of SMMR is written as the log-

likelihood function

ℓ(w, b,β,σ) =

n∑

i=1

log

k∑

j=1

π(xi,w, b)φ(y|βT
j x̂i,σ

2
j ),

(8)

where w and b are global notation of classifier parameters

wjj′ and bjj
′

. β and σ global notation of regressor param-

eters βj and σj . We proposed a modified EM algorithm to

solve Eq. 8. In the tth iteration of the EM algorithm, β(t),

σ2(t) and w(t), b(t)|xi is updated as follows:

In E-step, fixing βj , σ2
j and πij , and compute the expec-

tation of component identities for Eq. 8

p
(t+1)
ij = [1 +

∑

j′ 6=j

πijφ(yi|β
T (t)
j′ x̂i,σ

2(t)
j′ )

πijφ(yi|β
T (t)
j x̂i,σ

2(t)
j )

]−1. (9)

In M-step, update βj , σ2
j and πij ,

r
(t+1)
ij =

k∑

j′ 6=j

[(wjj′)Tϕ(xi) + bjj
′

]+, (10)

π
(t+1)
ij =

exp(r
(t)
ij /2h2)

∑k

j=1 exp(r
(t)
ij /2h2)

+ ǫ, (11)

βt+1
j = (XG

(t+1)
j XT )−1XG

(t+1)
j YT , (12)

σ
2(t+1)
j =

‖ Y − β
T (t+1)
j X ‖2 G

(t+1)
j

tr(G
(t+1)
j )

+ ǫIdy
,(13)

where

G
(t+1)
j = diag(p

(t+1)
1j , p

(t+1)
2j , . . . , p

(t+1)
nj ). (14)

Here, ǫ is a small positive scalar that avoids numeric insta-

bility in E-step (Eq. 9). The pseudo code of the SMMR

training algorithm is summarized in Algorithm 1.

Algorithm 1 SMMR Training Algorithm

Require: Given training samples xi,yi (i = 1, · · · , n):

1. Initialize the number of the regression k.

2. Do k-means clustering on {xi,yi}s to get k sub-

sets, and initialize πij according to cluster assignment,

i.e. πij = 1 if xi is assigned to the jth cluster, otherwise

πij = 0.

3. Use samples in each subsets to learn the local regres-

sors, and initialize the coefficient βj , and σ2
j .

4. implement the modified EM algorithm:

for each iteration do

a. Calculate the pij in E-Step (Eq. 9);

b. Train the multi-class SVM model based on pij , and

compute the mixing proportion by formula rij ;

c. Update the πij ,βj and σ2
j in M-Step (Eq. 10-13).

end for

5. Repeat until convergence.

The M-step optimizes max-margin classifier and

weighted linear regression, which simply increases the

completed likelihood function. For maximizing log-

likelihood function (Eq. 8), the SMMR uses a generalized
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EM algorithm and is guaranteed to reach local minima. In

training SMMR above, there are three parameters to be se-

lected: the number of components k, the weight on classi-

fication error C and the kernel bandwidth h. We selected

these parameters that achieved the best results on training

data by cross-validation.

Given a test input xt ∈ ℜdx , the output of SMMR, yt ∈
ℜdy , is computed as

yt = E[yt|xt]

= E[
k∑

j=1

πtjφ(y|β
T
j x̂t,σ

2
j )]

=

k∑

j=1

πtj · β
T
j x̂t,

(15)

where

πtj =
exp(rtj/2h

2)
∑k

j=1 exp(rtj/2h
2)
, (16)

and

rtj =
k∑

j′ 6=j

[(wjj′)Tϕ(xt) + bjj
′

]+. (17)

5. Experiments

5.1. Benchmark Datasets

For facial age estimation, the most frequently used

benchmark is the Longitudinal Morphological Face

Database (MORPH) [25] database. The MORPH database

contains 55, 132 face images from more than 13, 000 sub-

jects. The ages of the subjects range from 16 to 77 with

a median age of 33. The faces are from different races,

among which the African faces account for about 77 per-

cent, the European faces account for about 19 percent, and

the remaining 4 percent includes Hispanic, Asian, Indian,

and other races.

For crowd counting, we used the widely-used University

of California, San Diego pedestrian dataset (UCSD-ped)[2].

This dataset contains 2000 frames selected from two hours

of video. The video was collected from a surveillance cam-

era in the UCSD campus. The selected frames contain on

average 25 pedestrians moving in two directions along a

walkway. The resolution of the frame is 158× 238.

For viewpoint estimation, the EPFL Multi-view Car

(EPFL-car) dataset [23] was used. The dataset contains 20
sequences of cars under various viewpoints. There are 2299
images in the dataset. Each image comes with a bounding

box specifying the location of the car. The ground truth

viewpoint angles of the cars were estimated based on the

shooting time of images. The viewpoint angle ranges from

0◦ to 360◦.

Figure 2 show some example images in the UCSD and

EPFL-car datasets. For the MORPH database, we only used

the Bio-inspired Features(BIF) [21] from Dr. Guodong

Guo and do not have the original images.

5.2. StateoftheArt Comparison

Faical age Estimation Most recent results on the

MORPH dataset [25] were obtained using three main ap-

proaches: AAM features [4] + nonlinear regression, BIF

features[21] + nonlinear regression [13], and CNN-based

approaches [33, 30, 22]. SMMR uses the BIF features for

it usually performs better than AAM features, see Table 1.

The original BIF feature for one face image is 4376 dimen-

sions. We also followed the approaches in [10] to reduced

the original BIF to 200 dimensional vectors using marginal

Fisher analysis [31].

Many papers reported results under their own experi-

mental protocols making it very difficult to perform a fair

comparison with other approaches. For instance, [11, 12]

divided the data into three subsets, used one subset for train-

ing, and the rest two subsets for testing. They reported 4.43
and 3.98 in MAE respectively. [6] only selected 5475 sam-

ples in their experiment. In our experiment, we compared

approaches that follows the same experimental protocols:

randomly divide the whole dataset into two parts: 80% of

the data is used for training, and the other 20% of the data

is used for testing. There is no overlap between the training

and testing data. For statistical analysis, this procedure is

done with 5-fold cross validation. All results were evalu-

ated by the variance of Mean Absolute Error (MAE) 2.

Table 1. Facial Age Estimation on the MORPH dataset [25].

Method Feature MAE

RED-SVM [4] AAM 6.49

MTWGP [37] AAM 6.28

CA-SVR [6] AAM 5.88

CPNN [10] BIF 4.87

DLA+KSVR [30] CNN 4.77

CCA [12] BIF 4.73

KPLS [11] BIF 4.43

LSVR [21] BIF 4.31

OHRank [5] BIF 3.82

CPLF [33] CNN 3.63

HSVR [14] BIF 3.6

OR-CNN [22] CNN 3.27

SMMR(ours) BIF 3.24

2CCA and LSVR results in Table 1 under above experimental protocol

were provided by [22].
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Figure 2. Examples images in the UCSD database for crowd counting: pedestrian scenes recorded by a surveillance camera on UCSD

campus, and the EPFL-car dataset for viewpoint estimation: image sequences of rotating cars.

Four observations can be made from Table 1: (1) For

standard nonlinear regressions, divide-and-conquer out-

performs universal non-linearity: see Hierarchical SVR

(HSVR) [14] → LSVR [21] and KPLS[11]; (2) For CNN-

based approach, divide-and-conquer high-layer objectives

outperforms universal objectives: Ordinal objective (OR-

CNN [22])→ Multi-scale objective (CPLF [33] → Uni-

versal nonlinear objective (DLA+KSVR [30]); (3) using

divide-and-conquer techniques, standard nonlinear regres-

sion outperforms CNN without divide-and-conquer (HSVR

→ DLA+KSVR), and only after using the Ordinal objec-

tive (OR-CNN [22]) the CNN-based approach regained bet-

ter results; (4) our SMMR approach produced the best re-

sult. Note here with only RBF kernel in partition and lin-

ear local regressors, our soft-margin technique is powerful

enough to outperform other approaches. The the best result

was obtained with 6 partitions.

Divide-and-conquer is the key factor in learning non-

stationary age changes in human face. Our SMMR ap-

proach has two advantages over the existing divide-and-

conquer approaches: (1) SMMR jointly learns overlapping

partitions and minimizes regression error in each partition.

HSVR manually selects overlapping ranges (e.g. ∆ = 5 in

[14]) which may lead to heterogeneous local partitions and

high local regression errors. (2) SMMR confined mixture

of regressions in the soft-margin, which prevented the out-

put estimation from being dominated by locally dense sam-

pling. Both HSVR and Ordinal regression (OHRank and

OR-CNN) classify input data by ages, and inevitably bias

to the age range with dense samples. Moreover, ordinal re-

gression trains m− 1 binary classifiers, m being the integer

number of ages, which is time-consuming to tune the pa-

rameters.

To illustrate the effectiveness of above advantages, we

visualized the training and testing results of SMMR in Fig-

ure 3. Figure 3 (a) displays histogram of data samples (the

vertical axis) with respect to age (the horizontal axis). The

data was sampled mostly below age 60, and densely con-

centrated around 20’s and 40’s. Figure 3 (b) plots the sam-

ples fall in the 6 partitions learned in training (partitions
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Figure 3. Visualization of SMMR on Morph dataset for Age Es-

timation. (a) Histogram of data samples with respect to age; (b)

Samples fall in the 7 partitions learned in training (best viewed in

color); (c) Cumulative age prediction error in testing.

are colored). Note that the learned partitions are heavily

overlapped in ages. Although SMMR learns homogeneous

local partitions, the number of samples are not necessarily

uniformly distributed among partitions. Figure 3 (c) shows

the cumulative prediction error in testing. The height of

each bar denotes the sum of predicted age errors in one-year

range. Despite the non-uniformly distributed samples (Fig-

ure 3 (a)), and imbalanced overlapping partitions (Figure 3

(b)), SMMR was able to produce uniform error through out

the age range (from 0 to 80).

Crowd Counting Most recent works on the UCSD

pedestrian (UCSD-ped) dataset were obtained by univer-

sal regression approaches. These approaches used the 29-

dimensional low-level features (Segment features, inter-
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Table 2. Crowd Counting on the UCSD-ped dataset[2].

Method Feature MAE MSE

KRR [1] SET 2.16 7.45

RR [7] SET 2.25 7.82

GPR [2] SET 2.24 7.97

CA-RR [6] SET 2.07 6.86

Crowd-CNN [35] CNN 1.60 3.31

SMMR(ours) SET 1.38 2.94

nal Edge features and Texture features (SET)) provided

by [3]. We compared five recent regression results re-

ported under the same the experimental setting in [35]. In

Table 2, these regression methods are Kernel Ridge Re-

gression (KRR)[1], Ridge Regression(RR) [7], Gaussian

Process Regression(GPR)[2] , Cumulative Attribute based

Ridge Regression (CA-RR)[6], and Crowd-Convolution

Neural Networks (Crowd CNN)[35]. For all approaches,

frames from index 601 to 1400 were used as training data,

and the remaining 1200 frames were used as test data. The

Mean Average Error (MAE) and Mean Square Error (MSE)

metrics are used for evaluating the performance.

1.85 1.83
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Figure 4. Sensitivity of SMMR to number of components k in the

crowd counting experiment. The lowest MAE, 1.38, was achieved

when k = 8.

As shown in Table 2, SMMR significantly outperformed

the others on both MAE and MSE. Note here SMMR used

RBF kernel in partition and linear local regressors and

obtained the best result with 8 partitions. The sensitivity of

parameter k is shown in Fig. 4. It is very interesting to note

that CA-RR and Crowd-CNN performed better than other

universal regression approaches by partially addressing the

nonuniform sampling problem in data. CA-RR projected

original features into a (0-1 valued) cumulative feature

Table 3. Viewpoint Estimation on the EPFL-car dataset [23].

Method Feature MAE MedAE

FER [29] Blur 33.98◦ 11.3◦

CGFM [8] SIFT 31.27◦ -

KRF [15] HOG 24.24◦ -

HMA [36] HOG 24.00◦ -

EGGM [9] SIFT 23.28◦ -

SMMR(ours) HOG 12.61◦ 3.52◦

space partitioned by crowd counts. This procedure normal-

izes the variance among crowd counts ranges, and results in

a weighted Ridge Regression (RR). Similarly, Crowd-CNN

normalized the data density among crowd counts ranges.

Viewpoint Estimation Many recent work on EPFL-car

dataset [23] combines bounding box detection and view-

point estimation. To focus on the regression results, we only

compared five approaches using the ground-truth bounding

boxes. As shown in Table 3, these approaches are Feature

Embedding based Regression (FER)[29], Class Genera-

tive Feature Model (CGFM)[8], K-Clusters Regression For-

est (KRF)[15], Homeomorphic Manifold Analysis (HMA)

[36], and Embedding Geometry based Generative Model

(EGGM)[9]. All the compared approaches used the first

10 image sequences for training and the remaining 10 se-

quences for testing. Two evaluation metrics were reported

in the compared approaches: Mean Angular Error (MAE)

and Median Angular Error (MedAE).

Our approach used the same input features proposed in

[15]: given bounding box of a car, a image patch was

cropped and re-sized to 64 × 64. Multi-scale Histogram

of Oriented Gradients (HOG) feature was computed with

cell size {8, 16, 32} and 2 × 2 cell blocks. The orienta-

tion histogram of each cell is computed with signed gra-

dients in 9 orientation bins. The resulted HOG feature is

2124-dimensional; finally, the HOG feature is reduced to 50
dimensions by marginal Fisher analysis [31]. Considering

the view angle ranges (from 0◦ to 360◦), the Euclidean dis-

tance is inappropriate to measure the regression error. For

instance, the distance between 0◦ to 350◦ should be smaller

than that between 0◦ to 50◦. Hence, in our experiments, the

1D viewpoint angle output space is represented by the 2-

dimensional coordinates on a unit circle. Given viewpoint

angle a, the 2D coordinates is (y1, y2) = (sin a, cos a). The

2D outputs were used for both training and testing. After

a 2D output is estimated in testing, its viewpoint angle is

computed using arctan 2 function.

As shown in Table 3, SMMR significantly outperformed

the others on both MAE and MedAE. Note here SMMR

used RBF kernel in partition and linear local regressors

and obtained the best result with 7 partitions. Three ob-
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servations can be make: (1) divide-and-conquer approaches

outperform universal approaches: KRF and HMA → FER.

HMA builds a homeomorphic manifold mapping for each

color channel (e.g. RGB), and combine the estimation from

three manifolds to compute the viewpoint of a car. KFR is

a hierarchical approach which recursively split the output

space into a set of disjoint partitions, and uses random for-

est as the final regression model; (2) Approaches with soft

partition are better than those with hard partition: EGGM

and SMMR → KRF. EGGM builds a graph of object parts,

and computes soft matching scores of test object parts to the

graph. The soft matching scores are then used as weights

to combine the viewpoint of parts to viewpoints of a test

object. SMMR uses soft-margin error to weight local re-

gressors. Whereas KRF fixes the clustered partitions and

performs hard partition of the input features by classifica-

tion; (3) Partition in the joint input-output space is better

than output space only partition: SMMR → KRF. KRF

uses k-means clustering only in the output space making

it very difficult to correctly classify a test input feature. On

the other hand, SMMR learns partitions in the joint input-

output space, such that homogeneous and accurate local re-

gressors can be jointly learned.

6. Conclusion

We proposed SMMR to learn nonlinear regression with

heterogeneous, non-uniformly sampled and discontinuous

feature space that typically emerges from computer vision

tasks. SMMR is a mixture of regressions approach that finds

homogeneous partitions of data while minimizing the error

in partition boundaries using soft-margin mixtures. Exper-

iments on three computer vision tasks showed that SMMR

outperformed standard nonlinear regression approaches us-

ing the same hand-craft features as well as many CNN-

based regression approaches. Note that in this paper, we

achieved superior results using only the standard RBF ker-

nel max-margin classifier and linear local regressors. To

explore the full potential of SMMR, we plan to try more

sophisticate local regressors and extend SMMR as a higher-

layer objective of CNN.
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