
Stacked Generative Adversarial Networks

Xun Huang1 Yixuan Li2 Omid Poursaeed2 John Hopcroft1 Serge Belongie1,3

1Department of Computer Science, Cornell University
2School of Electrical and Computer Engineering, Cornell University 3Cornell Tech

{xh258,yl2363,op63,sjb344}@cornell.edu jeh@cs.cornell.edu

Abstract

In this paper, we propose a novel generative model

named Stacked Generative Adversarial Networks (SGAN),

which is trained to invert the hierarchical representations

of a bottom-up discriminative network. Our model con-

sists of a top-down stack of GANs, each learned to generate

lower-level representations conditioned on higher-level rep-

resentations. A representation discriminator is introduced

at each feature hierarchy to encourage the representation

manifold of the generator to align with that of the bottom-

up discriminative network, leveraging the powerful discrim-

inative representations to guide the generative model. In

addition, we introduce a conditional loss that encourages

the use of conditional information from the layer above,

and a novel entropy loss that maximizes a variational lower

bound on the conditional entropy of generator outputs. We

first train each stack independently, and then train the whole

model end-to-end. Unlike the original GAN that uses a sin-

gle noise vector to represent all the variations, our SGAN

decomposes variations into multiple levels and gradually

resolves uncertainties in the top-down generative process.

Based on visual inspection, Inception scores and visual Tur-

ing test, we demonstrate that SGAN is able to generate im-

ages of much higher quality than GANs without stacking.

1. Introduction

Recent years have witnessed tremendous success of deep

neural networks (DNNs), especially the kind of bottom-up

neural networks trained for discriminative tasks. In particu-

lar, Convolutional Neural Networks (CNNs) have achieved

impressive accuracy on the challenging ImageNet classifi-

cation benchmark [30, 56, 57, 21, 52]. Interestingly, it has

been shown that CNNs trained on ImageNet for classifica-

tion can learn representations that are transferable to other

tasks [55], and even to other modalities [20]. However,

bottom-up discriminative models are focused on learning

useful representations from data, being incapable of captur-

ing the data distribution.

Learning top-down generative models that can explain

complex data distribution is a long-standing problem in ma-

chine learning research. The expressive power of deep neu-

ral networks makes them natural candidates for generative

models, and several recent works have shown promising re-

sults [28, 17, 44, 36, 68, 38, 9]. While state-of-the-art DNNs

can rival human performance in certain discriminative tasks,

current best deep generative models still fail when there are

large variations in the data distribution.

A natural question therefore arises: can we leverage

the hierarchical representations in a discriminatively trained

model to help the learning of top-down generative models?

In this paper, we propose a generative model named Stacked

Generative Adversarial Networks (SGAN). Our model con-

sists of a top-down stack of GANs, each trained to gener-

ate “plausible” lower-level representations conditioned on

higher-level representations. Similar to the image discrimi-

nator in the original GAN model which is trained to distin-

guish “fake” images from “real” ones, we introduce a set of

representation discriminators that are trained to distinguish

“fake” representations from “real” representations. The ad-

versarial loss introduced by the representation discrimina-

tor forces the intermediate representations of the SGAN to

lie on the manifold of the bottom-up DNN’s representa-

tion space. In addition to the adversarial loss, we also in-

troduce a conditional loss that imposes each generator to

use the higher-level conditional information, and a novel

entropy loss that encourages each generator to generate di-

verse representations. By stacking several GANs in a top-

down way and using the top-most GAN to receive labels and

the bottom-most GAN to generate images, SGAN can be

trained to model the data distribution conditioned on class

labels. Through extensive experiments, we demonstrate that

our SGAN is able to generate images of much higher quality

than a vanilla GAN. In particular, our model obtains state-

of-the-art Inception scores on CIFAR-10 dataset.

2. Related Work

Deep Generative Image Models. There has been a large

body of work on generative image modeling with deep

15077

learning. Some early efforts include Restricted Boltzmann

Machines [22] and Deep Belief Networks [23]. More

recently, several successful paradigms of deep generative

models have emerged, including the auto-regressive models

[32, 16, 58, 44, 45, 19], Variational Auto-encoders (VAEs)

[28, 27, 50, 64, 18], and Generative Adversarial Networks

(GANs) [17, 5, 47, 49, 53, 33]. Our work builds upon

the GAN framework, which employs a generator that trans-

forms a noise vector into an image and a discriminator that

distinguishes between real and generated images.

However, due to the vast variations in image content, it is

still challenging for GANs to generate diverse images with

sufficient details. To this end, several works have attempted

to factorize a GAN into a series of GANs, decomposing

the difficult task into several more tractable sub-tasks. Den-

ton et al. [5] propose a LAPGAN model that factorizes the

generative process into multi-resolution GANs, with each

GAN generating a higher-resolution residual conditioned

on a lower-resolution image. Although both LAPGAN and

SGAN consist of a sequence of GANs each working at one

scale, LAPGAN focuses on generating multi-resolution im-

ages from coarse to fine while our SGAN aims at mod-

eling multi-level representations from abstract to specific.

Wang and Gupta [62] propose a S2-GAN, using one GAN

to generate surface normals and another GAN to generate

images conditioned on surface normals. Surface normals

can be viewed as a specific type of image representations,

capturing the underlying 3D structure of an indoor scene.

On the other hand, our framework can leverage the more

general and powerful multi-level representations in a pre-

trained discriminative DNN.

There are several works that use a pre-trained discrimi-

native model to aid the training of a generator. [31, 7] add

a regularization term that encourages the reconstructed im-

age to be similar to the original image in the feature space of

a discriminative network. [59, 26] use an additional “style

loss” based on Gram matrices of feature activations. Dif-

ferent from our method, all the works above only add loss

terms to regularize the generator’s output, without regular-

izing its internal representations.

Matching Intermediate Representations Between Two

DNNs. There have been some works that attempt to

“match” the intermediate representations between two

DNNs. [51, 20] use the intermediate representations of one

pre-trained DNN to guide another DNN in the context of

knowledge transfer. Our method can be considered as a spe-

cial kind of knowledge transfer. However, we aim at trans-

ferring the knowledge in a bottom-up DNN to a top-down

generative model, instead of another bottom-up DNN. Also,

some auto-encoder architectures employ layer-wise recon-

struction loss [60, 48, 67, 66]. The layer-wise loss is usually

accompanied by lateral connections from the encoder to the

decodery. On the other hand, SGAN is a generative model

and does not require any information from the encoder once

training completes. Another important difference is that

we use adversarial loss instead of L2 reconstruction loss

to match intermediate representations.

Visualizing Deep Representations. Our work is also re-

lated to the recent efforts in visualizing the internal repre-

sentations of DNNs. One popular approach uses gradient-

based optimization to find an image whose representation

is close to the one we want to visualize [37]. Other ap-

proaches, such as [8], train a top-down deconvolutional net-

work to reconstruct the input image from a feature repre-

sentation by minimizing the Euclidean reconstruction er-

ror in image space. However, there is inherent uncertainty

in the reconstruction process, since the representations in

higher layers of the DNN are trained to be invariant to irrel-

evant transformations and to ignore low-level details. With

Euclidean training objective, the deconvolutional network

tends to produce blurry images. To alleviate this problem,

Dosovitskiy abd Brox [7] further propose a feature loss and

an adversarial loss that enables much sharper reconstruc-

tions. However, it still does not tackle the problem of un-

certainty in reconstruction. Given a high-level feature rep-

resentation, the deconvolutional network deterministically

generates a single image, despite the fact that there exist

many images having the same representation. Also, there is

no obvious way to sample images because the feature prior

distribution is unknown. Concurrent to our work, Nguyen et

al. [42] incorporate the feature prior with a variant of de-

noising auto-encoder (DAE). Their sampling relies on an

iterative optimization procedure, while we are focused on

efficient feed-forward sampling.

3. Methods

In this section we introduce our model architecture. In

Sec. 3.1 we briefly overview the framework of Generative

Adversarial Networks. We then describe our proposal for

Stacked Generative Adversarial Networks in Sec. 3.2. In

Sect. 3.3 and 3.4 we will focus on our two novel loss func-

tions, conditional loss and entropy loss, respectively.

3.1. Background: Generative Adversarial Network

As shown in Fig. 1 (a), the original GAN [17] is trained

using a two-player min-max game: a discriminator D

trained to distinguish generated images from real images,

and a generator G trained to fool D. The discriminator loss

LD and the generator loss LG are defined as follows:

LD = Ex∼Pdata
[− logD(x)]+Ez∼Pz

[− log(1−D
(
G(z))

)
]

(1)

LG = Ez∼Pz
[− log(D

(
G(z))

)
] (2)

In practice, D and G are usually updated alternately. The

training process matches the generated image distribution

5078

E1

E2

G1

E0 G0

h1

h2

y

x

ĥ2

ĥ1

z2

z1

z0

x̂

Q1

D2

D1

E2(ĥ2)

E1(ĥ1)

Q2

D0 Q0

E0(x̂)

Lcond
G0

Lcond
G1

Lcond
G2

Ladv
G2

Ladv
G1

Ladv
G0

Lent
G0

Lent
G1

Lent
G2

Encoder forward path Generator forward path

Conditional loss

Noise

Adversarial loss Entropy loss

Encoder DiscriminatorGenerator Q-Net

G1

G0

ĥ2

ĥ1

z2

z1

z0

x̂

y

(b) SGAN Train (c) SGAN Test

x x̂D0

Ladv
G0

G0 z0

(a) A vanilla GAN

G2 G2

y

Independent training path Joint training path

Figure 1: An overview of SGAN. (a) The original GAN in [17]. (b) The workflow of training SGAN, where each generator

Gi tries to generate plausible features that can fool the corresponding representation discriminator Di. Each generator

receives conditional input from encoders in the independent training stage, and from the upper generators in the joint training

stage. (c) New images can be sampled from SGAN (during test time) by feeding random noise to each generator Gi.

PG(x) with the real image distribution Pdata(x) in the train-

ing set. In other words, The adversarial training forces G to

generate images that reside on the natural images manifold.

3.2. Stacked Generative Adversarial Networks

Pre-trained Encoder. We first consider a bottom-up DNN

pre-trained for classification, which is referred to as the en-

coder E throughout. We define a stack of bottom-up de-

terministic nonlinear mappings: hi+1 = Ei(hi), where

i ∈ {0, 1, ..., N − 1}, Ei consists of a sequence of neu-

ral layers (e.g., convolution, pooling), N is the number of

hierarchies (stacks), hi(i 6= 0, N) are intermediate repre-

sentations, hN = y is the classification result, and h0 = x

is the input image. Note that in our formulation, each Ei

can contain multiple layers and the way of grouping layers

together into Ei is determined by us. The number of stacks

N is therefore less than the number of layers in E and is

also determined by us.

Stacked Generators. Provided with a pre-trained encoder

E, our goal is to train a top-down generator G that inverts

E. Specifically, G consists of a top-down stack of gener-

ators Gi, each trained to invert a bottom-up mapping Ei.

Each Gi takes in a higher-level feature and a noise vector

as inputs, and outputs the lower-level feature ĥi. We first

train each GAN independently and then train them jointly

in an end-to-end manner, as shown in Fig. 1. Each gener-

5079

ator receives conditional input from encoders in the inde-

pendent training stage, and from the upper generators in the

joint training stage. In other words, ĥi = Gi(hi+1, zi) dur-

ing independent training and ĥi = Gi(ĥi+1, zi) during joint

training. The loss equations shown in this section are for in-

dependent training stage but can be easily modified to joint

training by replacing hi+1 with ĥi+1.

Intuitively, the total variations of images could be de-

composed into multiple levels, with higher-level semantic

variations (e.g., attributes, object categories, rough shapes)

and lower-level variations (e.g., detailed contours and tex-

tures, background clutters). Our model allows using differ-

ent noise variables to represent different levels of variations.

The training procedure is shown in Fig. 1 (b). Each gen-

erator Gi is trained with a linear combination of three loss

terms: adversarial loss, conditional loss, and entropy loss.

LGi
= λ1L

adv
Gi

+ λ2L
cond
Gi

+ λ3L
ent
Gi

, (3)

where Ladv
Gi

, Lcond
Gi

, Lent
Gi

denote adversarial loss, condi-

tional loss, and entropy loss respectively. λ1, λ2, λ3 are the

weights associated with different loss terms. In practice, we

find it sufficient to set the weights such that the magnitude

of different terms are of similar scales. In this subsection

we first introduce the adversarial loss Ladv
Gi

. We will then

introduce Lcond
Gi

and Lent
Gi

in Sec. 3.3 and 3.4 respectively.

For each generator Gi, we introduce a representation

discriminator Di that distinguishes generated representa-

tions ĥi, from “real” representations hi. Specifically, the

discriminator Di is trained with the loss function:

LDi
= Ehi∼Pdata,E

[− logDi

(
hi)]+

Ezi∼Pzi
, hi+1∼Pdata,E

[− log
(
1−Di(Gi(hi+1, zi))

)
] (4)

And Gi is trained to “fool” the representation discrimi-

nator Di, with the adversarial loss defined by:

Ladv
Gi

= Ehi+1∼Pdata,E , zi∼Pzi
[− log(Di(Gi(hi+1, zi)))]

(5)

During joint training, the adversarial loss provided by

representational discriminators can also be regarded as a

type of deep supervision [35], providing intermediate super-

vision signals. In our current formulation, E is a discrim-

inative model, and G is a generative model conditioned on

labels. However, it is also possible to train SGAN without

using label information: E can be trained with an unsu-

pervised objective and G can be cast into an unconditional

generative model by removing the label input from the top

generator. We leave this for future exploration.

Sampling. To sample images, all Gis are stacked to-

gether in a top-down manner, as shown in Fig. 1 (c). Our

SGAN is capable of modeling the data distribution con-

ditioned on the class label: pG(x̂|y) = pG(ĥ0|ĥN) ∝

pG(ĥ0, ĥ1, ..., ĥN−1|ĥN) =
∏

0≤i≤N−1

pGi
(ĥi|ĥi+1), where

each pGi
(ĥi|ĥi+1) is modeled by a generator Gi. From

an information-theoretic perspective, SGAN factorizes

the total entropy of the image distribution H(x) into

multiple (smaller) conditional entropy terms: H(x) =

H(h0, h1, ..., hN) =
∑N−1

i=0 H(hi|hi+1) + H(y), thereby

decomposing one difficult task into multiple easier tasks.

3.3. Conditional Loss

At each stack, a generator Gi is trained to capture the

distribution of lower-level representations ĥi, conditioned

on higher-level representations hi+1. However, in the above

formulation, the generator might choose to ignore hi+1, and

generate plausible ĥi from scratch. Some previous works

[40, 15, 5] tackle this problem by feeding the conditional in-

formation to both the generator and discriminator. This ap-

proach, however, might introduce unnecessary complexity

to the discriminator and increase model instability [46, 54].

Here we adopt a different approach: we regularize the

generator by adding a loss term Lcond
Gi

named conditional

loss. We feed the generated lower-level representations

ĥi = Gi(hi+1, zi) back to the encoder E, and compute the

recovered higher-level representations. We then enforce the

recovered representations to be similar to the conditional

representations. Formally:

Lcond
Gi

= Ehi+1∼Pdata,E , zi∼Pzi
[f(Ei(Gi(hi+1, zi)), hi+1)]

(6)

where f is a distance measure. We define f to be the Eu-

clidean distance for intermediate representations and cross-

entropy for labels. Our conditional loss Lcond
Gi

is similar to

the “feature loss” used by [7] and the “FCN loss” in [62].

3.4. Entropy Loss

Simply adding the conditional loss Lcond
Gi

leads to an-

other issue: the generator Gi learns to ignore the noise zi,

and compute ĥi deterministically from hi+1. This prob-

lem has been encountered in various applications of condi-

tional GANs, e.g., synthesizing future frames conditioned

on previous frames [39], generating images conditioned on

label maps [25], and most related to our work, synthesizing

images conditioned on feature representations [7]. All the

above works attempted to generate diverse images/videos

by feeding noise to the generator, but failed because the con-

ditional generator simply ignores the noise. To our knowl-

edge, there is still no principled way to deal with this issue.

It might be tempting to think that minibatch discrimination

[53], which encourages sample diversity in each minibatch,

could solve this problem. However, even if the genera-

tor generates ĥi deterministically from hi+1, the generated

samples in each minibatch are still diverse since generators

are conditioned on different hi+1. Thus, there is no ob-

5080

vious way minibatch discrimination could penalize a col-

lapsed conditional generator.

Variational Conditional Entropy Maximization. To

tackle this problem, we would like to encourage the gener-

ated representation ĥi to be sufficiently diverse when con-

ditioned on hi+1, i.e., the conditional entropy H(ĥi|hi+1)
should be as high as possible. Since directly maximiz-

ing H(ĥi|hi+1) is intractable, we propose to maximize in-

stead a variational lower bound on the conditional entropy.

Specifically, we use an auxiliary distribution Qi(zi|ĥi) to

approximate the true posterior Pi(zi|ĥi), and augment the

training objective with a loss term named entropy loss:

Lent
Gi

= Ezi∼Pzi
[E

ĥi∼Gi(ĥi|zi)
[− logQi(zi|ĥi)]] (7)

Below we give a proof that minimizing Lent
Gi

is equivalent

to maximizing a variational lower bound for H(ĥi|hi+1).

H(ĥi|hi+1) = H(ĥi, zi|hi+1)−H(zi|ĥi, hi+1)

≥ H(ĥi, zi|hi+1)−H(zi|ĥi)

= H(zi|hi+1) +H(ĥi|zi, hi+1)
︸ ︷︷ ︸

0

−H(zi|ĥi)

= H(zi|hi+1)−H(zi|ĥi)

= H(zi)−H(zi|ĥi)

= E
ĥi∼Gi

[E
z′

i
∼Pi(z′

i
|ĥi)

[logPi(z
′
i|ĥi)]] +H(zi)

= E
ĥi∼Gi

[E
z′

i
∼Pi(z′

i
|ĥi)

[logQi(z
′
i|ĥi)]

+KLD(Pi‖Qi)
︸ ︷︷ ︸

≥0

] +H(zi)

≥ E
ĥi∼Gi

[E
z′

i
∼Pi(z′

i
|ĥi)

[logQi(z
′
i|ĥi)]] +H(zi)

= Ez′

i
∼Pz′

i

[E
ĥi∼Gi(ĥi|z′

i
)[logQi(z

′
i|ĥi)]] +H(zi)

, −Lent
Gi

+H(zi)

(8)

In practice, we parameterize Qi with a deep network that

predicts the posterior distribution of zi given ĥi. Qi shares

most of the parameters with Di. We treat the posterior as

a diagonal Gaussian with fixed standard deviations, and use

the network Qi to only predict the posterior mean, making

Lent
Gi

equivalent to the Euclidean reconstruction error. In

each iteration we update both Gi and Qi to minimize Lent
Gi

.

Our method is similar to the variational mutual informa-

tion maximization technique proposed by Chen et al. [2].

A key difference is that [2] uses the Q-network to predict

only a small set of deliberately constructed “latent code”,

while our Qi tries to predict all the noise variables zi in

each stack. The loss used in [2] therefore maximizes the

mutual information between the output and the latent code,

while ours maximizes the entropy of the output ĥi, condi-

tioned on hi+1. [6, 10] also train a separate network to map

images back to latent space to perform unsupervised feature

learning. Independent of our work, [4] proposes to reg-

ularize EBGAN [68] with entropy maximization in order

to prevent the discriminator from degenerating to uniform

prediction. Our entropy loss is motivated from generating

multiple possible outputs from the same conditional input.

4. Experiments

In this section, we perform experiments on a vari-

ety of datasets including MNIST [34], SVHN [41], and

CIFAR-10 [29]. Code and pre-trained models are available

at: https://github.com/xunhuang1995/SGAN.

Readers may refer to our code repository for more details

about experimental setup, hyper-parameters, etc.

Encoder: For all datasets we use a small CNN

with two convolutional layers as our encoder:

conv1-pool1-conv2-pool2-fc3-fc4, where

fc3 is a fully connected layer and fc4 outputs clas-

sification scores before softmax. On CIFAR-10 we

apply horizontal flipping to train the encoder. No data

augmentation is used on other datasets.

Generator: We use generators with two stacks through-

out our experiments. Note that our framework is generally

applicable to the setting with multiple stacks, and we hy-

pothesize that using more stacks would be helpful for large-

scale and high-resolution datasets. For all datasets, our top

GAN G1 generates fc3 features from some random noise

z1, conditioned on label y. The bottom GAN G0 generates

images from some noise z0, conditioned on fc3 features

generated from GAN G1. We set the loss coefficient pa-

rameters λ1 = λ2 = 1 and λ3 = 10.1

4.1. Datasets

We thoroughly evaluate SGAN on three widely adopted

datasets: MNIST [34], SVHN [41], and CIFAR-10 [29].

The details of each dataset is described in the following.

MNIST: The MNIST dataset contains 70, 000 labeled im-

ages of hand-written digits with 60, 000 in the training set

and 10, 000 in the test set. Each image is sized by 28× 28.

SVHN: The SVHN dataset is composed of real-world color

images of house numbers collected by Google Street View

[41]. Each image is of size 32×32 and the task is to classify

the digit at the center of the image. The dataset contains

73, 257 training images and 26, 032 test images.

CIFAR-10: The CIFAR-10 dataset consists of colored nat-

ural scene images sized at 32× 32 pixels. There are 50,000

training images and 10,000 test images in 10 classes.

1 The choice of the parameters are made so that the magnitude of each

loss term is of the same scale.

5081

https://github.com/xunhuang1995/SGAN

(a) SGAN samples (conditioned on

labels)

(b) Real images (nearest neighbor)

(c) SGAN samples (conditioned on

generated fc3 features)

(d) SGAN samples (conditioned

on generated fc3 features, trained

without entropy loss)

Figure 2: MNIST results. (a) Samples generated by SGAN

when conditioned on class labels. (b) Corresponding near-

est neighbor images in the training set. (c) Samples gener-

ated by the bottom GAN when conditioned on a fixed fc3

feature activation, generated by the top GAN. (d) Same as

(c), but the bottom GAN is trained without entropy loss.

4.2. Samples

In Fig. 2 (a), we show MNIST samples generated by

SGAN. Each row corresponds to samples conditioned on

a given digit class label. SGAN is able to generate diverse

images with different characteristics. The samples are vi-

sually indistinguishable from real MNIST images shown in

Fig. 2 (b), but still have differences compared with corre-

sponding nearest neighbor training images.

We further examine the effect of entropy loss. In Fig. 2

(c) we show the samples generated by bottom GAN when

conditioned on a fixed fc3 feature generated by the top

GAN. The samples (per row) have sufficient low-level vari-

ations, which reassures that bottom GAN learns to gener-

ate images without ignoring the noise z0. In contrast, in

Fig. 2 (d), we show samples generated without using en-

tropy loss for bottom generator, where we observe that the

bottom GAN ignores the noise and instead deterministically

generates images from fc3 features.

An advantage of SGAN compared with a vanilla GAN is

(a) SGAN samples (conditioned on

labels)

(b) Real images (nearest neighbor)

(c) SGAN samples (conditioned on

generated fc3 features)

(d) SGAN samples (conditioned

on generated fc3 features, trained

without entropy loss)

Figure 3: SVHN results. (a) Samples generated by SGAN

when conditioned on class labels. (b) Corresponding near-

est neighbor images in the training set. (c) Samples gener-

ated by the bottom GAN when conditioned on a fixed fc3

feature activation, generated by the top GAN. (d) Same as

(c), but the bottom GAN is trained without entropy loss.

its interpretability: it decomposes the total variations of an

image into different levels. For example, in MNIST it de-

composes the variations into y that represents the high-level

digit label, z1 that captures the mid-level coarse pose of the

digit and z0 that represents the low-level spatial details.

The samples generated on SVHN and CIFAR-10

datasets can be seen in Fig. 3 and Fig. 4, respectively. Pro-

vided with the same fc3 feature, we see in each row of

panel (c) that SGAN is able to generate samples with simi-

lar coarse outline but different lighting conditions and back-

ground clutters. Also, the nearest neighbor images in the

training set indicate that SGAN is not simply memorizing

training data, but can truly generate novel images.

4.3. Comparison with the state of the art

Here, we compare SGAN with other state-of-the-art gen-

erative models on CIFAR-10 dataset. The visual quality of

generated images is measured by the widely used metric,

Inception score [53]. Following [53], we sample 50, 000
images from our model and use the code provided by [53]

5082

(a) SGAN samples (conditioned on

labels)

(b) Real images (nearest neighbor)

(c) SGAN samples (conditioned on

generated fc3 features)

(d) SGAN samples (conditioned

on generated fc3 features, trained

without entropy loss)

Figure 4: MNIST results. (a) Samples generated by SGAN

when conditioned on class labels. (b) Corresponding near-

est neighbor images in the training set. (c) Samples gener-

ated by the bottom GAN when conditioned on a fixed fc3

feature activation, generated by the top GAN. (d) Same as

(c), but the bottom GAN is trained without entropy loss.

to compute the score. As shown in Tab. 1, SGAN ob-

tains a score of 8.59 ± 0.12, outperforming AC-GAN [43]

(8.25± 0.07) and Improved GAN [53] (8.09± 0.07). Also,

note that the 5 techniques introduced in [53] are not used in

our implementations. Incorporating these techniques might

further boost the performance of our model.

4.4. Visual Turing test

To further verify the effectiveness of SGAN, we conduct

human visual Turing test in which we ask AMT workers

to distinguish between real images and images generated

by our networks. We exactly follow the interface used in

Improved GAN [53], in which the workers are given 9 im-

ages at each time and can receive feedback about whether

their answers are correct. With 9, 000 votes for each eval-

uated model, our AMT workers got 24.4% error rate for

samples from SGAN and 15.6% for samples from DC-

GAN (Ladv+Lcond+Lent). This further confirms that our

stacked design can significantly improve the image quality

over GAN without stacking.

Method Score

Infusion training [1] 4.62± 0.06

ALI [10] (as reported in [63]) 5.34± 0.05

GMAN [11] (best variant) 6.00± 0.19

EGAN-Ent-VI [4] 7.07± 0.10

LR-GAN [65] 7.17± 0.07

Denoising feature matching [63] 7.72± 0.13

DCGAN† (with labels, as reported in [61]) 6.58

SteinGAN† [61] 6.35

Improved GAN† [53] (best variant) 8.09± 0.07

AC-GAN† [43] 8.25± 0.07

DCGAN (Ladv) 6.16± 0.07

DCGAN (Ladv + Lent) 5.40± 0.16

DCGAN (Ladv + Lcond)† 5.40± 0.08

DCGAN (Ladv + Lcond + Lent)† 7.16± 0.10

SGAN-no-joint† 8.37 ± 0.08

SGAN† 8.59 ± 0.12

Real data 11.24± 0.12

† Trained with labels.

Table 1: Inception Score on CIFAR-10. SGAN and SGAN-

no-joint outperform previous state-of-the-art approaches.

4.5. More ablation studies

In Sec. 4.2 we have examined the effect of entropy loss.

In order to further understand the effect of different model

components, we conduct extensive ablation studies by eval-

uating several baseline methods on CIFAR-10 dataset. If

not mentioned otherwise, all models below use the same

training hyper-parameters as the full SGAN model.

(a) SGAN: The full model, as described in Sec. 3.

(b) SGAN-no-joint: Same architecture as (a), but each

GAN is trained independently, and there is no final

joint training stage.

(c) DCGAN (Ladv+Lcond+Lent): This is a single GAN

model with the same architecture as the bottom GAN

in SGAN, except that the generator is conditioned on

labels instead of fc3 features. Note that other tech-

niques proposed in this paper, including conditional

loss Lcond and entropy loss Lent, are still employed.

We also tried to use the full generator G in SGAN as

the baseline, instead of only the bottom generator G0.

However, we failed to make it converge, possibly be-

cause G is too deep to be trained without intermediate

supervision from representation discriminators.

(d) DCGAN (Ladv+Lcond): Same architecture as (c), but

trained without entropy loss Lent.

5083

(a) SGAN (b) SGAN-no-joint

(c) DCGAN(Ladv+Lcond+Lent) (d) DCGAN (Ladv + Lcond)

(e) DCGAN (Ladv + Lent) (f) DCGAN (Ladv)

Figure 5: Ablation studies on CIFAR-10. Samples from

(a) full SGAN (b) SGAN without joint training. (c) DC-

GAN trained with Ladv+Lcond+Lent (d) DCGAN trained

with Ladv + Lcond (e) DCGAN trained with Ladv + Lent

(f) DCGAN trained with Ladv .

(e) DCGAN (Ladv + Lent): Same architecture as (c), but

trained without conditional loss Lcond. This model

therefore does not use label information.

(f) DCGAN (Ladv): Same architecture as (c), but trained

with neither conditional loss Lcond nor entropy loss

Lent. This model also does not use label informa-

tion. It can be viewed as a plain unconditional DC-

GAN model [47] and serves as the ultimate baseline.

We compare the generated samples (Fig. 5) and Incep-

tion scores (Tab. 1) of the baseline methods. Below we

summarize some of our results:

1) SGAN obtains slightly higher Inception score than

SGAN-no-joint. Yet SGAN-no-joint also generates

very high quality samples and outperforms all previ-

ous methods in terms of Inception scores.

2) SGAN, either with or without joint training, achieves

significantly higher Inception score and better sample

quality than the baseline DCGANs. This demonstrates

the effectiveness of the proposed stacked approach.

3) As shown in Fig. 5 (d), DCGAN (Ladv + Lcond) col-

lapses to generating a single image per category, while

adding the entropy loss enables it to generate diverse

images (Fig. 5 (c)). This further demonstrates that en-

tropy loss is effective at improving output diversity.

4) The single DCGAN (Ladv +Lcond +Lent) model ob-

tains higher Inception score than the conditional DC-

GAN reported in [61]. This suggests that Lcond+Lent

might offer some advantages compared to a plain con-

ditional DCGAN, even without stacking.

5) In general, Inception score [53] correlates well with

visual quality of images. However, it seems to be in-

sensitive to diversity issues . For example, it gives the

same score to Fig. 5 (d) and (e) while (d) has clearly

collapsed. This is consistent with results in [43, 61].

5. Discussion and Future Work

This paper introduces a top-down generative framework

named SGAN, which effectively leverages the representa-

tional information from a pre-trained discriminative net-

work. Our approach decomposes the hard problem of es-

timating image distribution into multiple relatively easier

tasks – each generating plausible representations condi-

tioned on higher-level representations. The key idea is to

use representation discriminators at different training hi-

erarchies to provide intermediate supervision. We also

propose a novel entropy loss to tackle the problem that

conditional GANs tend to ignore the noise. Our entropy

loss could be employed in other applications of conditional

GANs, e.g., synthesizing different future frames given the

same past frames [39], or generating a diverse set of images

conditioned on the same label map [25]. We believe this is

an interesting research direction in the future.

Acknowledgments

We would like to thank Danlu Chen for the help with Fig. 1.

Also, we want to thank Danlu Chen, Shuai Tang, Sain-

ing Xie, Zhuowen Tu, Felix Wu and Kilian Weinberger for

helpful discussions. Yixuan Li is supported by US Army

Research Office W911NF-14-1-0477. Serge Belongie is

supported in part by a Google Focused Research Award.

5084

References

[1] F. Bordes, S. Honari, and P. Vincent. Learning to generate

samples from noise through infusion training. In ICLR, 2017.

7

[2] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. Infogan: Interpretable representation learning

by information maximizing generative adversarial nets. In

NIPS, 2016. 5

[3] X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, and

K. Weinberger. Adversarial deep averaging networks

for cross-lingual sentiment classification. arXiv preprint

arXiv:1606.01614, 2016.

[4] Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and

A. Courville. Calibrating energy-based generative adversar-

ial networks. In ICLR, 2017. 5, 7

[5] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In NIPS, 2015. 2, 4

[6] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-

ture learning. In ICLR, 2017. 5

[7] A. Dosovitskiy and T. Brox. Generating images with per-

ceptual similarity metrics based on deep networks. In NIPS,

2016. 2, 4

[8] A. Dosovitskiy and T. Brox. Inverting visual representations

with convolutional networks. In CVPR, 2016. 2

[9] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learn-

ing to generate chairs with convolutional neural networks. In

CVPR, 2015. 1

[10] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky,

O. Mastropietro, and A. Courville. Adversarially learned in-

ference. In ICLR, 2017. 5, 7

[11] I. Durugkar, I. Gemp, and S. Mahadevan. Generative multi-

adversarial networks. In ICLR, 2017. 7

[12] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,

F. Laviolette, M. Marchand, and V. Lempitsky. Domain-

adversarial training of neural networks. JMLR, 2016.

[13] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In NIPS, 2015.

[14] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016.

[15] J. Gauthier. Conditional generative adversarial nets for

convolutional face generation. Class Project for Stanford

CS231N: Convolutional Neural Networks for Visual Recog-

nition, Winter semester, 2014, 2014. 4

[16] M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made:

masked autoencoder for distribution estimation. In ICML,

2015. 2

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 1, 2, 3

[18] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and

D. Wierstra. Draw: A recurrent neural network for image

generation. In ICML, 2015. 2

[19] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wier-

stra. Deep autoregressive networks. In ICML, 2014. 2

[20] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation

for supervision transfer. In CVPR, 2016. 1, 2

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1

[22] G. E. Hinton. Training products of experts by minimizing

contrastive divergence. Neural computation, 14(8):1771–

1800, 2002. 2

[23] G. E. Hinton and R. R. Salakhutdinov. Reducing the

dimensionality of data with neural networks. Science,

313(5786):504–507, 2006. 2

[24] J. Hoffman, D. Wang, F. Yu, and T. Darrell. Fcns in the

wild: Pixel-level adversarial and constraint-based adapta-

tion. arxiv, 2016.

[25] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. arxiv,

2016. 4, 8

[26] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

2

[27] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.

Semi-supervised learning with deep generative models. In

NIPS, 2014. 2

[28] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. In ICLR, 2014. 1, 2

[29] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. technical report, 2009. 5

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[31] A. Lamb, V. Dumoulin, and A. Courville. Discriminative

regularization for generative models. In ICML, 2016. 2

[32] H. Larochelle and I. Murray. The neural autoregressive dis-

tribution estimator. In AISTATS, 2011. 2

[33] A. B. L. Larsen, S. K. Sønderby, and O. Winther. Autoen-

coding beyond pixels using a learned similarity metric. In

ICML, 2016. 2

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 5

[35] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In AISTATS, 2015. 4

[36] Y. Li, K. Swersky, and R. Zemel. Generative moment match-

ing networks. In ICML, 2015. 1

[37] A. Mahendran and A. Vedaldi. Visualizing deep convolu-

tional neural networks using natural pre-images. IJCV, pages

1–23, 2016. 2

[38] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. Adver-

sarial autoencoders. In NIPS, 2016. 1

[39] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. In ICLR, 2016.

4, 8

[40] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 4

[41] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. 2011. 5

[42] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and

J. Clune. Plug & play generative networks: Conditional iter-

ative generation of images in latent space. In CVPR, 2017.

2

5085

[43] A. Odena, C. Olah, and J. Shlens. Conditional image

synthesis with auxiliary classifier gans. arXiv preprint

arXiv:1610.09585, 2016. 7, 8

[44] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. In ICML, 2016. 1, 2

[45] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,

A. Graves, and K. Kavukcuoglu. Conditional image gen-

eration with pixelcnn decoders. In NIPS, 2016. 2

[46] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting. In

CVPR, 2016. 4

[47] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. In ICLR, 2016. 2, 8

[48] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and

T. Raiko. Semi-supervised learning with ladder networks.

In NIPS, 2015. 2

[49] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text to image synthesis. In

ICML, 2016. 2

[50] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. In ICML, 2014. 2

[51] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR,

2015. 2

[52] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

IJCV, 115(3):211–252, 2015. 1

[53] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

NIPS, 2016. 2, 4, 6, 7, 8

[54] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scribbler:

Controlling deep image synthesis with sketch and color. In

CVPR, 2017. 4

[55] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. Cnn features off-the-shelf: an astounding baseline for

recognition. In CVPR, 2014. 1

[56] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[58] L. Theis and M. Bethge. Generative image modeling using

spatial lstms. In NIPS, 2015. 2

[59] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In ICML, 2016. 2

[60] H. Valpola. From neural pca to deep unsupervised learning.

Adv. in Independent Component Analysis and Learning Ma-

chines, pages 143–171, 2015. 2

[61] D. Wang and Q. Liu. Learning to draw samples: With appli-

cation to amortized mle for generative adversarial learning.

arXiv preprint arXiv:1611.01722, 2016. 7, 8

[62] X. Wang and A. Gupta. Generative image modeling using

style and structure adversarial networks. In ECCV, 2016. 2,

4

[63] D. Warde-Farley and Y. Bengio. Improving generative adver-

sarial networks with denoising feature matching. In ICLR,

2017. 7

[64] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image: Con-

ditional image generation from visual attributes. In ECCV,

2016. 2

[65] J. Yang, A. Kannan, D. Batra, and D. Parikh. Lr-gan:

Layered recursive generative adversarial networks for image

generation. In ICLR, 2017. 7

[66] Y. Zhang, K. Lee, and H. Lee. Augmenting supervised neural

networks with unsupervised objectives for large-scale image

classification. In ICML, 2016. 2

[67] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun. Stacked

what-where auto-encoders. ICLR Workshop, 2016. 2

[68] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative

adversarial network. In ICLR, 2017. 1, 5

5086

