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Abstract

Multiresolution analysis and matrix factorization are

foundational tools in computer vision. In this work, we

study the interface between these two distinct topics and

obtain techniques to uncover hierarchical block structure in

symmetric matrices – an important aspect in the success of

many vision problems. Our new algorithm, the incremental

multiresolution matrix factorization, uncovers such struc-

ture one feature at a time, and hence scales well to large ma-

trices. We describe how this multiscale analysis goes much

farther than what a direct “global” factorization of the data

can identify. We evaluate the efficacy of the resulting factor-

izations for relative leveraging within regression tasks using

medical imaging data. We also use the factorization on rep-

resentations learned by popular deep networks, providing

evidence of their ability to infer semantic relationships even

when they are not explicitly trained to do so. We show that

this algorithm can be used as an exploratory tool to im-

prove the network architecture, and within numerous other

settings in vision.

1. Introduction

Matrix factorization lies at the heart of a spectrum of

computer vision problems. While the wide ranging and ex-

tensive use of factorization schemes within structure from

motion [38], face recognition [40] and motion segmenta-

tion [10] have been known, in the last decade, there is re-

newed interest in these ideas. Specifically, the celebrated

work on low rank matrix completion [6] has enabled de-

ployments in a broad cross-section of vision problems from

independent components analysis [18] to dimensionality re-

duction [42] to online background estimation [43]. Novel

extensions based on Robust Principal Components Analy-

sis [13, 6] are being developed each year.

In contrast to factorization methods, a distinct and rich

body of work based on early work in signal processing is

arguably even more extensively utilized in vision. Specif-

ically, Wavelets [34] and other related ideas (curvelets [5],

shearlets [24]) that loosely fall under multiresolution analy-

sis (MRA) based approaches drive an overwhelming major-

ity of techniques within feature extraction [29] and repre-

sentation learning [34]. Also, Wavelets remain the “go to”

tool for image denoising, compression, inpainting, shape

analysis and other applications in video processing [30].

SIFT features can be thought of as a special case of the so-

called Scattering Transform (using theory of Wavelets) [4].

Remarkably, the “network” perspective of Scattering Trans-

form at least partly explains the invariances being identi-

fied by deep representations, further expanding the scope of

multiresolution approaches informing vision algorithms.

The foregoing discussion raises the question of whether

there are any interesting bridges between Factorization and

Wavelets. This line of enquiry has recently been studied

for the most common “discrete” object encountered in vi-

sion – graphs. Starting from the seminal work on Diffu-

sion Wavelets [11], others have investigated tree-like de-

compositions on matrices [25], and organizing them using

wavelets [16]. While the topic is still nascent (but evolving),

these non-trivial results suggest that the confluence of these

seemingly distinct topics potentially holds much promise

for vision problems [17]. Our focus is to study this interface

between Wavelets and Factorization, and demonstrate the

immediate set of problems that can potentially benefit. In

particular, we describe an efficient (incremental) multireso-

lution matrix factorization algorithm.

To concretize the argument above, consider a represen-

tative example in vision and machine learning where a fac-

torization approach may be deployed. Figure 1 shows a set

of covariance matrices computed from the representations

learned by AlexNet [23], VGG-S [9] (on some ImageNet

classes [35]) and medical imaging data respectively. As a

first line of exploration, we may be interested in characteriz-

ing the apparent parsimonious “structure” seen in these ma-

trices. We can easily verify that invoking the de facto con-

structs like sparsity, low-rank or a decaying eigen-spectrum

cannot account for the “block” or cluster-like structures in-

herent in this data. Such block-structured kernels were the

original motivation for block low-rank and hierarchical fac-

torizations [36, 8] — but a multiresolution scheme is much

more natural — in fact, ideal — if one can decompose the
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Figure 1. Left-to-right example category (or class) covariances from

AlexNet, VGG-S (of a few ImageNet classes) and medical imaging data.

matrix in a way that the blocks automatically ‘reveal’ them-

selves at multiple resolutions. Conceptually, this amounts to

a sequential factorization while accounting for the fact that

each level of this hierarchy must correspond to approximat-

ing some non-trivial structure in the matrix. A recent result

introduces precisely such a multiresolution matrix factor-

ization (MMF) algorithm for symmetric matrices [21].

Consider a symmetric matrix C ∈ R
m×m. PCA de-

composes C as QTΛQ where Q is an orthogonal matrix,

which, in general, is dense. On the other hand, sparse

PCA (sPCA) [46] imposes sparsity on the columns of Q,

allowing for fewer dimensions to interact that may not

capture global patterns. The factorization resulting from

such individual low-rank decompositions cannot capture hi-

erarchical relationships among data dimensions. Instead,

MMF applies a sequence of carefully chosen sparse rota-

tions Q1,Q2, . . .QL to factorize C in the form

C = (Q1)T (Q2)T . . . (QL)TΛQL . . .Q2Q1,

thereby uncovering soft hierarchical organization of differ-

ent rows/columns of C. Typically the Qℓs are sparse kth-

order rotations (orthogonal matrices that are the identity ex-

cept for at most k of their rows/columns), leading to a hi-

erarchical tree-like matrix organization. MMF was shown

to be an efficient compression tool [39] and a precondi-

tioner [21]. Randomized heuristics have been proposed to

handle large matrices [22]. Nevertheless, factorization in-

volves searching a combinatorial space of row/column in-

dices, which restricts the order of the rotations to be small

(typically, ≤ 3). Not allowing higher order rotations re-

stricts the richness of the allowable block structure, result-

ing in a hierarchical decomposition that is “too localized” to

be sensible or informative (reverting back to the issues with

sPCA and other block low-rank approximations).

A fundamental property of MMF is the sequential com-

position of rotations. In this paper, we exploit the fact that

the factorization can be parameterized in terms of an MMF

graph defined on a sequence of higher-order rotations. Un-

like alternate batch-wise approaches [39], we start with a

small, randomly chosen block of C, and gradually ‘insert’

new rows into the factorization – hence we refer to this as

an incremental MMF. We show that this insertion proce-

dure manipulates the topology of the MMF graph, thereby

providing an efficient algorithm for constructing higher or-

der MMFs. Our contributions are: (A) We present a fast

and efficient incremental procedure for constructing higher

order (large k) MMFs on large dense matrices; (B) We eval-

uate the efficacy of the higher order factorizations for rela-

tive leveraging of sets of pixels/voxels in regression tasks

in vision; and (C) Using the output structure of incremental

MMF, we visualize the semantics of categorical relation-

ships inferred by deep networks, and, in turn, present some

exploratory tools to adapt and modify the architectures.

2. Multiresolution Matrix Factorization

Notation: We begin with some notation. Matrices are bold

upper case, vectors are bold lower case and scalars are lower

case. [m] := {1, . . . ,m} for any m ∈ N. Given a matrix

C ∈ R
m×m and two set of indices S1 = {r1, . . . rk} and

S2 = {c1, . . . cp}, CS1,S2
will denote the block of C cut out

by the rows S1 and columns S2. C:,i is the ith column of C.

Im is the m-dimensional identity. SO(m) is the group of

m dimensional orthogonal matrices with unit determinant.

Rm
S is the set of m-dimensional symmetric matrices which

are diagonal except for their S × S block (S–core-diagonal

matrices).

Multiresolution matrix factorization (MMF), introduced

in [21, 22], retains the locality properties of sPCA while

also capturing the global interactions provided by the many

variants of PCA, by applying not one, but multiple sparse

rotation matrices to C in sequence. We have the following.

Definition. Given an appropriate class O ⊆ SO(m) of

sparse rotation matrices, a depth parameter L ∈ N and a

sequence of integers m = d0 ≥ d1 ≥ . . . ≥ dL ≥ 1, the

multi-resolution matrix factorization (MMF) of a sym-

metric matrix C ∈ R
m×m is a factorization of the form

M(C) := Q
T
ΛQ with Q = QL . . .Q2Q1, (1)

where Qℓ ∈ O and Qℓ
[m]\Sℓ−1,[m]\Sℓ−1

= Im−dℓ
for some

nested sequence of sets [m] = S0 ⊇ S1 ⊇ . . . ⊇ SL with

|Sℓ| = dℓ and Λ ∈ Rm
SL

.

Sℓ−1 is referred to as the ‘active set’ at the ℓth level, since

Qℓ is identity outside [m] \ Sℓ−1. The nesting of the Sℓs
implies that after applying Qℓ at some level ℓ, Sℓ−1 \ Sℓ
rows/columns are removed from the active set, and are not

operated on subsequently. This active set trimming is done

at all L levels, leading to a nested subspace interpretation

for the sequence of compressions Cℓ = QℓCℓ−1(Qℓ)T

(C0 = C and Λ = CL). In fact, [21] has shown that, for

a general class of symmetric matrices, MMF from Defini-

tion 2 entails a Mallat style multiresolution analysis (MRA)

[28]. Observe that depending on the choice of Qℓ, only a

few dimensions of Cℓ−1 are forced to interact, and so the

composition of rotations is hypothesized to extract subtle or

softer notions of structure in C.
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Since multiresolution is represented as matrix factoriza-

tion here (see (1)), the Sℓ−1 \ Sℓ columns of Q correspond

to “wavelets”. While d1, d2, . . . can be any monotonically

decreasing sequence, we restrict ourselves to the simplest

case of dℓ = m − ℓ. Within this setting, the number of

levels L is at most m − k + 1, and each level contributes a

single wavelet. Given S1,S2, . . . and O, the matrix factor-

ization of (1) reduces to determining the Qℓ rotations and

the residual Λ, which is usually done by minimizing the

squared Frobenius norm error

min
Qℓ∈O,Λ∈Rm

SL

‖C−M(C)‖2Frob. (2)

The above objective can be decomposed as a sum of contri-

butions from each of the L different levels (see Proposition

1, [21]), which suggests computing the factorization in a

greedy manner as C = C0 7→ C1 7→ C2 7→ . . . 7→ Λ.

This error decomposition is what drives much of the intu-

ition behind our algorithms.

After ℓ − 1 levels, Cℓ−1 is the compression and Sℓ−1 is

the active set. In the simplest case of O being the class

of so-called k–point rotations (rotations which affect at

most k coordinates) and dℓ = m − ℓ, at level ℓ the algo-

rithm needs to determine three things: (a) the k–tuple tℓ

of rows/columns involved in the rotation, (b) the nontriv-

ial part O := Qℓ
tℓ,tℓ

of the rotation matrix, and (c) sℓ, the

index of the row/column that is subsequently designated a

wavelet and removed from the active set. Without loss of

generality, let sℓ be the last element of tℓ. Then the contri-

bution of level ℓ to the squared Frobenius norm error (2) is

(see supplement)

E(Cℓ−1;Oℓ; tℓ, s) = 2

k−1
∑

i=1

[OCℓ−1
tℓ,tℓ

OT ]2k,i

+ 2[OBBTOT ]k,k where B = Cℓ−1
tℓ,Sℓ−1\tℓ

,

(3)

and, in the definition of B, tℓ is treated as a set. The factor-

ization then works by minimizing this quantity in a greedy

fashion, i.e.,

Qℓ, tℓ, sℓ ← argmin
O,t,s

E(Cℓ−1;O; t, s)

Sℓ ← Sℓ−1 \ s
ℓ ; Cℓ = QℓCℓ−1(Qℓ)T .

(4)

3. Incremental MMF

We now motivate our algorithm using (3) and (4). Solv-

ing (2) amounts to estimating the L different k-tuples

t1, . . . , tL sequentially. At each level, the selection of

the best k-tuple is clearly combinatorial, making the ex-

act MMF computation (i.e., explicitly minimizing (2)) very

costly even for k = 3 or 4 (this has been independently

observed in [39]). As discussed in Section 1, higher or-

der MMFs (with large k) are nevertheless inevitable for al-

lowing arbitrary interactions among dimensions (see sup-

plement for a detailed study), and our proposed incremental

procedure exploits some interesting properties of the factor-

ization error and other redundancies in k-tuple computation.

The core of our proposal is the following setup.

3.1. Overview

Let C̃ ∈ R
(m+1)×(m+1) be the extension of C by a single

new column w = [uT, v]T , which manipulates C as:

C̃ =

[

C u
uT v

]

. (5)

The goal is to computeM(C̃). Since C and C̃ share all but

one row/column (see (5)), if we have access toM(C), one

should, in principle, be able to modify C’s underlying se-

quence of rotations to constructM(C̃). This avoids having

to recompute everything for C̃ from scratch, i.e., perform-

ing the greedy decompositions from (4) on the entire C̃.

The hypothesis for manipulating M(C) to compute

M(C̃) comes from the precise computations involved in

the factorization. Recall (3) and the discussion leading up

to the expression. At level ℓ+ 1, the factorization picks the

‘best’ candidate rows/columns from Cℓ that correlate the

most with each other, so that the resulting diagonalization

induces the smallest possible off-diagonal error over the rest

of the active set. The components contributing towards this

error are driven by the inner products (Cℓ
:,i)

TCℓ
:,j for some

columns i and j. In some sense, the largest such correlated

rows/columns get picked up, and adding one new entry to

Cℓ
:,i may not change the range of these correlations. Ex-

tending this intuition across all levels, we argue that

argmax
i,j

C̃T
:,iC̃:,j ≈ argmax

i,j

CT
:,iC:,j . (6)

Hence, the k-tuples computed from C’s factorization are

reasonably good candidates even after introducing w. To

better formalize this idea, and in the process present our

algorithm, we parameterize the output structure of M(C)
in terms of the sequence of rotations and the wavelets.

3.2. The graph structure of M(C)

If one has access to the sequence of k-tuples t1, . . . , tL

involved in the rotations and the corresponding wavelet in-

dices (s1, . . . , sL), then the factorization is straightforward

to compute i.e., there is no greedy search anymore. Recall

that by definition sℓ ∈ tℓ and sℓ /∈ Sℓ (see (4)). To that

end, for a given O and L,M(C) can be ‘equivalently’ rep-

resented using a depth L MMF graph G(C). Each level of

this graph shows the k-tuple tℓ involved in the rotation, and
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Figure 2. An example 5×5 matrix, and its 3rd order MMF graph (better

in color). Q1, Q2 and Q3 are the rotations. s1, s5 and s2 are wavelets

(marked as black ellipses) at l = 1, 2 and 3 respectively. The arrows imply

that a wavelet is not involved in future rotations.

the corresponding wavelet sℓ i.e., G(C) := {tℓ, sℓ}L1 . Inter-

preting the factorization in this way is notationally conve-

nient for presenting the algorithm. More importantly, such

an interpretation is central for visualizing hierarchical de-

pendencies among dimensions of C, and will be discussed

in detail in Section 4.3. An example of such a 3rd order

MMF graph constructed from a 5 × 5 matrix is shown in

Figure 2 (the rows/columns are color coded for better vi-

sualization). At level ℓ = 1, s1, s2 and s3 are diagonalized

while designating the rotated s1 as the wavelet. This process

repeats for ℓ = 2 and 3. As shown by the color-coding of

different compositions, MMF gradually teases out higher-

order correlations that can only be revealed after composing

the rows/columns at one or more scales (levels here).

For notational convenience, we denote the MMF graphs

of C and C̃ as G := {tℓ, sℓ}L1 and G̃ := {t̃ℓ, s̃ℓ}L+1
1 . Recall

that G̃ will have one more level than G since the row/column

w, indexed m + 1 in C̃, is being added (see (5)). The goal

is to estimate G̃ without recomputing all the k-tuples using

the greedy procedure from (4). This translates to inserting

the new index m+1 into the tℓs and modifying sℓs accord-

ingly. Following the discussion from Section 3.1, incremen-

tal MMF argues that inserting this one new element into

the graph will not result in global changes in its topology.

Clearly, in the pathological case, G may change arbitrarily,

but as argued earlier (see discussion about (6)) the chance

of this happening for non-random matrices with reasonably

large k is small. The core operation then is to compare the

new k-tuples resulting from the addition of w to the best

ones from [m]k provided via G. If the newer k-tuple gives

better error (see (3)), then it will knock out an existing k-

tuple. This constructive insertion and knock-out procedure

is the incremental MMF.

3.3. Inserting a new row/column

The basis for this incremental procedure is that one has

access to G (i.e., MMF on C). We first present the algorithm

assuming that this “initialization” is provided, and revisit

this aspect shortly. The procedure starts by setting t̃ℓ = tℓ

and s̃ℓ = sℓ for ℓ = 1, . . . , L. Let I be the set of elements

(indices) that needs to be inserted into G. At the start (the

first level) I = {m + 1} corresponding to w. Let t̃1 =
{p1, . . . , pk}. The new k-tuples that account for inserting

entries of I are {m+1}∪ t1 \pi (i = 1, . . . , k). These new

k candidates are the probable alternatives for the existing

t̃1. Once the best among these k + 1 candidates is chosen,

an existing pi from t̃1 may be knocked out.

If s̃1 gets knocked out, then I = {s̃1} for future levels.

This follows from MMF construction, where wavelets at ℓth

level are not involved in later levels. Since s̃1 is knocked

out, it is the new inserting element according to G. On the

other hand, if one of the k − 1 scaling functions is knocked

out, I is not updated. This simple process is repeated se-

quentially from ℓ = 1 to L. At L+1, there are no estimates

for t̃L+1 and s̃L+1, and so, the procedure simply selects the

best k-tuple from the remaining active set S̃L. Algorithm 1

summarizes this insertion and knock-out procedure.

Algorithm 1 INSERTROW(C,w, {tℓ, sℓ}Lℓ=1)

Output: {t̃ℓ, s̃ℓ}L+1
ℓ=1

C̃0 ← C̃ as in (5)

z1 ← m+ 1
for ℓ = 1 to L− 1 do

{t̃ℓ, s̃ℓ, zℓ+1,Qℓ}←CHECKINSERT(C̃ℓ−1; tℓ, sℓ, zℓ)
C̃ℓ = QℓC̃ℓ−1(Qℓ)T

end for

T ← GENERATETUPLES([m+ 1] \ ∪L−1
ℓ=1 s̃

ℓ(C̃))

{Õ, t̃L, s̃L} ← argminO,t∈T ,s∈t E(C̃
L−1;O; t, s)

QL = Im+1, QL
t̃L,t̃L

= Õ, C̃L = QLC̃L−1(QL)T

Algorithm 2 CHECKINSERT(A, t̂, ŝ, z)

Output: t̃, s̃, z, Q
T ← GENERATETUPLES(t̂, z)
{Õ, t̃, s̃} ← argminO,t∈T ,s∈t E(A;O; t, s)
if s̃ ∈ z then

z ← (z ∪ ŝ) \ s̃
end if

Q = Im+1, Qt̃,t̃ = Õ

3.4. Incremental MMF Algorithm

Observe that Algorithm 1 is for the setting from (5)

where one extra row/column is added to a given MMF, and

clearly, the incremental procedure can be repeated as more

and more rows/columns are added. Algorithm 3 summa-

rizes this incremental factorization for arbitrarily large and

dense matrices. It has two components: an initialization

on some randomly chosen small block (of size m̃ × m̃) of
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the entire matrix C; followed by insertion of the remain-

ing m− m̃ rows/columns using Algorithm 1 in a streaming

fashion (similar to w from (5)). The initialization entails

computing a batch-wise MMF on this small block (m̃ ≥ k).

BATCHMMF: Note that at each level ℓ, the error crite-

rion in (3) can be explicitly minimized via an exhaustive

search over all possible k-tuples from Sℓ−1 (the active set)

and a randomly chosen (using properties of QR decomposi-

tion [31]) dictionary of kth order rotations. If the dictionary

is large enough, the exhaustive procedure would lead to the

smallest possible decomposition error (see (2)). However,

it is easy to see that this is combinatorially large, with an

overall complexity of O(nk) [22] and will not scale well

beyond k = 4 or so. Note from Algorithm 1 that the error

criterion E(·) in this second stage which inserts the rest of

the m− m̃ rows is performing an exhaustive search as well.

Algorithm 3 INCREMENTAL MMF(C)

Output: M(C)
C̄ = C[m̃],[m̃], L = m− k + 1

{tℓ, sℓ}m̃−k+1
1 ← BATCHMMF(C̄)

for j ∈ {m̃+ 1, . . . ,m} do

{tℓ, sℓ}j−k+1
1 ← INSERTROW(C̄,Cj,:, {t

ℓ, sℓ}j−k
1 )

C̄ = C[j],[j]

end for

M(C) := {tℓ, sℓ}L1

Other Variants: The are two alternatives that avoid this

exhaustive search. Since Qℓ’s job is to diagonalize some

k rows/columns (see Definition 2), one can simply pick the

relevant k × k block of Cℓ and compute the best O (for a

given tℓ). Hence the first alternative is to bypass the search

over O (in (4)), and simply use the eigen-vectors of Cℓ
tℓ,tℓ

for some tuple tℓ. Nevertheless, the search over Sℓ−1 for tℓ

still makes this approximation reasonably costly. Instead,

the k-tuple selection may be approximated while keeping

the exhaustive search over O intact [22]. Since diagonal-

ization effectively nullifies correlated dimensions, the best

k-tuple can be the k rows/columns that are maximally cor-

related. This is done by choosing some s1 ∼ Sℓ−1 (from

the current active set), and picking the rest by

s2, . . . , sk ← argmin
si∼Sℓ−1\s1

k
∑

i=2

(Cℓ−1
:,s1 )

TCℓ−1
:,si

‖Cℓ−1
:,s1 ‖‖C

ℓ−1
:,si ‖

(7)

This second heuristic (which is related to (6) from Section

3.1) has been shown to be robust [22], however, for large

k it might miss some k-tuples that are vital to the quality

of the factorization. Depending on m̃, and the available

computational resources at hand, these alternatives can be

used instead of the earlier proposed exhaustive procedure

for the initialization. Overall, the incremental procedure

scales efficiently for very large matrices, compared to us-

ing the batch-wise scheme on the entire matrix.

4. Experiments

We study various computer vision and medical imaging

scenarios (see supplement for details) to evaluate the quality

of incremental MMF factorization and show its utility. We

first provide evidence for factorization’s efficacy in select-

ing the relevant features of interest for regression. We then

show that the resultant MMF graph is a useful tool for visu-

alizing/decoding the learned task-specific representations.

4.1. Incremental versus Batch MMF

The first set of evaluations compares the incremental

MMF to the batch version (including the exhaustive search

based and the two approximate variants from Section 3.4).

Recall that MMF error is the off-diagonal norm of Λ, ex-

cept for the SL × SL block (see (1)), and the smaller the

error is, the closer the factorization is to being exact (see

2). We observed that the incremental MMFs incur approxi-

mately the same error as the batch versions, while achieving

& 20−25 times speed-up compared to a single-core imple-

mentation of the batch MMF. Specifically, across 6 different

toy examples and 3 covariance matrices constructed from

real data, the loss in factorization error is . 4% of ‖C‖Frob,

with no strong dependence on the fraction of the initializa-

tion m̃ (see Algorithm 3). Due to space restrictions, these

simulations are included in the supplement.

4.2. MMF Scores

The objective of MMF (see (2)) is the signal that is

not accounted for by the kth-order rotations of MMF (it

is 0 whenever C is exactly factorizable). Hence, ‖(C −
M(C))i,:‖ is a measure of the extra information in the ith

row that cannot be reproduced by hierarchical compositions

of the rest. Such value-of-information summaries, referred

to as MMF scores, of all the dimensions of C give an im-

portance sampling distribution, similar to statistical lever-

age scores [3, 27]. These samplers drive several regres-

sion tasks in vision including gesture tracking [33], face

alignment/tracking [7] and medical imaging [15]. More-

over, the authors in [27] have shown that statistical lever-

age type marginal importance samplers may not be opti-

mal for regression. On the other hand, MMF scores give

the conditional importance or “relative leverage” of each

dimension/feature given the remaining ones. This is be-

cause MMF encodes the hierarchical block structure in the

covariance, and so, the MMF scores provide better impor-

tance samplers than statistical leverages. We first demon-

strate this on a large dataset with 80 predictors/features and

1300 instances. Figure 3(a,b) shows the instance covariance

matrices after selecting the ‘best’ 5% of features. The block
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structure representing the two classes, diseased and non-

diseased, is clearly more apparent with MMF score sam-

pling (see the yellow block vs.the rest in Figure 3(b)).

We exhaustively compared leverages and MMF scores

on a medical imaging regression task on region-of-interest

(ROI) summaries from positron emission tomography

(PET) images. The goal is to predict the cognitive score

summary using the imaging ROIs. (see Figure 3(c), and

supplement for details). Despite the fact that the features

have high degree of block structure (covariance matrix from

Figure 3(c)), this information is rarely, if ever, utilized

within the downstream models, say multi-linear regression

for predicting health status. Here we train a linear model

using a fraction of these voxel ROIs sampled according to

statistical leverages (from [3]) and relative leverage from

MMF scores. Note that, unlike LASSO, the feature sam-

plers are agnostic to the responses (a setting similar to opti-

mal experimental design [12]). The second row of Figure 3

shows the Adjusted-R2 of the resulting linear models, and

Figure 3(h,i) show the corresponding F -statistic. The x-

axis corresponds to the fraction of the ROIs selected using

the leverage (black lines) and MMF scores (red lines). As

shown by the red vs. black curves, the voxel ROIs picked

by MMF are better both in terms of adjusted-R2 (the ex-

plainable variance of the data) and F -statistic (the overall

significance). More importantly, the first few ROIs picked

up by MMF scores are more informative than those from

leverage scores (left end of x-axis in Figure 3(d-i)). Fig-

ure 3(j,k) show the gain in AUC of adjusted-R2 as the order

of MMF changes (x-axis). Clearly the performance gain

of MMF scores is large. The error bars in these plots are

omitted for clarity (see supplement for details, and other

plots/comparisons). These results show that MMF scores

can be used within numerous regression tasks where the

number of predictors is large with sample sizes.

4.3. MMF graphs

The ability of a feature to succinctly represent the pres-

ence of an object/scene is, at least, in part, governed by

the relationship of the learned representations across multi-

ple object classes/categories. Beyond object-specific infor-

mation, such cross-covariate contextual dependencies have

shown to improve the performance in object tracking and

recognition [45] and medical applications [20] (a motivat-

ing aspect of adversarial learning [26]). Visualizing the

histogram of gradients (HoG) features is one such interest-

ing result that demonstrates the scenario where a correctly

learned representation leads to a false positive [41], for in-

stance, the HoG features of a duck image are similar to a

car HoG. [37, 14] have addressed similar aspects for deep

representations by visualizing image classification and de-

tection models, and there is recent interest in designing tools

for visualizing what the network perceives when predicting

a test label [44]. As shown in [1], the contextual images that

a deep network (even with good detection power) desires to

see may not even correspond to real-world scenarios.

The evidence from these works motivate a simple ques-

tion – Do the semantic relationships learned by the deep

representations associate with those seen by humans? For

instance, can such models infer that cats are closer to dogs

than they are to bears; or that bread goes well with but-

ter/cream rather than, say, salsa. Invariably, addressing

these questions amounts to learning hierarchical and cate-

gorical relationships in the class-covariance of hidden rep-

resentations. Using classical techniques may not easily

reveal interesting, human-relateable, trends as was shown

very recently by [32]. There are at least few reasons, but

most importantly, the covariance of hidden representations

(in general) has parsimonious structure with multiple com-

positions of blocks (the left two images in Figure 1 are from

AlexNet and VGG-S). As motivated in Section 1, and later

described in Section 3.2 using Figure 2, a MMF graph is the

natural object to analyze such parsimonious structure.

4.3.1 Decoding the deep

A direct application of MMF on the covariance of hid-

den representations reveals interesting hierarchical struc-

ture about the “perception” of deep networks. To precisely

walk through these compositions, consider the last hidden

layer (FC7, that feeds into softmax) representations from a

VGG-S network [9] corresponding to 12 different ImageNet

classes, shown in Figure 4(a). Figure 4(b,c) visualize a 5th

order MMF graph learned on this class covariance matrix.

The semantics of breads and sides. The 5th order MMF

says that the five categories – pita, limpa, chapati, chutney

and bannock – are most representative of the localized struc-

ture in the covariance. Observe that these are four differ-

ent flour-based main courses, and a side chutney that shared

strongest context with the images of chapati in the training

data (similar to the body building and dumbell images from

[1]). MMF then picks salad, salsa and saute representa-

tions’ at the 2nd level, claiming that they relate the strongest

to the composition of breads and chutney from the previous

level (see visualization in Figure 4(b,c)). Observe that these

are in fact the sides offered/served with bread. Although

VGG-S was not trained to predict these relations, according

to MMF, the representations are inherently learning them

anyway – a fascinating aspect of deep networks i.e., they

are seeing what humans may infer about these classes.

Any dressing? What are my dessert options? Let us

move to the 3rd level in Figure 4(b,c). margarine is a cheese

based dressing. shortcake is dessert-type meal made from

strawberry (which shows up at 4th level) and bread (the

composition from previous levels). That is the full course.

The last level corresponds to ketchup, which is an outlier,

distinct from the rest of the 10 classes – a typical order of
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Figure 3. Evaluating Feature Importance Sampling of MMF Scores vs. Leverage Scores (a,b) Visualizing apparent (if any) blocks in instance

covariance matrices using best 5% features, (c) Regression setup (see structure in covariance), (d-g) Adjusted R2, and (h,i) F statistic of linear models, (j,k)

gains in R2. Mdl1-Mdl4 are linear models constructed on different datasets (see supplement). m̃ = 0.1m (from Algorithm 3) for these evaluations.

dishes involving the chosen breads and sides does not in-

clude hot sauce or ketchup. Although shortcake is made

up of strawberries, “conditioned” on the 1st and 2nd level

dependencies, it is less useful in summarizing the covari-

ance structure. An interesting summary of this hierarchy

from Figure 4(b,c) is – an order of pita with side ketchup or

strawberries is atypical in the data seen by these networks.

4.3.2 Are we reading tea leaves?

It is reasonable to ask if this description is meaningful since

the semantics drawn above are subjective. We provide ex-

planations below. First, the networks are not trained to

learn the hierarchy of categories – the task was object/class

detection. Hence, the relationships are completely a by-

product of the power of deep networks to learn contextual

information, and the ability of MMF to model these compo-

sitions by uncovering the structure in the covariance matrix.

Supplement provides further evidence by visualizing such

hierarchy from few dozens of other ImageNet classes. Sec-

ond, one may ask if the compositions are sensitive/stable to

the order k – a critical hyperparameter of MMF. Figure 4(d)

uses a 4th order MMF, and the resulting hierarchy is similar

to that from Figure 4(b). Specifically, the different breads

and sides show up early, and the most distinct categories

(strawberry and ketchup) appear at the higher levels. Simi-

lar patterns are seen for other choices of k (see supplement).

Further, if the class hierarchy in Figures 4(b–d) is non-

spurious, then similar trends should be implied by MMF’s

on different (higher) layers of VGG-S. Figure 4(e) shows

the compositions from the 10th layer representations (the

outputs from 3rd convolutional layer of VGG-S) of the 12
classes in Figure 4(a). The strongest compositions, the 8
classes from ℓ = 1 and 2, are already picked up half-

way thorough the VGG-S, providing further evidence that

the compositional structure implied by MMF is data-driven.

We further discuss this in Section 4.3.3. Finally, we com-

pared MMF’s class-compositions to the hierarchical clus-

ters obtained from agglomerative clustering of representa-

tions. The relationships in Figure 4(b-d) are not apparent in

the corresponding dendrograms (see supplement, [32]) – for

instance, the dependency of chutney/salsa/salad on several

breads, or the disparity of ketchup from the others.

Overall, Figure 4(b–e) shows many of the summaries

that a human may infer about the 12 classes in Figure 4(a).

Apart from visualizing deep representations, such MMF
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Figure 4. Hierarchy and Compositions of VGG-S [9] representations inferred by MMF. (a) The 12 classes, (b,c) Hierarchical structure from 5th

order MMF, (d) the structure from a 4th order MMF, and (e,f) compositions from 3rd conv. layer (VGG-S) and inputs. m̃ = 0.1m (from Algorithm 3).

graphs are vital exploratory tools for category/scene un-

derstanding from unlabeled representations in transfer and

multi-domain learning [2]. This is because, by comparing

the MMF graph prior to inserting the new unlabeled in-

stance to the one after insertion, one can infer whether the

new instance contains non-trivial information that cannot be

expressed as a composition of existing categories.

4.3.3 The flow of MMF graphs: An exploratory tool

Figure 4(f) shows the compositions from the 5th order

MMF on the input (pixel-level) data. These features are

non-informative, and clearly, the classes whose RGB values

correlate are at l = 0 in Figure 4(f). But most importantly,

comparing Figure 4(b,e) we see that l = 1 and 2 have the

same compositions. One can construct visualizations like

Figure 4(b,e,f) for all the layers of the network. Using this

trajectory of the class compositions, one can ask whether a

new layer needs to be added to the network (a vital aspect

for model selection in deep networks [19]). This is driven

by the saturation of the compositions – if the last few levels’

hierarchies are similar, then the network has already learned

the information in the data. On the other hand, variance in

the last levels of MMFs implies that adding another network

layer may be beneficial. The saturation at l = 1, 2 in Fig-

ure 4(b,e) (see supplement for remaining layers’ MMFs) is

one such example. If these 8 classes are a priority, then the

predictions of the VGG-S’ 3rd convolutional layer may al-

ready be good enough. Such constructs can be tested across

other layers and architectures (see supplement for MMFs

from AlexNet, VGG-S and other networks).

5. Conclusions

We present an algorithm that uncovers multiscale struc-

ture of symmetric matrices by performing a matrix factor-

ization. We showed that it is an efficient importance sampler

for relative leveraging of features.We also showed how the

factorization sheds light on the semantics of categorical re-

lationships encoded in deep networks, and presented ideas

to facilitate adapting/modifying their architectures.
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