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Abstract

Graph matching is a fundamental problem in computer

vision and pattern recognition area. In general, it can be

formulated as an Integer Quadratic Programming (IQP)

problem. Since it is NP-hard, approximate relaxations are

required. In this paper, a new graph matching method has

been proposed. There are three main contributions of the

proposed method: (1) we propose a new graph matching re-

laxation model, called Binary Constraint Preserving Graph

Matching (BPGM), which aims to incorporate the discrete

binary mapping constraints more in graph matching relax-

ation. Our BPGM is motivated by a new observation that

the discrete binary constraints in IQP matching problem

can be represented (or encoded) exactly by a ℓ2-norm con-

straint. (2) An effective projection algorithm has been de-

rived to solve BPGM model. (3) Using BPGM, we propose

a path-following strategy to optimize IQP matching prob-

lem and thus obtain a desired discrete solution at conver-

gence. Promising experimental results show the effective-

ness of the proposed method.

1. Introduction

Many problems in computer vision and pattern recogni-

tion can be formulated by graph matching [23, 15, 14, 2,

20, 19]. Recent works [3, 4, 5, 11, 12, 23, 10] have formu-

lated graph matching as an Integer Quadratic Programming

(IQP) problem. Since IQP is NP-hard, approximate relax-

ation methods are required to find approximate solutions for

the problem [9, 7, 24, 29, 27, 22].

Many relaxation methods generally aim to optimize the

IQP matching problem approximately in a continuous do-

main. These methods first define a new continuous prob-

lem by relaxing the discrete mapping constraint and aim to

find the global optimum for the relaxed continuous prob-

lem. Then, they use a post-discretization step to obtain the

final discrete mapping solution [3, 5, 6]. One limitation for

these methods is that the required post-discretization step is

generally independent of the matching objective optimiza-

tion which may lead to weak local optimum. Another kind

of methods aim to obtain a discrete binary solution for IQP

matching problem [12, 28, 1, 16]. For example, Leordeanu

et al. [12] proposed an integer projected matching method

(IPFP) which optimized the IQP problem directly in a dis-

crete domain and can obtain a discrete binary solution for

the problem. Zhou et al. [28, 29] proposed an effective

graph matching method (FGM) which optimized the IQP

problem approximately using a convex-concave relaxation

technique [26] and returns a discrete binary solution for the

original problem.

In this paper, we show that the discrete binary constraint

in IQP matching problem can be exactly represented (or

encoded) by a ℓ2-norm constraint. Comparing with dis-

crete constraint, the ℓ2-norm constraint is much easier to

implement computationally. To the best of our knowledge,

this particular observation has not been explored before, al-

though ℓ2-norm has been used as a self-amplification regu-

larization term to aid the convergence of the solution to be

binary [21]. Based on this new observation, we propose a

new graph matching relaxation model, called Binary Con-

straint Preserving Graph Matching (BPGM), which aims

to incorporate the discrete mapping constraints via a ℓ2-

norm constraint in graph matching relaxation. An effective

projection algorithm has been developed to solve BPGM

model. Moreover, based on BPGM, we propose a path-

following strategy to optimize IQP matching problem and

thus can obtain a desired discrete solution at convergence.

Experimental results on both synthetic and real-world im-

age matching tasks demonstrate the effectiveness of the pro-

posed method.

2. Problem Formulation and Related Work

2.1. Problem formulation

Given two attributed relation graphs G(V,E) and

G′(V ′, E′), each node vi ∈ V or edge eik ∈ E has an

attribute vector ai or rik and similarity to G′. The aim of

graph matching problem is to determine the correct corre-

spondence between V and V ′. Here, we focus on equal-size
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graph matching problem. For graphs with different sizes,

one can add dummy isolated nodes into the smaller graph

and transform them to equal-size case [26, 9]. For each

assignment (vi, v
′
j), we can define a score sa(ai, a′j) that

measures how well node vi ∈ V matches node v′j ∈ V ′.

Also, for each assignment pair (vi, v
′
j) and (vk, v

′
l), we can

define an affinity sr(rik, r′jl) that measures how compati-

ble the nodes (vi, vk) in G are with the nodes (v′j , v
′
l) in

G′. Thus, we can use a matrix W in which the diagonal

term Wij,ij represents sa(ai, a′j), and the non-diagonal el-

ement Wij,kl contains sr(rik, r′jl). The one-to-one corre-

spondence solution can be denoted by a permutation matrix

X, i.e., Xij = 1 implies that node vi in G corresponds to

node v′j in G′, and Xij = 0 otherwise. In this paper, we de-

note x = (X11...X1n, ...Xn1...Xnn)
T as a row-wise vector-

ized replica of X. In the following, we call X as the matrix

form of x. The graph matching problem, in its most recent

and general from, can be formulated as an Integer Quadratic

Programming (IQP) problem [5, 12, 3, 9], i.e.,

max
x

xTWx s.t. Ax = 1, xi ∈ {0, 1} (1)

where A ∈ {0, 1}(2n)×n2

is set to encode the doubly

stochastic constraint of X. It is known that this IQP prob-

lem is NP-hard, thus approximate relaxations are required

to find approximate solutions for it.

2.2. Related work

One popular relaxation way to IQP matching problem

Eq.(1) is to relax the binary constraint (xi ∈ {0, 1}) to the

nonnegative domain [4, 28, 11, 5], i.e.,

max
x

xTWx s.t. Ax = 1, xi ≥ 0. (2)

Since W is not necessarily a positive definite matrix, thus

this problem Eq.(2) is usually non-convex. Many efforts

have been devoted to find the local optimal solution of this

relaxation problem [3, 5, 24, 28]. Since the discrete binary

constraint has been entirely ignored in this relaxation, the

optimal solution is generally continuous and needs to be

further binarized to obtain the final discrete binary solution

for the original problem Eq.(1) [3, 5]. One drawback is that

this abrupt binarization (discretization) step is generally in-

dependent of the matching objective optimization and thus

may lead to weak local solution for the original problem.

3. Binary Preserving Graph Matching

In this section, we propose a new graph matching re-

laxation model, called Binary Constraint Preserving Graph

Matching (BPGM), which aims to incorporate more dis-

crete binary constraint while maintains the affine mapping

constraint in matching relaxation. Our BPGM is motivated

by a new observation that the discrete constraint xi ∈ {0, 1}

in IQP matching problem Eq.(1) can be exactly encoded by

a ℓ2-norm constraint.

3.1. BPGM model

By further adding a ℓ2-norm constraint on the related so-

lution in problem Eq.(2), our BPGM can be formulated as

follows,

max
x

xTWx s.t. Ax = 1, xi ≥ 0, ∥x∥22 = γ, (3)

where γ is a parameter and ∥x∥2 =
√∑

i x2i is the ℓ2-

norm function. To avoid the conflict between two con-

straints Ax = 1 and ∥x∥22 = γ, here γ should satisfy

∥h0∥
2
2 ≤ γ ≤ n, where h0 = AT(A AT)−1 1 and n = |V ′|

is the size of graph G′. This can be seen in detail in §4.2.

One important feature of BPGM model is that it can be

viewed as a parameter-controlled balanced model between

original IQP problem Eq.(1) and its nonnegative relaxation

Eq.(2). Thus, it provides a series of parameter-controlled

relaxations for IQP matching problem whose tightness are

controlled by parameter γ. These can be seen in the follow-

ing properties in detail.

3.2. Properties analysis

Property 1 When γ = n, BPGM is equivalent to original

IQP matching problem Eq.(1).

Proof. In BPGM, since Ax = 1, xi ≥ 0, we have

xi ∈ [0, 1],
∑

i xi = n,

where n = |V | = |V ′|1. Since ∥x∥22 = γ = n, thus, we

have
∑

i xi =
∑

i x2i .

That is ∑
i xi(1− xi) = 0.

Since xi ≥ 0 and 0 ≤ xi ≤ 1, we have xi ∈ {0, 1}. �

Property 2 When γ = ∥x∗∥22, where x∗is the optimal

solution of relaxed problem Eq.(2), BPGM degenerates to

problem Eq.(2).

From Property 1 and 2, we can see that BPGM can be

regarded as a balanced model between the relaxed problem

Eq.(2) and original problem Eq.(1). This is one important

feature of BPGM model. Empirically, the discrete binary

level can be controlled by parameter γ in BPGM model,

i.e., the larger γ, the more closely X (matrix form of x) ap-

proximates to a permutation matrix. Figure 1 shows some

examples of converged solution X under different γ values.

1For one-to-one matching problem, the matrix form X of x is a doubly-

stochastic matrix, i.e.,
∑

i Xij = 1,
∑

j Xij = 1,Xij ≥ 0. Thus we

have
∑

ij Xij =
∑

i xi = n.
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Figure 1. Demonstration of BPGM converged solutions X across different γ values (|V ′| = n = 15).

Here, we can note that, as γ increases, the converged so-

lution becomes more and more sparse. In particular, when

γ = n = 15, the converged solution is exactly a permuta-

tion matrix.

3.3. Path-following strategy

Using BPGM, we can provide a path-following strat-

egy to optimize IQP matching problem (Eq.(1)) which

aims to alleviate weak local solution and obtain a better

local solution for non-convex problem [28, 26, 16]. In

order to do so, we first introduce Lemma 1 which guar-

antees the good starting point in our path-following process.

Lemma 1 There exists a parameter γ0 such that BPGM

with γ = γ0 has a global optimal solution.

Proof. First, we solve the following problem,

max
x

xTW′x s.t. Ax = 1, xi ≥ 0 (4)

where W′ = W − µ̃mI, I is a identity matrix, and

µ̃m =

{
0 µm < 0

µm + ϵ µm ≥ 0

where µm is the maximum eigenvalue of matrix W and ϵ >
0 is a small value. Note that Eq.(4) is convex, thus we can

obtain its global optimum x̃
∗

by using some optimization

algorithms, such as Frank-Wolfe algorithm [8]. Then, we

set parameter γ0 as

γ0 = ∥x̃
∗∥22. (5)

Note that, x̃
∗

is also the global optimum of BPGM model

with γ = γ0, i.e., we can obtain the global optimum for

BPGM problem with γ = γ0. �

Based on by Lemma 1 and Property 1, we propose to

optimize IQP matching problem by iteratively optimizing a

series of the following BPGM problems

max
x

xTWx s.t. Ax = 1, xi ≥ 0, ∥x∥22 = γk (6)

where k = 0, 1, 2 · · · and γ0 < γ1 < · · · ≤ n.

As shown in Lemma 1, when ∥x∥22 = γ0, the problem

has a global optimal solution. When ∥x∥22 = n, the prob-

lem is equivalent to IQP matching problem (Eq.(1)) (Prop-

erty 1). Our path-following process starts with γ0 and suc-

cessively tracks a path of solution of a series of BPGM

problems with different γk, where we solve BPGM problem

with γk using previous solution x∗γk−1
as the starting point.

By increasing γk gradually, the discrete matching constraint

can be imposed more and more strongly, and the algorithm

can obtain a discrete solution at convergence. For a specific

γk, we optimize it using the proposed graduated projection

algorithm, as shown in §4 in detail. The general schema of

our path-following optimization is presented in Algorithm

1. From Property 2, we can note that, in real implement,

one can also use the continuous solutions x̃
∗

of problem

Eq.(2) which are obtained from some other methods as the

starting point in our BPGM Algorithm 1.

Algorithm 1 BPGM based path-following algorithm

Input: Affinity matrix W, graph size |V | = |V ′| = n,

step size δ
Output: Final discrete matching solution x∗

1: Compute the global optimal solution x̃
∗

of problem

Eq.(4) and set γ0 = ∥x̃
∗∥22

2: Initialize x∗γ0
= x̃

∗
, k = 1

3: while γk ≤ n do

4: Optimize BPGM model using gradually projection

(Eq.(7)) (§4) with initialization x∗γk−1

x∗γk
= argmax

x

xTWx

s.t. Ax = 1, xi ≥ 0, ∥x∥22 = γk

5: k = k + 1
6: γk = γk−1 + δ
7: end while

8: x∗ = x∗γk

Comparison with related works: Our path-following

strategy has some resemblance to the recent popular path-

following process used in graph matching [28, 26, 16].

These methods gradually change the objective from convex
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to concave formulation to obtain discrete solution. Differ-

ently, in our strategy, starting from global solution of the

relaxed problem, it gradually changes the constraint from

nonnegative domain to discrete domain to obtain the desired

discrete solution. Also, the ℓ2 norm constraint has been dis-

cussed in the previous work [22]. In work [22], the ℓ2 norm

is used to simplify the objective. Differently, we study and

use it to encode the discrete constraint and derive a series of

relaxation problems.

4. Algorithm

In this section, we design a graduated projection algo-

rithm to solve the proposed BPGM model (Eq.(3)). Let

Jgm(x) = xTWx and λ̃m defined as

λ̃m =

{
0 λm > 0

|λm|+ ϵ λm ≤ 0

where λm is the minimum eigenvalue of affinity matrix W.

Here, λ̃m is set to make matrix W̃ = W+ λ̃mI positive def-

inite. The proposed algorithm updates the current solution

xk by iteratively solving the following projection problem,

xk+1 = argmin
v

∥v − W̃xk∥22

s.t. Av = 1, ∥v∥22 = γ, vi ≥ 0. (7)

The iteration starts with an initial x0 and is repeated until

convergence.

From algorithm aspect, this projection process has some

resemblance to the work [25]. Differently, we further con-

sider the nonnegative constraints vi ≥ 0. This nonnegative

constraints vi ≥ 0 along with affine constraint Av = 1

are necessary for encoding the discrete binary constraint in

BPGM model, as discussed in §3.2. In the following, we

first present the convergence property of this update algo-

rithm, and then provide the detail computation of this pro-

jection problem.

4.1. Convergence analysis

Theorem 1 Under the update projection Eq.(7), the graph

matching objective function Jgm = xTWx is monotoni-

cally increasing.

Proof. Similar to the proof of work [25], problem Eq.(7) is

equivalent to

xk+1 = argmax
v

vTuk = argmax
v

vTW̃xk (8)

s.t. Av = 1, ∥v∥22 = γ, vi ≥ 0.

This implies

xk+1TW̃xk > xk
T

W̃xk. (9)

Also, since W̃ is a positive definite matrix, we have

xk+1TW̃xk+1 + xk
T

W̃xk − 2xk+1TW̃xk

= (xk+1 − xk)TW̃(xk+1 − xk) > 0. (10)

Combing inequality Eq.(9) and Eq.(10), we conclude that

xk+1TW̃xk+1 > xkTW̃xk. That is,

xk+1T(W + λ̃mI)xk+1 > xk
T
(W + λ̃mI)xk. (11)

Note that xk+1Txk+1 = ∥xk+1∥22 = ∥xk∥22 = xk
T

xk = γ,

thus we have

xk+1TWxk+1 > xk
T

Wxk. (12)

This completes the proof.

4.2. Constraint projection

Here we solve the projection problem Eq.(7). We rewrite

problem Eq.(7) as

min
v

∥v − u∥22 s. t. Av = 1, ∥v∥22 = γ, vi ≥ 0 (13)

where u = W̃xk. We will use the Von-Neumann successive

projection method [17] to solve this problem. In order to do

so, we first define the following two sub-projections, i.e.,

the affine sub-projection

P1(v) = argmin
v

∥v − u∥22 s.t. Av = 1, ∥v∥22 = γ, (14)

and the convex sub-projection

P2(v) = argmin
v

∥v − u∥22 s.t. vi ≥ 0. (15)

The process of Von-Neumann method [17] is to alterna-

tively conducts sub-projection P1 and P2 until convergence

to obtain the optimal solution for constraint projection prob-

lem Eq.(13).

In the following, we show that both problem P1 and

P2 have closed-from solution and thus can be solved

efficiently. For problem P1, similar projection has been

proposed in work [25]. Here, we concerns a more general

case, i.e., ∥v∥22 = γ. Similar to work [25], we have the

following,

Lemma 2 Problem P1 has a closed-from optimal solution.

The optimal solution v
∗ is

v∗ =
√

γ − ∥h0∥22
Pu

∥Pu∥2
+ h0, (16)

where P = I − AT(A AT)−1 A, h0 = AT(A AT)−1 1.
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Proof. Indeed, the problem P1 is equivalent to

P1(v) = argmax
v

vTu s.t. Av = 1, ∥v∥22 = γ. (17)

First, it is easy to see that ṽ =
√
γ − ∥h0∥22

Pu
∥Pu∥2

is the

normalized projection of u onto the intersection space Av =
0 and ∥ṽ∥22 = γ − ∥h0∥

2
2. Thus, ṽ is the optimal solution of

the problem,

ṽ = argmax
v

vTu s.t. Av = 0, ∥v∥22 = γ − ∥h0∥
2
2 (18)

Then, we can infer that v∗ = ṽ + h0 is the optimal solution

of problem Eq.(17), as shown in work [25]. Also, we can

see that the parameter γ should to satisfy γ ≥ ∥h0∥
2
2, as

discussed before. �

Lemma 3 Problem P2 has a closed-from optimal solution.

The optimal solution v∗ is

v∗ =
1

2
(u + |u|). (19)

4.3. Computational complexity

The main computational complexity in each iteration of

the algorithm is on computing Wxk and solving the projec-

tion problem Eq.(13). Thus, the computational complexity

for each iteration is less than O(n2) + O(Nn2), where N
is average number of iterations on solving problem Eq.(13).

Empirically, the algorithm converges quickly and the aver-

age number of iterations N is generally less than 150.

5. Experiments

In this section, we have applied our BPGM method to the

matching tasks including synthetic graph matching, feature

point matching using image sequences and feature match-

ing on real-world images. We have compared our BPGM

method with some other state-of-the-art methods including

SM [11], IPFP [12], SMAC [5], RRWM [3] and FGM [28].

We implemented IPFP with two versions: (1) IPFP-U that

is initialized by the uniform solution; (2) IPFP-S that is ini-

tialized by SM [11].

5.1. Synthetic graph matching

Our first experiment is based on synthetic random graph

data. Following the experimental setting [3], we first gen-

erated two random graphs, G and G′, both of them contain

nin inlier nodes. Then we added nout outlier nodes in both

graphs. For each pair of nodes in G, the edge is randomly

generated according to the density ρ ∈ [0, 1]. For each edge

in G, we assigned a random attribute rij which is uniformly

distributed form 0 to 1. The corresponding edge r′i′j′ in G′

was perturbed by adding a random Gaussian type perturba-

tion noise N(0, σ) to the value of rij . For each noise level σ

Figure 3. Comparison results on running times.

or nout, we have generated 100 random graph pairs and then

computed the average performances including matching ac-

curacy and objective score. The matching accuracy is mea-

sured by the number of detected true matches divided by

the total number of ground truths, and the objective score is

computed by xTWx of the IQP objective. The affinity ma-

trix W is computed by Wij,kl = exp(−(rik−r′jl)
2/0.015).

Figure 2 summarizes the comparison results on matching

accuracy and objective score. As discussed before, com-

pared with RRWM [3], the main feature of our BPGM is

that it incorporates more the discrete binary constraint in op-

timization process. From Figure 2, we can note that BPGM

consistently returns higher objective score and matching ac-

curacy than RRWM [3] method, which clearly demonstrates

the benefits of discrete constraint in searching for the op-

timal solution for IQP matching problem. BPGM outper-

forms the discrete domain projection method IPFP [12], in-

dicating that BPGM can find a discrete solution more op-

timal than IPFP method. Also, BPGM performs slightly

better than FGM [28], which demonstrates the effectiveness

and robustness of BPGM method.

Our BPGM iteratively solves a series of problems us-

ing Path-following strategy and thus slower than some other

single optimization algorithms such as RRWM [3], SM [11]

and IPFP [12]. However, it is generally faster than previous

path-following algorithm. Figure 3 shows comparison of

running times between FGM [28] and BPGM. We can note

that, BPGM is faster than FGM [28].

5.2. Feature point matching across image sequence

Our second experiment is performed on feature match-

ing tasks on CMU ”hotel” sequence dataset [2, 3]. For

this dataset, there are 101 images of a toy house cap-

tured from moving viewpoints. For each image, there ex-

ist about 30 landmark points which were manually marked

with known correspondences. For each image, the coordi-

nates of these landmark points were normalized to [0, 1].
We have matched all images spaced by 5, 10, 15 · · · 75

and 95 frames and computed the average accuracy per sep-
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Figure 2. Comparison results on synthetic graph matching.

Figure 4. Comparison results on CMU image sequence.

aration gap. For each image pair, the affinity matrix has

been computed by Wij,kl = exp((rik−r′jl)
2/0.015), where

rik is the Euclidean distance between two points. Figure 4

summarizes the performance results with respect to the sep-

aration gaps on CMU image sequence dataset. It is noted

that BPGM outperforms the other methods in both matching

accuracy and objective score. This is generally consistent

with the results on the synthetic data experiments and fur-

ther demonstrates the effectiveness of the proposed BPGM

method.

5.3. Real-world image matching

In this experiment, we first evaluate our BPGM method

on the image pairs (30 pairs) selected from Zurich Build-
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(a) ZuBud image dataset

(b) Pascal dataset

Figure 5. Comparison results on real-world image datasets.

ing Image Database (ZuBud) [18]. The candidate corre-

spondences have been generated using the SIFT descrip-

tor. Here, each feature in first image can match the six

closest features in the second image using the distance of

SIFT descriptor. The affinity between two correspondences

has been computed as Wij,kl = exp(−(dik − djl)
2/1500),

where where dik is the Euclidean distance between the

feature points i and k, and similar to djl. For all im-

age pairs in this dataset, the average performances includ-

ing true positive and false positive and relative objective

score [3] are computed. We compare our method with SM,

SMAC, IPFP and RRWM, because FGM method cannot

be directly used here. Figure 5 (a) shows the compari-

son results. Note that BPGM obtains better performance

than other compared methods on true positive, false posi-

tive and objective score, which demonstrates the effective-

ness and optimality of BPGM method on solving real-world

image feature matching problem. Then, we test our match-

ing method on the Pascal image dataset which consists of

30 pairs of car images and 20 pairs of motorbike images

selected from Pascal 2007 dataset [13, 28]. Each pair con-

tains 30-60 ground-truth correspondences. The coordinates

of the feature point were first normalized to [0, 1]. Here,

we generated complete graphs and each edge was assigned

by the Euclidean distance between two nodes. The affinity

between two correspondences was computed as Wij,kl =

exp((rik − r′jl)
2/0.015), where rik, r′ik are the Euclidean

distances between two points. Figure 5 (b) summarizes

the comparison results. BPGM generally performs better

than than other compared methods, which further demon-

strates the effectiveness of BPGM method on conducting

real-world image feature matching tasks.

6. Conclusions

In this paper, we first propose a new graph matching re-

laxation model, called Binary Constraint Preserving Graph

Matching (BPGM), which incorporates the discrete binary

mapping constraints via a ℓ2 norm constraint. BPGM can be

regarded as a parameter-controlled balanced model between

the original IQP matching problem Eq.(1) and its nonnega-

tive relaxation Eq.(2). An effective projection algorithm has

been developed to solve the proposed BPGM model. The

convergence of the algorithm is theoretically guaranteed.

Based on BPGM, we also provide a new path-following

process to optimize IQP matching problem. Promising ex-

perimental results on several matching tasks show the effec-

tiveness and benefits of the proposed method.

Note that the path-following strategy and algorithm pro-

posed in this paper are not limited to graph matching prob-

lem only and can also be used in some other similar prob-

lems, such as MAP inference.
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