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Abstract

We present a Reinforcement Learning (RL) solution to

the view planning problem (VPP), which generates a se-

quence of view points that are capable of sensing all acces-

sible area of a given object represented as a 3D model. In

doing so, the goal is to minimize the number of view points,

making the VPP a class of set covering optimization prob-

lem (SCOP). The SCOP is NP -hard, and the inapproxima-

bility results tell us that the greedy algorithm provides the

best approximation that runs in polynomial time. In order

to find a solution that is better than the greedy algorithm, (i)

we introduce a novel score function by exploiting the geom-

etry of the 3D model, (ii) we device an intuitive approach

to VPP using this score function, and (iii) we cast VPP as

a Markovian Decision Process (MDP), and solve the MDP

in RL framework using well-known RL algorithms. In par-

ticular, we use SARSA, Watkins-Q and TD with function ap-

proximation to solve the MDP. We compare the results of

our method with the baseline greedy algorithm in an exten-

sive set of test objects, and show that we can out-perform

the baseline in almost all cases.

1. Introduction

In this work, we present a solution to the view plan-

ning problem (VPP), which aims to automatically deter-

mine a minimum number of camera perspectives for view-

ing a given object in order to achieve a coverage require-

ment. View planning is becoming increasingly important as

the advent of autonomous platforms is placing demand on

developing algorithms that can provide such a solution, par-

ticularly for robots and UAVs mounted with cameras whose

missions are to collect imageries that fully cover the ob-

ject of interest (See Figure 1). In this paper, we will focus

on model-based view planning where an object’s 3D model

is available. In model-based view planning, one can take

a more global view of the optimization problem involved.

∗These authors contributed to this paper equally.

(a) (b) (c)

Figure 1. (a) View planning for UAV terrain modeling, (b) Given a

set of initial view points, (c) The goal is to find minimum number

of views that provide sufficient coverage. Here, color code repre-

sents correspondence between selected views and the coverage.

This can be seen in Sheinin et al.’s recent work [25] that

tries to take a rough 3D underwater sonar model and ex-

ploit an optimization criterion that is based on information

gain, optimizing viewpoints so that the descattered albedo

is least noisy. In contrast, non-model-based view planning

[30, 29] often relies on stochastic state analysis, utilizing

uncertainty estimation to plan the next best view (NBV).

One of the earliest applications of view planning was in-

door and outdoor surveillance, which is also known as the

art gallery problem [14]. More recently, there has been an

increased interest in the use of drones in surveillance, in-

spection and 3D reconstruction, all of which require view

planning [17, 11, 31, 18, 3, 20, 21, 22]. In many of these ap-

plications, prior 3D models are available. For example, in

rescue missions, it is critical that survivors be found quickly,

and often such search and rescue missions are conducted

from the air. 3D models of search regions are often readily

available (such as from Google Earth), and can be exploited

in view planning to plan the search paths.

Model based VPP can be regarded as a set covering op-

timization problem (SCOP) and is constrained by the lim-

itations of SCOP [28]. Under reasonable complexity as-

sumptions, the naı̈ve greedy approach is essentially the best

polynomial time approximation algorithm to the NP -hard

SCOP [7]. Even though one can often find a better solution

specific to the problem in hand, to the best of our knowl-
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Figure 2. Illustration of the bad performance of greedy algorithm in the VPP. Green color represents regions covered by a single camera

only, while red color represents regions covered by multiple cameras at different times. The greedy algorithm returns a solution with 13

cameras. However, the contribution of the last a few cameras are, in fact, minor.

edge, there is no generic method which is guaranteed to

out-perform the solution provided by the greedy algorithm.

Therefore, we will use the greedy algorithm as a benchmark

for the VPP. On the other hand, greedy algorithm can easily

fail and cannot guarantee the optimal solution to a generic

coverage problem. Figure 2 illustrates an example of bad

performance of the greedy algorithm. In this example, a

3D knot model is covered with a virtual camera from mul-

tiple view points. In the figure, color code represents areas

covered by single (green) and multiple (red) cameras. Even

though the first few cameras effectively increase the cover-

age, the last few of them are needed only to cover very small

areas that remained uncovered (magnified in the figure). In

this work we propose an intelligent planning scheme which

is capable of reducing this redundancy.

Figure 3. Illustration of the

purely greedy vs. the in-

tuitive approach to the set

coverage optimization prob-

lem. Non-greedy interme-

diate steps chosen lead to a

more efficient solution.

In particular, we show

that even though the VPP

is a set covering opti-

mization problem, the ge-

ometric structure of 3D
models opens a path to

a more flexible treatment

of VPP. To this end we

propose a new set cover

score function which al-

lows us to switch between

the greedy and non-greedy

steps. The score function

achieves this by penaliz-

ing long circumferences if

needed. We show that this

new scoring scheme can

be used to model an intu-

itive approach to VPP. We

claim that if a human was

asked to solve this prob-

lem, s/he would avoid pro-

ceeding greedily at certain

steps along the way (See Figure 3), and this would eliminate

the use of excess view points.

Choosing between greedy and non-greedy actions at

each step intelligently requires a sequential decision mak-

ing process which takes the future actions into account.

This essentially converts VPP to a Markov Decision Pro-

cess (MDP). The standard way of solving such MDPs are

dynamic programming and reinforcement learning (RL).

Therefore, we employ a RL framework where an agent

learns which actions to take by considering its future con-

sequences. More specifically, our RL agent learns how to

set the parameter of our new score function at each stage

of the coverage task. We implement three RL algorithms

which are mainly built around learning a value function.

More precisely, we use SARSA and Watkins-Q algorithms,

which learn the action value function, and TD algorithm

which learns the state value function [26].

A typical VPP has a large number of initial view points,

which induces a MDP with a very large number of states,

which in return, necessitates the use of function approxima-

tion in RL framework. Hence, we couple the above men-

tioned algorithms with a nonlinear function approximation

scheme.

Our contributions:

• By exploiting the geometry, we propose a novel, fully

automated RL method to solve VPP.

• We define a new set coverage score function that can

be used to model an intuitive approach to VPP.

• With sufficient exploration and learning time, our RL

based method provides a solution which is guaranteed

to perform at least as good as the greedy algorithm.

2. Related Work

Existing methods that propose solutions to VPP are

mainly divided into two groups: model-based and non-

model-based. Non-model-based view planning differs from

the former as the target environment is not fully observable

and is out of the scope of this paper. In this work we con-

strain ourselves to model-based view planning, and assume

that a 3D CAD model of the environment is already avail-

able. In the literature the model-based view planning is di-

vided into two parts. The first part is the process of finding

the best view locations to cover the object, and the second
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part is the planning of the optimal path which includes vis-

iting these selected locations. The second part is essentially

a Traveling Salesman Problem (TSP), and it also remains

out of the scope of this work. We exclusively refer to the

first part when we mention VPP. However, it is worth noting

here that an efficient solution to the first part is very crucial,

as it effectively decreases the size of TSP which has to be

tackled in the second part.

Detailed surveys of proposed solutions to VPP can be

found in [27, 19, 23]. In particular, [27] summarizes the ef-

forts in VPP for inspection, recognition and reconstruction,

[19] covers the work on VPP for inspection, and finally [23]

addresses the VPP problem as it appears in reconstruction

and inspection problems. Among all notable work studying

VPP, our work is in the sprit of the seminal work of Tarbox

and Gottschlich [28]. Tarbox and Gottschlich also identify

the phenomena portrayed in Figure 2 as the cause of the

non-optimality of the greedy algorithm. However, our pro-

posed solution to handle this problem differs substantially

from what they suggested, namely randomized search with

simulated annealing. In the VPP literature, greedy algo-

rithm is still the most commonly used algorithm for view

point selection [24, 1]. There is a couple of recent work that

uses more sophisticated methods such as linear program-

ming relaxation and genetic algorithms for full 3D model

coverage [5, 12]. However, they don’t necessarily suggest

performance gains over the greedy algorithm. Lastly, to the

best of our knowledge there is no method in the literature

which uses a RL based approach to solve VPP. However, re-

cently there has been a rapidly growing interest in combin-

ing RL techniques with computer vision. Although they are

not related to VPP, for completeness, we would like to men-

tion [15, 8, 13, 16] as the most recent notable works, which

mainly combine deep networks and RL for digit classifi-

cation, object detection, person identification and playing

arcade games, respectively.

3. Problem Formulation

In this paper, we study the view planning problem for 3D
models. Without loss of generality, the 3D models we con-

sider are triangular meshes, although other type of meshes

could be used as well. We process models of various ob-

jects like geographical terrains, big structures, interesting

geometrical objects or even machine parts. We formally de-

fine the view planning problem for 3D meshes as follows

Problem 1. Given a 3D mesh model Ω of an object and a

finite set of view points (ℓi) together with associated direc-

tions (di), S := {(ℓi, di)}, find a subset T ⊂ S of minimum

size such that if identical cameras are placed in locations

and in the directions provided by T, then Ω can sufficiently

be covered by these cameras.

We unify the two cases where multiple cameras or a sin-

gle moving camera is employed and we treat them simulta-

neously.

4. Notation and Background

First, we summarize the mathematical notation that is

used. For a given set Y , we will denote the power set of

Y , i.e. the collection of all subsets of Y , by 2Y . The set

of non-negative real numbers will be denoted by R≥0. We

denote the triangular mesh of interest with Ω. Then, each

element of 2Ω will be a submesh and we denote a submesh

(possibly arising from coverage of a single or non-singleton

set of views) by X .

4.1. Set covering optimization problem

Given a set S with finite number of elements, and a col-

lection {Si}i∈I ⊆ 2S of subsets of S indexed by I , the set

covering optimization problem is the problem of finding a

subset J of I with smallest number of elements satisfying

S =
⋃

j∈J Sj . This problem is known to be NP -hard, and

approximate solutions such as greedy that run in polynomial

time are well known, [10]. However, in many instances, it

has also been shown that greedy algorithm can not provide

the optimal solution, [6]. Nevertheless, under reasonable

assumptions, the inapproximability results of [7] and [4]

show that the greedy algorithm is the best polynomial-time

approximation algorithm one can hope for.

The view planning we posed in Problem 1 can be re-

garded as a special case of the set covering optimization

problem. Hence, in its naive form, it is also constrained by

the facts above. In this work, we aim to answer the follow-

ing question: Can one do better than the greedy algorithm,

by utilizing the geometric structure of the objects and com-

bining them with a learning paradigm?

4.2. Reinforcement Learning

The learning paradigm we use in this paper is the stan-

dard reinforcement learning setting where an agent learns

to accomplish a certain task by interacting with an environ-

ment over a number of discrete time steps. We restrict our

attention to the approaches which are mainly built around

estimating a so-called value function.

View planning can be cast as a finite Markov Decision

Process (MDP). Hence, in principle, we will be using RL

techniques to solve a finite MDP. Formally, a finite MDP

is a quintuple (S,A, T,R, γ), where S denotes a finite set

of Markovian states, A =
⋃

s∈S As denotes the finite col-

lection of all admissible actions. In particular, As denotes

the finite set of all admissible actions at state s ∈ S.

T = {Ta}a∈A is the collection of all transition probabil-

ity functions. For any (s, s′) ∈ S × S, and a ∈ As,

Ta(s, s
′) = Pr{st+1 = s′|st = s and at = a}
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is the probability that system reaches state s′ at time t + 1,

after taking action a at state s. The reward signal rt :
S × S → R returns the (expected) immediate reward re-

ceived after transitioning from state s to s′ at time t. Lastly,

γ ∈ [0, 1] is the discount factor, which simply allows us

to emphasize the importance of present rewards over future

ones.

In most RL systems, the state is basically agent’s ob-

servation of the environment. At any given state the agent

chooses its action according to a policy. Hence, a policy is a

road map for the agent, which determines the action to take

at each state. Once the agent takes an action, the environ-

ment returns the new state and the immediate reward. Then,

the agent uses this information, together with the discount

factor to update its internal understanding of the environ-

ment, which, in our case, is accomplished by updating a

value function.

One can use different RL algorithms to solve an MDP.

In this paper we specifically use the well-known SARSA,

Watkins-Q and Temporal Difference (TD) algorithms with

function approximation. For a given policy π, SARSA

and Watkins-Q algorithms learn qπ(s, a), namely the action

value function, which is defined as the expected discounted

total reward (i.e. return) after taking the action a at state s

and following the policy π

qπ(s, a) = Eπ{
∞∑

k=0

γkrt+k+1|st = s and at = a} (1)

The TD algorithm, on the other hand, learns the so-called

state value function, vπ(s) for a state s. In a similar fashion,

it is defined as the expected discounted total reward starting

from the state s and following the policy π

vπ(s) = Eπ{
∞∑

k=0

γkrt+k+1|st = s} (2)

5. Reinforcement Learning for View Planning

The simplest approach to solve VPP in RL framework

would be defining each available view point at a given state

as an admissible action. However, in practice, this approach

would not be feasible. In our setting, the size of the state

space increases exponentially with the increasing number

of predefined view points. If there is no rule restricting the

admissible actions the problem would quickly become in-

tractable. In order to be able to place the problem in RL

framework and solve it efficiently, one desperately needs a

strategy to reduce the number of admissible actions at each

state, while keeping the problem sufficiently general.

Our inspiration in reducing the admissible actions comes

from the aforementioned intuitive approach to the prob-

lem. As we argued in Section 1, a natural approach to

the VPP would be choosing non-greedy steps in between

greedy ones. We model this behavior by using the family of

functions fλ : 2Ω → R, defined as

fλ(X) :=
A(X)

L(X)λ
. (3)

Here A(X) denotes the total surface area covered by the

submesh X , L(X) denotes the total boundary length of the

area covered by X , and λ ∈ R≥0. Now, we claim that

using the functions fλ, the behavior mentioned above can

be modeled as follows:

At each step pick a λ and choose the set which

maximizes the function fλ.

As one can immediately notice, in this setting, choosing

λ = 0 corresponds to proceeding greedily, whereas nonzero

λ’s allow non-greedy steps. In other words, if λ 6= 0, given

two view points introducing two different coverages X1 and

X2 with the same surface area,A(X1) = A(X2), maximiz-

ing fλ implies that the algorithm prefers the view point that

introduces a covered area with shorter perimeter (See Algo-

rithm 1).

For a fixed λ ≥ 0, we call the approach of maximizing

fλ at each step, as λ−greedy algorithm. For high λ val-

ues, the λ−greedy algorithm proceeds quite conservatively,

preferring shorter boundaries over larger coverage, in re-

turn, causing increased number of views. Therefore, fixing

λ from the very beginning results in poor solutions. As we

argued above, we need to employ different values of λ at

each step. Therefore, the VPP boils down to the following

decision problem:

Which λ ≥ 0 to choose at each step?

As we will see in the experiments section, achieving a per-

formance better than the purely greedy approach requires a

subtle choice of λ at every step. In our experiments, we see

that an ad hoc approach like alternating the λ value between

zero and a non-zero value would rarely lead to the best re-

sults. A more sophisticated strategy is needed to generate a

sequence of λ’s that would lead to smaller number of views.

Remark 1. A crucial component of our implementation is

to calculate the boundary of a union of two submeshes. For

two submeshes X1, X2 ⊆ Ω, we calculate the boundary

bd(X1 ∪X2) according to

bd(X1 ∪X2) = [bd(X1) \ ed(X2)] ∪ [bd(X2) \ ed(X1)]

∪ [bd(X1) ∩ bd(X2)] (4)

where ed(·) denotes the set of all edges of the submesh.
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Algorithm 1 Next Best View Selection

1: function NBV(λ)

2: S ← 0
3: F ← currently covered submesh

4: E ← edges in F
5: for c ∈ view point list do

6: f ← submesh observed by c

7: if (f ∩ F 6= ∅)||(F == ∅) then

8: s← COMPUTE SCORE(f ∪ F , λ) ⊲ Eq. 3

9: if s > S then

10: S ← s

11: C ← c
return C

5.1. Beating Greedy by Learning λ

Even though λ is a continuous variable, we expect that

the function assigning λ’s to the associated view is piece-

wise continuous. Therefore, we can consider a small, fi-

nite set of λ’s to choose from at each step of our algorithm.

In order to find a sequence of λ’s that leads to a solution

better than the one offered by the greedy algorithm, we de-

vice a RL scheme. In this setup, our state is a vector of

length equals to the number of initial view points, which

is denoted by N . The set of chosen view points uniquely

define the state: If at a given state, the view point i is cho-

sen, then the ith entry of the state vector is set, otherwise

it remains zero. This way, we introduce a state space with

2N states. Obviously, this definition of the state satisfies

the Markov property. In this setting, at each state, taking

an action corresponds to choosing a λ value. However, the

learning agent is allowed to choose a λ value only from a

finite set of admissible λ’s, which is denoted by Λ. We as-

sume that Λ remains unchanged at each state. We further

assume that the agent follows a deterministic policy, hence

all transition probabilities are trivial. Since we would like

to accomplish the coverage in as few steps as possible, we

introduce a reward of−1 for each state transition. We don’t

use any discount factor, and the coverage task is naturally

episodic. In this setting, the VPP becomes a finite Markov

Decision Process.

Learning stage

In order to solve this MDP, we use three different RL al-

gorithms: On-policy control algorithm SARSA, off-policy

control algorithm Watkins-Q and on-policy learning algo-

rithm TD. The former two algorithms learn qπ(s, a), the ac-

tion value function, whereas the last algorithm learns vπ(s),
the state value function. For the convenience of the reader,

we include our learning procedures implementing Watkins-

Q and TD algorithms in the algorithm boxes 2 and 3 (We

refer to the supplementary material for the implementation

of SARSA). In these algorithms, we call a state terminal if

Algorithm 2 Watkins-Q Agent

1: procedure LEARNING

2: θ ← random network weights

3: α← learning rate, µe ← eligibility factor

4: ε← exploration probability

5: repeat

6: c← random view point

7: s← {c}, e← 0, r ← −1, δ ← 0
8: if random number > ε then

9: λ∗ ← argmax
λ

q̂π(θ, s, λ)

10: else

11: λ∗ ← random λ from Λ

12: while true do

13: e← e+∇θ q̂π(θ, s, λ
∗)

14: δ ← r − q̂π(θ, s, λ
∗)

15: if s is Terminal then

16: θ ← θ + α · δ · e
17: break

18: c← NBV(λ∗) ⊲ see Alg. 1

19: s← s ∪ {c}
20: δ ← δ +max

λ
q̂π(θ, s, λ))

21: θ ← θ + α · δ · e
22: if random number > ε then

23: λ∗←argmax
λ

q̂π(θ, s, λ), e← µe · e

24: else

25: λ∗ ← random λ from Λ, e← 0

26: until Max nr of episodes is reached

Algorithm 3 TD Agent

1: procedure LEARNING

2: θ ← random network weights

3: α← learning rate, µe ← eligibility factor

4: repeat

5: c← random view point

6: s← {c}, e← 0, r ← −1, δ ← 0,S ← ∅
7: while true do

8: e← e+∇θv̂π(θ, s)
9: δ ← r − v̂π(θ, s)

10: if s is Terminal then

11: θ ← θ + α · δ · e
12: break

13: S ← {s ∪ {c}|c = NBV(λ) and λ ∈ Λ}
14: s← argmax

s′∈S
v̂π(θ, s

′)

15: δ ← δ + v̂π(θ, s)
16: θ ← θ + α · δ · e
17: e← µe · e

18: until Max nr of episodes is reached

a certain coverage criteria is met. Our coverage criteria is

relative in the sense that the coverage task is assumed to be
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Figure 4. Function approximation using neural network in SARSA

and Watkins-Q settings. Note that, in TD method, actions are

omitted from the input.

completed once we cover a certain percentage of the area

that can be covered by the union of all initial view points.

We call this number the relative coverage criteria, or RCC.

In order to boost the learning performance, we use eligi-

bility traces. Moreover, since the number of states quickly

becomes huge, we need to deploy a function approxima-

tion scheme. In all cases the value function is approximated

by a neural network with one hidden layer which has sig-

moid neurons. The output layer of the neural network is

an affine function, i.e. a linear function with weights and

a bias term. In case of SARSA and Watkins-Q, the input

to the network is the concatenation of the state vector and

a one-hot action vector encoding the chosen λ. In order to

achieve this, we basically enumerate the admissible λ’s in

Λ and the ith entry of the action vector is set if the cor-

responding λ is chosen. As for the implementation of TD

with function approximation, the input to the network is the

state vector only. We refer to Figure 4 for an illustration of

the value function network. If we let σi denote the output of

the ith hidden sigmoid neuron, wi and b denote the weights

and the bias of the output layer, then the output of the neural

network, Φ, is given by

Φ = b+
∑

wiσi (5)

Furthermore, if we let wij denote the weights and bi denote

the bias of the ith hidden sigmoid neuron, then the gradient

of the network, which is required for the implementation of

the algorithms above, can be calculated by

∂Φ

∂b
= 1,

∂Φ

∂bi
= wiσi(1− σi), (6a)

∂Φ

∂wi

= σi,
∂Φ

∂wij

= wiσi(1− σi)xj (6b)

Planning using the policy π

Once we build a system that estimates the action or state

values, a policy which will suggest a solution to the VPP

can be derived quite easily. The derived policy acts greedily

with respect to the estimated values. To be more precise, in

Y. Valley Wind Turb. Stat. Liberty Engine

Figure 5. Visual results of coverage and sample views on various

models. In the top row, lines represent location and direction of the

selected cameras. Colors represent coverage by different cameras.

Best seen in color and electronic format.

case of SARSA and Watkins-Q, at each state, we go through

all admissible actions, find the action which has the highest

value, and take that action to move to the next state, until

the coverage task is completed. On the other hand, in case

we are using the TD algorithm, at each state we calculate all

possible next states by going through all admissible actions

and finally pick the action that leads to the state with the

highest estimated value. This process eventually produces a

sequence of λ’s that solves the VPP.

6. Experimental Setup

In order to test the performance of the solution method

we proposed, we experimented on 3D meshes of 20 differ-

ent objects. The first 8 objects consisted mostly of those

which could be of potential interest in the application areas

we mentioned in the introduction. Particularly, we tested

the method on the 3D model of a mountainous region,

Yosemite Valley, a wind turbine, a skull, Statue of Liberty,

an engine block, and finally, as toy examples, a knot and a

plane. The second group of test objects are obtained from

the data set appeared in [9]. For each model, we tested

our method against two different methods: Purely Greedy

and Alternating-λ. As the name suggests, in Purely Greedy

approach, we basically complete coverage by proceeding

greedily at each step, whereas in Alternating-λ case, after

starting with a greedy step, we let λ alternate between 0
and 1 sequentially, and choose the view which maximizes

the score function (3) at each step. We used a virtual rgb

camera as a sensor, and for fair comparison of the methods,

for each object we kept the initial set of cameras and their

settings fixed while changing the solution method. Figure 5

shows a few of the models (with coverage map) from the

first group and their sample views. The images of the rest

of the models can be found in the supplementary material.

As we mentioned previously, we used three different re-

inforcement learning algorithms to implement our method.

During these implementations we allowed only two actions:
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λ = 0 and λ = 1. The hidden layer of the value network

included 200 neurons. We used eligibility traces with eligi-

bility factor equals 0.5. The learning rate was set to 0.01 and

the maximum number of episodes was set to 100K. Once

this maximum number is reached, we terminated the learn-

ing phase, and ran the trained network to accomplish the

coverage task. For the first group of objects we mentioned

above, RCC was set to 0.99, for the second set this num-

ber was increased to 1.0. During the learning and the plan-

ning phases same RCC was targeted. In the learning phase

of the Watkins-Q agent, we allowed exploration within the

first 50K episodes, whereas for SARSA and TD agents no

exploration was allowed.

7. Results and Discussions

Given sufficient time for learning and exploration, our

method is expected to perform at least as good as the Purely

Greedy or Alternating-λ approaches. As expected, we see

from Table 1 that in almost all test cases, our method pro-

vides a solution which is better than the solution provided

by either of the baseline methods. An exception to this is

the duck data, where the Alternating-λ approach performed

surprisingly better than any other method. However, in

general, even without introducing explicit exploration, our

reinforcement learning based method successfully reduces

the number of cameras required to ensure the coverage of

the object. In this set of experiment, we limited the learn-

ing phase to 100K episodes and as shown in Figure 6, we

observed that the average performance of agents did not

change significantly after 65K episodes.

Another interesting result reflected by this experiment

is that, when the RCC is not 1.0, the adverse effects of

the purely greedy approach is less visible. This is simply

because when RCC is 0.99, a solution leaving small un-

covered areas behind is considered a success, even though

A
v

g
.

#
o

f
ca

m
er

as

Figure 6. Average convergence performance of RL algorithms us-

ing twelve models from [9].

there cameras in the initial view point set seeing those un-

covered areas. This relaxation works very much in favor of

the purely greedy algorithm, which already tends to leave

plenty of those small uncovered areas while maximizing the

overall coverage. Note that, as mentioned before, the RCC

was 0.99 for the first set of 8 objects, and 1.0 for the remain-

ing 12 in the table and we see that the average performance

gain of RL based methods over the purely greedy approach

in the second set, is shrunk from 4 to 2 view points for the

first set of objects.

For a thorough analysis of RCC on the performance of

our method, in an auxiliary experiment we retrained all

three RL-based systems for different RCC values. The re-

sults of this auxiliary experiment is summarized in Figure 7.

Each plot in this figure compares the average performance

of baseline methods against the average performance of RL-

based methods. The performance average is obtained after

running each of these algorithms for each of the 12 objects

appearing in the second data set. After learning, during

test time we recorded the average number of cameras se-

lected by each method when RCC is varying from 0.9 to

1.0. We observed appealing results: i) RL based methods

beat greedy algorithms with larger margins when the cover-

age task is completed, i.e. RCC is met; ii) RL agents trained

with a certain RCC value can perform worse than greedy

methods for lower RCC at test; iii) when RCC is set lower

in both learning and planning stages, the performance gain

of our RL based methods is reduced but they still perform

better than greedy methods.

Finally, in order to verify the precision of the value func-

tion approximation, we compared the actual return (i.e. the

sum of actual rewards observed following the policy) and

the estimated return (i.e. estimated state value in case

of TD, and maximum estimated action value in case of

SARSA and Watkins-Q) of a number of states. In order to

do that, we collected data by starting from all possible initial

states, i.e. states corresponding to a single camera only, and

following the policy suggested by the network, as explained

in Section 5.1. For each state visited, we calculated the es-

timated and actual returns. As a small sample of this analy-

sis, in Figure 8 we include the results from experiments of

duck and cat objects. The analysis for other objects can be

found in the supplementary material. Considering the re-

sults shown in Table 1, we chose two object-method pairs.

Accordingly, cat-SARSA experiment shows an example of

good approximation, and duck-TD experiment illustrates a

bad approximation.

In the plots of Figure 8, the absolute value of the actual

return tells us how many cameras more we need to place

in order to accomplish the coverage task. In the ideal case

the estimated return and the actual return should be equal

and we should see a distribution on the y = x line only.

We see that, in both cases the expected value of the esti-
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# of init. cams 376 270 264 270 265 289 286 189 312 332 333 412 245 302 344 342 319 342 343 321 n/a n/a

Greedy 36 42 34 39 31 50 13 16 22 15 16 16 26 13 13 16 11 11 9 30 n/a 0.17
Altern. λ 38 43 33 42 32 52 12 17 19 12 17 16 28 14 12 19 13 12 7 29 n/a 0.17

O
u

rs

SARSA 34 39 32 37 29 48 11 13 17 11 15 13 23 11 10 15 11 9 8 26 0.52 0.51
Watkins-Q 34 39 32 37 29 48 11 13 17 11 14 13 23 11 10 15 11 9 8 26 0.51 0.50

TD 34 39 32 37 29 48 11 13 17 11 14 13 23 11 10 15 10 9 8 26 1.12 1.01

Table 1. Comparison of the performance of different algorithms on different 3D models. Columns show the number of cameras proposed

by each method. Last column shows the duration of a single episode.
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Figure 7. Comparison of the average performance of different algorithms with varying relative coverage criteria (RCC). The average is

taken over the second dataset, which consists of 12 models.
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Figure 8. Error plots for two cases. The solid black line indicates

the mean, the error bars indicate the standard deviation, data min

and data max. Red dots represent the initial states. We mark the

actual best initial state and the initial state selected by the policy.

mated returns satisfy this property. Moreover, even though

the outliers do exist, the standard deviation of the approx-

imation error is rather small. As expected, for the states

that are visited more frequently, networks provided quite

good approximations, whereas the values of the states that

are visited less often, e.g. the initial states (represented by

red dots in Figure 8), are often approximated rather poorly.

However, the overall approximation quality of the networks

are quite high.

This analysis helps us understand why TD method for

duck object failed to perform as good as Alternating-λ. As

shown in the corresponding plot, the initial state selected by

the policy and the initial state which leads to the best result

differs. This is due to bad estimation of the state value of

the true best initial state.

8. Conclusion

In this paper, we proposed a fully automated reinforce-

ment learning (RL) based method to solve the view plan-

ning problem (VPP) for coverage of 3D object models.

The solution given in this paper is neither limited to struc-

ture of the 3D models nor the type of the sensors that are

used. Given sufficient exploration and learning time, the

proposed method is guaranteed to perform at least as good

as the greedy algorithm. In an extensive set of test cases, we

showed that our proposed method out-performs the greedy

algorithm, and we further showed that a similar perfor-

mance metrics cannot be attained by ad hoc approaches like

Alternating-λ. A natural extension of our work is to add

path planning to proposed approach and provide an exten-

sive treatment of model-based VPP.
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[2] V. Blåsjö. The isoperimetric problem. The American Math-

ematical Monthly, 112(6):526–566, 2005.

[3] F.-M. De Rainville, J.-P. Mercier, C. Gagné, P. Giguere, and
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