
Deep Sequential Context Networks for Action Prediction

Yu Kong1 Zhiqiang Tao1 Yun Fu1,2

1Department of Electrical and Computer Engineering,
2College of Computer and Information Science.

Northeastern University, Boston, MA 02115, USA

{yukong,zqtao,yunfu}@ece.neu.edu

Abstract

This paper proposes efficient and powerful deep net-

works for action prediction from partially observed videos

containing temporally incomplete action executions. Differ-

ent from after-the-fact action recognition, action prediction

task requires action labels to be predicted from these par-

tially observed videos. Our approach exploits abundant se-

quential context information to enrich the feature represen-

tations of partial videos. We reconstruct missing informa-

tion in the features extracted from partial videos by learning

from fully observed action videos. The amount of the infor-

mation is temporally ordered for the purpose of modeling

temporal orderings of action segments. Label information

is also used to better separate the learned features of differ-

ent categories. We develop a new learning formulation that

enables efficient model training. Extensive experimental re-

sults on UCF101, Sports-1M and BIT datasets demonstrate

that our approach remarkably outperforms state-of-the-art

methods, and is up to 300× faster than these methods. Re-

sults also show that actions differ in their prediction char-

acteristics; some actions can be correctly predicted even

though only the beginning 10% portion of videos is ob-

served.

1. Introduction

Human action recognition has gained significant inter-

ests due to its broad applications, such as visual surveil-

lance and video retrieval. This task is to infer the action

label after the entire action execution has been observed.

However, in some scenarios, predicting the action label be-

fore the action execution ends is extremely important. For

example, it would be very helpful if an intelligent system

on a vehicle can predict a traffic accident before it happens;

opposed to recognizing the dangerous accident event there-

after. More importantly, it is essential that the intelligent

system can make accurate predictions at the very beginning

stage of a video, for instance, when only the beginning 10%

t

0
Full observations

Information transfer

…

Raw features
Raw

features

Learned

features

Stacked layers

of features

…

Figure 1. Our DeepSCN predicts the action label given an un-

finished action video. Given features extracted from a partially

observed video, DeepSCN gains extra discriminative information

from fully observed video. Multiple layers of learned features

(purple nodes) are stacked to better abstract raw features.

frames of a full video is observed.

Action prediction is challenging because decisions must

be made based on temporally incomplete action executions.

However, certain actions are predictable at their early stage

if particular temporal patterns are observed and temporal

context is available. Consider, for example, a video of a

triple jump. We could imagine that a player is very likely

to jump after running since we have seen this type of sport

elsewhere1. The sequential context of the full video obser-

vation provides us with the knowledge that the triple jump

action consists of running and jumping, and how the action

appearance evolves in the temporal domain. This crucial

information transferred along temporal axis is the key to

action prediction as it helps us to understand the action evo-

lution in the full action observation.

In this paper, we propose novel deep sequential context

networks (DeepSCN) for action prediction. DeepSCN is

based on marginalized stacked autoencoder (MSDA) [4],

but extends it to accommodate sequential data. Our deep

networks utilize rich sequential context information to bet-

ter capture the appearance evolution and temporal structure

of the full video observations. We learn such information

from full videos (see Figure 1), and transfer it to the fea-

tures extracted from partial videos containing temporally

incomplete action executions. This enriches the feature rep-

resentations, and improves their discriminative power even

1We acknowledge that the scene gist also plays an important role here.

11473



though they are extracted from incomplete sequences. The

amount of the transferred information at different progress

levels2 is temporally ordered for the purpose of model-

ing the temporal orderings of inhomogeneous action seg-

ments. Furthermore, supervisory information is incorpo-

rated in DeepSCN in order to improve the discriminative

ability of the learned features at different progress levels.

DeepSCN has numerous advantages inherited from

MSDA: 1) DeepSCN is remarkably faster than existing pre-

diction approaches [13, 2] in training and testing. Empirical

results show that DeepSCN is up to 300× faster than [2] and

60× faster than [13]; 2) DeepSCN stacks multiple layers

into a deep network that helps effectively summarize action

features at different progress levels; 3) it enjoys layer-wise

convexity and can be solved efficiently.

Our work focuses on short-duration prediction such as

“biking” and “diving”, while [17] focuses on long-duration

compositional action prediction where an action can be fur-

ther decomposed into semantic meaningful primitives. For

example, an activity “make an omelet” can be decomposed

into primitives “crack”, “pour”, “stir”, etc. We simulate se-

quential data arrival while [2] assumes data are randomly

observed in a sequence. We aim at predicting the label for a

partially observed video. By comparison, [35, 21, 14] pre-

dict what will happen in the future, and [9, 19] localizes the

starting and ending frames of an incomplete event.

2. Related Work

Action recognition methods take as input fully ob-

served videos and output labels of human actions. Exist-

ing approaches can be roughly categorized into low-level

feature-based approaches [15, 33, 30, 22, 31, 20] and mid-

level feature-based approaches [12, 26, 34, 36, 18]. Low-

level features, such as dense trajectory [31] and poselet

key-frames [22], utilize local appearance information and

spatio-temporal structures, and have shown great success

in action recognition. Mid-level feature-based approaches,

such as semantic descriptions [12] or data-driven concepts

[34], have shown to be capable of recognizing more com-

plex human actions. Furthermore, some deeply learned fea-

tures [32, 6] were recently proposed to learn high-level in-

formation for classification. However, most existing meth-

ods expect to observe temporally complete action execu-

tions. Their performances are unknown if they are given

videos with temporally incomplete action executions.

Action prediction methods [24, 2, 14, 13] were pro-

posed to predict the action given a partially observed video.

Ryoo [24] proposed integral and dynamic bag-of-words ap-

proaches for action prediction. The former one models fea-

ture distribution variations over time, while the latter tech-

2The progress level k is the number of observed temporal segments in

a video, ranging from 1 to K: k ∈ {1, · · · ,K}, where K is the total

number of segments in a full video.

nique depicts the sequential nature of human activities. Cao

et al. [2] generalized human activity recognition. In their

work, frames were randomly removed in a video to simulate

missing data. They formulated the problem as a posterior-

maximization problem, where the likelihood is computed

by feature reconstruction error using sparse coding. How-

ever, [2] suffers from high computational complexity as the

inference is performed on the entire training data. Lan et

al. [14] designed a coarse-to-fine hierarchical representa-

tion to capture the discriminative human movement at dif-

ferent levels, and used a max-margin framework for final

prediction. Kong et al. [13] proposed a structured SVM

learning method to simultaneously consider both local and

global temporal dynamics of human actions. By enforcing

a label consistency of temporal segments, the performance

of prediction can be effectively improved.

The proposed approach is significantly different from

existing action prediction and early detection approaches

[24, 13, 2, 14, 9, 19]. The proposed DeepSCN elegantly

gains extra sequential context information from full videos

to partial videos, while [13, 9, 19] capture increasing con-

fidence score or decreasing detection loss in temporal se-

quence. Action models are computed by averaging action

representations in training data [24], building action dictio-

naries [2] or describing actions at both coarse and fine levels

[14]. By comparison, we build action models by transfer-

ring information from full videos in order to improve the

discriminative power of partial videos. In addition, our ap-

proach stacks multiple feature layers to better summarize

action features, while [24, 2, 14, 13] only use hand-crafted

features.

The prediction of future events was also investigated in

other applications, such as predicting events in recommen-

dation systems [16, 23], predicting future visual representa-

tion [29], and reasoning about the preferred path for a per-

son [11, 1]. Their goals are different from our work as we

focus on predicting the action labels of a video.

3. Our Approach

Our goal is to predict the action class y of an action video

x before the ongoing action execution ends [13, 2, 24]. We

follow the problem setup described in [13, 2, 24, 14]. A

complete video x containing T frames is uniformly seg-

mented into K segments (K = 10 in this work), mimicking

sequential video arrival at various observation ratios. Each

segment contains T
K

frames. Note that for different videos,

their lengths T may vary, causing different lengths in their

segments. The k-th segment (k ∈ {1, · · · ,K}) of the video

ranges from the [(k − 1) · T
K

+ 1]-th frame to the (kT
K
)-th

frame. A temporally partial video or partial observation

x
(k) is a temporal subsequence that contains the beginning

k out of K segments of the video. The progress level g of

the partial video x
(k) is k: g = k, and its observation ratio

21474



A video'
1 T

Segment'

Partial'video

x

x(k)
Progress'level''

Observation'ratio'r = k/K = 0.3

g = k = 3

Figure 2. Example of a temporally partial video, and graphical

illustration of progress level and observation ratio.

r is k
K

: r = k
K

(see Figure 2). For a given partial video,

its progress level (or level) g and observation ratio r have

g = r ×K.

Given N training videos {xi, yi}
N
i=1, we simulate se-

quential data arrival in this work, and temporally de-

compose each training video xi into partial observations

{x
(k)
i }|Kk=1 at various progress levels. Note that xK

i and xi

are the same full video: xK
i = xi. We would like to learn

a feature mapping function G : x(k) → z and a prediction

function F : z → y, where x
(k) ∈ Rd is a partial video at

progress level k, z ∈ RD is the learned feature vector with

high discriminative power, and y ∈ Y is the action label.

Visual Features: Our approach works with both deep

features and handcrafted features. We extract C3D features

[27], or spatiotemporal interest points [5] and dense trajec-

tory features [30] from a partial video x
(k). Bag-of-words

model is used to encode handcrafted features.

3.1. Singlelayer Feature Learning

Sequential context. As shown in [13, 2], it is essential

to improve the discriminative power of features extracted

from partial observations in order to achieve high prediction

performance. This is even more important for predicting

the beginning portion of a video since a large amount of

useful cues for classification are not observed in the early

stage of the video. Furthermore, the features extracted from

the beginning portion of a video cannot fully convey the

information of the entire video.

Intuitively, people are more confident about the action

category if more frames are observed. Recent studies

[13, 2, 24, 14] show that the best prediction performance

is generally made when all the frames are observed. This

suggests that full observations contain all the useful infor-

mation for classification. Motivated by this observation, in

this work, we propose to improve the discriminative power

of partial videos by gaining extra information from full

videos. Our assumption is that if the features from a partial

video can be geometrically close to the features from the

full video, then their discriminative abilities would be simi-

lar. We define the discrepancy between partial observations

{x
(k)
i } and their corresponding full observations {x

(K)
i } as

N∑

i=1

K∑

k=1

‖x
(K)
i −Wx

(k)
i ‖22 = ‖X̄(K) −WX̄‖2F , (1)

where W is a feature transformation matrix of size d × d
learned during model training, and ‖ · ‖F is the Frobenius

norm. Matrices X̄(K) is a d×KN matrix containing all the

full observations and X̄ is also a d×KN matrix containing

all the partial observations:

X̄
(K) = (x

(K)
1 , · · · ,x

(K)
1

︸ ︷︷ ︸

K times

, · · · ,x
(K)
N , · · · ,x

(K)
N ),

X̄ = (x
(1)
1 , · · · ,x

(K)
1 , · · · ,x

(1)
N , · · · , x

(K)
N ).

(2)

By minimizing the discrepancy defined in Eq. (1), a par-

tial observation x
(k)
i is mapped onto a feature space using

the learned projection matrix W under the guidance of its

corresponding full observation x
K
i or xi. The reconstructed

feature Wx
(k)
i is expected to be geometrically closer to its

corresponding full observation x
K
i . Therefore, the learned

feature vector Wx
(k)
i will gain extra crucial information for

action prediction from the full observation x
(K)
i , and its dis-

criminative power is thus enhanced.

Note that we use one single feature transformation ma-

trix W here rather than using K transformation matrices,

one for each progress level, in order to make our approach

compact and practical in testing. If we use K transforma-

tion matrices, then we need to know the progress level k of

a testing video to pick the right W, which is infeasible in

practical scenario.

Robust features. During information transfer, noise

could be introduced to partial observations, which may de-

grade the prediction performance. We overcome this prob-

lem by regularizing W and constructing robust features for

partial videos that are insensitive to noise. Recent work in

robust feature learning [4, 28] shows that robust features

should be able to be reconstructed from partial and random

corruption. Inspired by this idea, we reconstruct features of

partial observations with the mapping matrix W:

N∑

i=1

K∑

k=1

‖x
(k)
i −Wx̃

(k)
i ‖22 = ‖X̄−WX̃‖2F , (3)

where x̃
(k)
i is the corrupted version of the original data x

(k)
i

obtained by setting a fraction of the feature vector x
(k)
i to 0

with probability p > 0. Matrix X̃ is the corrupted version

of X̄ defined as

X̃ = (x̃
(1)
1 , · · · , x̃

(K)
1 , · · · , x̃

(1)
N , · · · , x̃

(K)
N ). (4)

To reduce data variance, “infinite” passes of corruptions are

performed over the training data [4].

31475



Effectively using “infinitely” many copies of noisy data

allows us to learn features robust to noise [4]. In this work,

noise may originate from two sources, a partial video it-

self and the corresponding full video. Although current fea-

ture extractors (e.g., C3D and spatiotemporal interest point

detectors) have shown to be robust to background noise,

the detected features may still be associated with dynamic

background that is irrelevant to human actions. In addition,

features extracted from human body may also suffer from

illumination changes, pose and appearance variations, and

camera jittering, etc. This will undoubtedly degrade the rep-

resentation power of features and further cause significant

reduction in prediction performance. By setting random el-

ements in the feature vector xk
i to 0, these feature elements

are removed in the feature vector. This essentially simulates

appearance variations in videos, and thus helps in learning

robust features. This scheme can be considered as a mask-

out/drop-out regularization [8, 3].

Label information. Partial observations in the same cat-

egory may vary greatly in appearance, duration, etc. There-

fore, the learned prediction model may not be able to cap-

ture complex classification boundaries. We address this

problem by incorporating label information to our feature

learner, and expect the learned features of partial observa-

tions at the same progress level in the same category to be

geometrically close to each other. We define the within-

class within-progress-level variance here in order to regu-

larize the learning of parameter matrix W:

Ψ(W) =
1

2

K∑

k=1

N∑

i,j=1

aij‖Wx
(k)
i −Wx

(k)
j ‖22

=

K∑

k=1

Tr(WX
(k)

LX
(k)T

W
T),

(5)

where

X
(k) = (x

(k)
1 , · · · ,x

(k)
N ) ∈ Rd×N , (6)

L ∈ R
N×N is the label Laplacian matrix: L = D −

A. Here, D is the diagonal degree matrix with Dii =
∑N

j=1 aij , and A is the adjacency matrix that represents the

label relationships between training videos. The (i, j)-th
element aij in A is 1 if yi = yj and i 6= j; and 0 otherwise.

Putting Eq. (1), Eq. (3), and Eq. (5) together, optimal

parameter matrix W can be learned by

min
W

‖X̄−WX̃‖2F + α‖X̄(K) −WX‖2F + βΨ(W),

s.t. ∆(k+1)
6 ∆(k), k = 1, · · · ,K − 1, (7)

where α and β are trade-off parameters balancing the im-

portance of the corresponding terms, and ∆(k) is the recon-

struction error ∆(k) = ‖X(K) − WX
(k)‖2F . As progress

level k increases, the partial video feature x
(k) is geometri-

cally approaching the corresponding full video x
(K). Con-

sequently, the amount of information transferred from the

full observation should be decreasing. Such prior knowl-

edge is incorporated using the constraints in optimization

problem (7). These constraints also implicitly capture

temporal ordering information of inhomogeneous temporal

units.

3.2. Model Learning

Eq. (7) is a convex problem, and can be solved by the

augmented Lagrange method:

L = ‖X̄−WX̃‖2F + α‖X̄(K) −WX‖2F + βΨ(W)

+
K−1∑

k=1

uk(∆
(k+1) −∆(k)) +

v

2

K−1∑

k=1

(∆(k+1) −∆(k))2

s.t. uk ≥ 0, ∀k = 1, · · · ,K − 1, (8)

where uk is the Lagrange multiplier corresponding to the k-

th constraint defined in Eq. (7), and v is a penalty parameter.

By introducing ∆ = [∆(2) −∆(1), · · · ,∆(K) −∆(K−1)]T

and u = [u1, · · · , uK−1]
T, Eq. (8) is reduced to a compact

form:

L = ‖X̄−WX̃‖2F + α‖X̄(K) −WX‖2F

+ βΨ(W) + u
T
∆+

v

2
‖∆‖22

s.t. uk ≥ 0, ∀k = 1, · · · ,K − 1.

(9)

Optimization problem in Eq. (9) can be solved by mini-

mizing L with respect to W and maximizing the dual func-

tion of L with respect to u iteratively. Thus, W can be

updated by directly setting ∂L
∂W

= 0. Please refer to the

supplementary material for further details.

3.3. Deep Architecture

As suggested by [7, 28, 4], a deep architecture consisting

of multiple layers of nonlinearity can improve the represen-

tation power of features, especially for classification tasks.

Inspired by these studies, we also design a deep structure

and nonlinearly map features of partial observations in a

layer-wise fashion. This allows us to enhance the effective-

ness of matrix W in reconstructing the features at various

progress levels. Specifically, using a nonlinear squashing

function σ(·) and the learned transformation matrix W at

one layer, the new representations of all the partial videos

X̄ can be computed by: Z = σ(WX̄), where σ(·) is de-

fined as tanh(·) in this work.

To learn a deep architecture, we stack our single-layer

model in Section 3.1 as multi-layer deep networks, and

learn the transformation matrices {Wm}Mm=1 of M layers

using a greedy layer-wise scheme. Specifically, the output

of the m-th layer, denoted by Zm, is used as the input for

the (m+ 1)-th layer (Fig. 3(a)). The transformation matrix

Wm+1 of (m + 1)-th layer is then trained after the m-th

layer has been trained. For the first layer, the input Z0 is the

raw features of all the partial observations X̄: Z0 = X̄.

41476



3.4. Action Prediction

Given training videos, DeepSCN is first learned to gener-

ate the features of the videos. SVMs with intersection ker-

nel (IKSVM) are then trained to be action predictors using

all the feature layers (Z0, · · · ,ZM ) given by DeepSCN.

In order to train IKSVM action predictors appropriately,

we consider the following two testing scenarios. Scenario

1: Progress level k of a testing video is unknown. This is

practical, since in real-world applications, progress levels

are always unknown in streaming videos. All the training

partial videos are treated to be at the same progress level,

and only one IKSVM model is trained. In testing, we use

a single IKSVM to predict action labels (Figure 3(b)). Sce-

nario 2: Progress level k of the testing video is known,

which was used in [13, 2] but it is impractical in real-world

applications. K support vector machines with the intersec-

tion kernel are trained for action prediction. The k-th SVM

corresponds to partial observations at progress level k. In

testing, progress level k of a testing video x is required in

order to use the k-th SVM to make predictions (Figure 3(c)).

Note that DeepSCN does not require the progress levels of

testing videos to be known.

Testing. Given a testing video x, DeepSCN is first used

to generate the features of the video. Feature z of a test-

ing video is built in a layer-wise fashion (see Figure 3(a)).

Specifically, the feature z1 at the first layer is computed by

z1 = σ(W1z0) (z0 = x), and then fed into the second

layer with parameter W2. This procedure is repeated until

all the features at M layers are computed. Then, the raw

feature x and all these learned features are concatenated:

z = (z0, · · · , zM ). Given z, in Scenario 1, the one SVM is

adopted to predict the label. If it is in Scenario 2, the k-th

SVM from K SVMs will be used for prediction, where k is

the progress level of the testing video x.

4. Experiments

4.1. Dataset and Experiment Setup

We evaluate our approach on three datasets: UCF101

dataset [25], Sports-1M dataset [10], and BIT-Interaction

dataset [12]. UCF101 dataset consists of 13, 320 videos

distributed in 101 action categories. Sports-1M dataset

contains 1, 133, 158 videos divided into 487 classes. BIT

dataset consists of 8 classes of human interactions, with 50
videos per class. It should be noted that N videos will be

10N videos to action prediction approaches due to the mod-

eling of 10 progress levels. This larger volume of data in-

creases the complexity of the prediction problem. There-

fore, we use the first 50 classes in the Sports-1M datasets,

and sample 9, 223 videos. This results in 92, 230 partial

videos to prediction approaches.

Our approach works with both deep features and hand-

crafted features. We extract C3D features [27] from partial

Z0

W1

Z1

ZM

σ(·)

(a)

W2

WM

Z = (Z0,Z1, · · · ,ZM ) g

Action 

label

(b)

g = 1 g = k g = K

Z

Action 

label

(c)

Z

g = k

Figure 3. (a) Stacking features for a training/testing video in a

layer-wise fashion. Action prediction in two testing scenarios: (b)

progress level k is known, and (c) progress level k is unknown.

videos in UCF101 dataset and Sports-1M dataset as C3D

model generates features for both segments and full videos.

Pre-trained C3D model on Sports-1M dataset is used on

UCF101 and Sports-1M datasets. Spatiotemporal interest

points (STIPs) [5] and dense trajectory features (DTs) [30]

are extracted from partial videos in BIT dataset. Bag-of-

words model (with 500 visual words) is adopted to encode

STIPs and DTs features.

We follow the split scheme of [27] for UCF101 (split-1)

and [10] for Sports-1M datasets, respectively. The first 15
groups of videos in UCF101 are used for training; the next

3 groups for cross-validation; and the remaining 7 groups

for testing. We also follow the same experiment settings

in [13] for BIT dataset, and use the first 34 videos in each

class for training (in total 272 training videos) and use the

remaining for testing. Default parameters settings are M =
2, p = 0.5, α = 0.1, β = 0.001 for our method and C = 1
for IKSVMs on all the three datasets if not specified.

4.2. Prediction Performance

We compare with Dynamic BoW (DBoW) and In-

tegral BoW (IBoW) [24], MSSC and SC [2]3, and

MTSSVM [13]. SVMs with linear kernel, intersection ker-

nel (IKSVM), chi-square kernel, and marginalized stacked

autoencoder (MSDA) [4] are used as baselines. IBOW,

DBOW, MTSSVM, and all baselines require the ground-

truth progress levels to be known in testing. To perform

fair comparison, the ground-truth progress levels of test-

ing videos are known to all comparison methods, and all

the comparison methods on one dataset are fed with the

same features. Scenario 2 in Section 3.4 is adopted and K
IKSVMs are trained for our method and MSDA. Note that

our method also works without knowing the progress levels.

UCF101 dataset. Results in Figure 4(a) show that our

method consistently outperforms all the comparison meth-

ods, especially at the beginning 5 progress levels. Our

3The code is available at http://www.visioncao.com/publications.html.

51477



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio

0

10

20

30

40

50

60

70

80

90

R
e
c
o
g
n
it
io

n
 a

c
c
u
ra

c
y
 (

%
)

Our method
C3D+Linear SVM
C3D+IKSVM
C3D+Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
MSDA

(a) UCF101 dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio

0

10

20

30

40

50

60

70

R
e
c
o
g
n
it
io

n
 a

c
c
u
ra

c
y
 (

%
)

Our method
C3D+Linear SVM
C3D+IKSVM
C3D+Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
MSDA

(b) Sports1M dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio

0

10

20

30

40

50

60

70

80

90

100

R
e
c
o
g
n
it
io

n
 a

c
c
u
ra

c
y
 (

%
)

Our method
C3D+Linear SVM
C3D+IKSVM
C3D+Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
SC
MSDA

(c) BIT-Interaction dataset

Figure 4. Prediction results on (a) UCF101, (b) Sports-1M, and (c) BIT dataset. Note that these prediction approaches are optimized for

partial videos and thus cannot be directly compared to action recognition approaches given full videos (observation ratio r = 1.0).

method achieves an impressive 45.02% prediction results

when only 10% frames are observed, which is 4.97% higher

than the MTSSVM. This demonstrates the effectiveness of

learning information from full observations in Eq. (1). The

performance of our method at observation ratio 0.4 is al-

ready higher than the best performance of all the other

comparison methods, demonstrating the superiority of our

method. It should be noted that DBoW achieves extremely

low performance on this dataset. This is possibly because

its action models computed by averaging features are not

expressive enough to capture highly diverse action dynam-

ics in the same category.

Sports-1M dataset. Results in Figure 4(b) demonstrate

the superiority of our method over all the comparison meth-

ods. Our DeepSCN achieves an impressive 70.23% when

only 50% frames are observed, higher than the best per-

formance in 10 cases of all the other comparison methods.

Note that DeepSCN makes accurate predictions at an early

stage, demonstrating the effectiveness of its deep architec-

ture. DeepSCN outperforms MSDA, showing the bene-

fits of learning extra information from full videos and the

monotonic error function. Our method consistently outper-

forms MTSSVM, MSSC, DBoW and IBoW, suggesting the

benefit of learning sequential context information.

It should be noted that the performance of our method

and C3D+SVM method given full video cannot be directly

compared with the original C3D method [27]. We use all

the frames in a video in this work while [27] randomly sam-

pled 5 two-second clips from a video.

BIT dataset. Results in Figure 4(c) show that our

method significantly outperforms all the other comparison

methods, especially when 40% or more frames are ob-

served. Our method achieves 71.88% at observation ratio

r = 0.4, 5.47% higher than the runner-up MSDA method.

At r = 0.6, our method achieves an impressive result of

85.16%, higher than the best performance of all the other

comparison methods on 10 observation ratios. Our method

remarkably outperforms MSSC and SC [2] in all the 10
cases, demonstrating its ability of learning more discrimi-

native features for action prediction. The most noticeable

improvement occurs at r = 0.5 where the performance in-

creases over MSSC and SC are 29.69% and 31.25%, re-

spectively. Our DeepSCN achieves noteably higher per-

formance compared with DBoW and IBoW. We achieve

71.88% accuracy with only the first 40% frames of test-

ing videos being observed, which is higher than DBoW and

IBoW at all observation ratios.

4.3. Running Time

Our method is also compared with MTSSVM [13] and

MSSC [2] in terms of running time. We executed their au-

thors’ MATLAB code on a 3.4GHz CPU with 64GB RAM,

and report the total training and testing time4 in Table 1.

Results indicate that our method is significantly faster than

the state-of-the-art MTSSVM and MSSC methods. On

UCF101 dataset, our method (2 layers) spends 4 hour in

training and testing, which is 35× faster than MTSSVM

and 105× faster than MSSC. On Sports-1M dataset, our

method (2 layers) is 20× faster than MTSSVM, and 308×
faster than MSSC. The majority of our time spends in train-

ing the SVM action predictors. Training our DeepSCN

method only costs 0.05 hours per layer on UCF101 dataset.

Our method (3 layers) only takes 7 seconds (0.002 hours)

in training and testing on BIT dataset, 60× faster than the

MTSSVM and 100× faster than the MSSC method.

4.4. Instantly, Early, and Late Predictable Actions

It should be noted that actions differ in their prediction

characteristics. Discriminative patterns of actions may ap-

4The training times of our method includes the training of DeepSCN

and intersection kernel SVMs.

61478



Table 1. Training and testing time (hours) of comparison methods

on UCF101, Sports-1M, and BIT datasets. The number of layers in

our method is set to 2 on UCF101 dataset, 2 on Sports-1M dataset,

and 3 on BIT dataset, respectively.

Methods UCF101 Sports-1M BIT

MTSSVM [13] 140h 50h 0.12h

MSSC [2] 420h 770h 0.2h

Ours 4h 2.5h 0.002h

pear early or late in an action video. This affects the portion

of a video that needs to be observed before being classified

correctly, i.e., the predictability of an action.

We analyze the predictability of actions in UCF101

dataset, and study at what stage an action can be predicted.

We define three categories of action videos according to

their predictability: instantly predictable (IP), early pre-

dictable (EP), and late predictable (LP). An action video is

IP means that the video can be predicted after only observ-

ing the beginning 10% portion of the video. EP means that

an action video is not IP but can be predicted if the begin-

ning 50% portion of the video is observed. LP means that an

action video is neither IP nor EP, and can only be predicted

if more than 50% portion of the video is observed.

Top 10 IP, EP, and LP actions in UCF101 dataset are

listed in Figure 5. Results show that actions “Billiards” and

“IceDancing” are the easiest to predict; all of their testing

samples are instantly predictable. In our experiment, there

are 33 action categories having over 50% of their respec-

tive testing videos instantly predictable (correctly classified

after only observing the beginning 10% frames). Figure 5

also shows that 4 actions have all their testing samples early

predictable. In fact, there are 38 actions out of 101 actions

having over 50% of their respective testing videos that are

early predictable (less than 50% video frames need to be

observed). The action “JavelinThrow” can be considered as

the most challenging class to predict as 29% of its testing

samples are late predictable (more than 50% video frames

need to be observed), higher than all the other actions. In

all the 37, 830 testing partial videos, 35.45% of them are in-

stantly predictable, and 43.78% are early predictable; only

2.09% are late predictable. The remaining 18.69% partial

videos cannot be correctly predicted. This suggests that

a majority of action videos can be correctly classified us-

ing our approach after observing the beginning 50% frames

of the videos. On Sports-1M dataset, “equestrianism” is

the easiest action to predict and “artistic gymnastics” is the

most challenging action to predict. On BIT dataset, “bow”

and “pat” are the easiest and the most challenging actions to

predict, respectively. Please refer to the supplemental mate-

rial for the results on Sports-1M and BIT datasets.

4.5. Unknown vs Known Progress Level

Existing methods in [13, 24, 2] assume that the progress

levels of videos are known in testing (Scenario 2 in Sec-

10

20

30

40

50

60

70

80

90

100

Instantly Predictable Early Predictable Late Predictable

Billiards Fencing JavelinThrow

IceDancing FrisbeeCatch HighJump

RockClimbingIndoor SoccerPenalty FrontCrawl

PlayingPiano VolleyballSpiking HeadMassage

PommelHorse HulaHoop Haircut

Rowing FieldHockeyPenalty PlayingViolin

Skijet BasketballDunk HandstandWalking

JugglingBalls CliffDiving PoleVault

SoccerJuggling Bowling CricketBowling

TaiChi TennisSwing ThrowDiscus

Figure 5. Top 10 instantly, early, and late predictable actions in

UCF101 dataset. Action names are colored and sorted according

to the percentage of their testing samples falling in the category of

IP, EP, or LP. This figure is best viewed in color.

tion 3.4), which is impractical. In this experiment, we eval-

uate our method in a practical scenario (Scenario 1 defined

in Section 3.4), i.e. progress levels are unknown in testing.

All the partial videos are treated to be at the same progress

level. DeepSCN and only a single SVM model are trained

(the ONE method). Its performance is compared with two

other methods that require progress levels to be given in

testing: the RAND method (progress levels are randomly

generated) and the TRUE method (ground truth progress

levels are used in the testing phase). Both of the two meth-

ods train DeepSCN and K SVMs

Performance variations of the three methods on UCF101,

Sports-1M, and BIT datasets are shown in Table 2. Re-

sults show that the average performance variation between

the TRUE method and the ONE method is within 1% on

UCF101 and Sports-1M datasets, and it is within 3.12% on

BIT dataset. This demonstrates that ONE method can be

used in practical scenarios without significant performance

decrease where the progress levels are unknown. Thanks to

the proposed DeepSCN, partial videos at various progress

levels can be accurately represented, thereby making one

SVM powerful enough for predicting these partial videos

and making the progress levels unnecessary in testing. In

addition, training ONE method is significantly faster than

training TRUE method as ONE method only trains one

SVM while TRUE method needs to train K SVMs. The av-

erage performance gap between RAND method and TRUE

method is 2.25% and 0.34% on UCF101 and Sports-1M

datasets, respectively, indicating the robustness of our ap-

proach to progress levels on the two datasets. The gap in-

creases to 16.02% on BIT dataset as short video clips (most

of videos are less than 100 frames) and non-cyclic actions

(such as “push” and “handshake”) are present in the dataset.

Using inaccurate progress levels in testing would confuse

action predictors, and thus decreases the performance.

4.6. Effectiveness of Components and Parameters

We evaluate the effectiveness of model components in

our method, and the sensitivity to the number of layers M

71479



Table 2. Prediction results (%) on UCF101, Sports-1M and BIT datasets using RAND, TRUE, and ONE methods. Observation ratios

r ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The average performance is computed over all 10 observation ratios.

UCF101 Sports-1M BIT

#SVMs avg. 0.1 0.3 0.5 0.7 1.0 avg. 0.1 0.3 0.5 0.7 1.0 avg. 0.1 0.3 0.5 0.7 1.0

RAND K 79.06 43.91 81.37 83.51 83.72 85.23 68.28 54.33 66.58 70.50 72.06 70.71 56.95 13.28 32.81 69.63 78.13 73.44

TRUE K 81.31 45.02 82.95 85.75 87.10 87.63 68.62 55.02 67.76 70.23 71.52 72.49 72.97 37.50 59.38 78.13 86.72 90.63

ONE 1 80.55 44.31 82.77 85.46 86.34 86.65 68.62 56.15 67.22 70.50 71.57 71.84 69.85 33.63 50.00 81.25 85.94 85.94

on UCF101 dataset. The sensitivity results of our method to

corruption probability p, and parameters α and β are shown

in the supplemental material.

Components. We compare with several variants of

our full method, including the method without self recon-

struction in Eq. (3) (no-SR method), the one with α =
0 in Eq. (7), the one with β = 0, and the one with-

out the constraints in the optimization problem (7) (no-

CS method). The averaged prediction results over 10 ob-

servation ratios and prediction results over observation ra-

tios 0.1, 0.3, 0.5, 0.7, 1.0 are summarized in Table 3. Our

method significantly outperforms the no-SR method by

5.7% on average, demonstrating the effectiveness of learn-

ing robust features from the partial observation itself. The

performance gap between our method and the (α = 0)

method shows the importance of learning information from

full observations. The variant method (β = 0) loses label

information and fails to successfully separate the learned

features in different categories, thereby achieving lower per-

formance. The strength of the constraints in Eq. (7) can be

seen from the performance variance between our method

and the no-CS method. The constraints implicitly capture

temporal orderings over inhomogeneous units, which are

beneficial for predicting complex actions.

Table 3. Comparison experiments among variants on partial videos

of observation ratios r ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The average

performance is computed over all 10 observation ratios.

Methods avg. 0.1 0.3 0.5 0.7 1.0

no-SR 75.61 39.49 76.98 80.65 81.24 82.02
α = 0 76.55 40.29 78.17 81.02 82.34 82.87
β = 0 76.45 40.10 78.14 81.21 82.18 82.87
no-CS 76.50 39.92 78.14 81.15 82.32 82.87
Ours 81.31 45.02 82.95 85.75 87.10 87.63

Number of layers M . We also study performance varia-

tions given various layers of features. Prediction accuracies

of our networks with M ∈ {0, 1, 2, 3} layers are shown

in Table 4 (M = 0 means the proposed DeepSCN is not

used). Results indicate that the average performance over

10 observation ratios generally improves when more layers

are stacked. With only one hidden layer features (M = 1),

our method outperforms the method using raw features only

(M = 0) by 3.57% on average performance. The perfor-

mance difference increases to 7.07% when M = 3 layers

of features are stacked. Stacking multiple layers of features

has slightly higher positive effect on the ending portions

of videos than the beginning portions of videos. At be-

ginning portions of videos (observation ratios r = 0.1 and

r = 0.3), the network with M = 3 layers of features out-

performs the one with M = 1 layers of features by 3.02%
and 3.09%, respectively. The performance gap increases

to 3.6% and 3.43% at ending portions of videos (r = 0.7
and r = 1.0), respectively. This is possibly because the

raw features are more discriminative in the ending portions

of videos than the beginning portions. Stacking more layers

in DeepSCN benefits more from the discriminative features,

and thus achieves better performance in the ending portions.

Table 4. Accuracy (%) of our method on partial videos of ob-

servation ratios r ∈ {0.1, 0.3, 0.5, 0.7, 1.0} with layers M ∈
{0, 1, 2, 3}. M = 0 means the proposed DeepSCN is not used.

#Layer avg. 0.1 0.3 0.5 0.7 1.0

M = 0 75.39 39.55 77.27 80.33 80.73 81.58
M = 1 78.96 42.98 80.97 83.53 84.43 85.28
M = 2 81.31 45.02 82.95 85.75 87.10 87.63
M = 3 83.36 46.00 84.06 87.21 88.08 88.71

5. Conclusion

This work addresses the problem of predicting the action

label of a video before the action execution ends. We have

proposed an efficient and powerful approach for recogniz-

ing unfinished human actions from videos. Our approach

learns extra information from fully observed actions to im-

prove the discriminative power of the features from tem-

porally partial observations. We further improve the rep-

resentation power of the features by temporally ordering

the amount of the information, incorporating label informa-

tion, and stacking multiple layers of features. Our method

is evaluated on UCF101, Sports-1M, and BIT-Interaction

datasets, and shows significant improvements with up to

300× faster speed over state-of-the-art methods. An inter-

esting finding shows that actions differ in their predicability.

This inspires us to further explore the temporal structures of

actions for prompt and accurate prediction in future work.

Acknowledgement

This work is supported in part by the NSF IIS award

1651902, ONR Young Investigator Award N00014-14-1-

0484, and U.S. Army Research Office Young Investigator

Award W911NF-14-1-0218.

81480



References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in

crowded spaces. In CVPR, 2016.

[2] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu,

A. Michaux, Y. Lin, S. Dickinson, J. Siskind, and

S. Wang. Recognizing human activities from partially ob-

served videos. In CVPR, 2013.

[3] M. Chen, K. Weinberger, F. Sha, and Y. Bengio. Marginal-

ized denoising auto-encoders for nonlinear representations.

In ICML, 2014.

[4] M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginal-

ized denoising autoencoders for domain adaptation. In

ICML, 2012.

[5] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior

recognition via sparse spatio-temporal features. In VS-PETS,

2005.

[6] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neu-

ral network for skeleton based action recognition. In CVPR,

June 2015.

[7] G. Hinton and R. Salakhutdinov. Reducing the dimensional-

ity of data with neural networks. Science, 313(5786):504 –

507, 2006.

[8] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. Technical report,

arXiv:1207.0580v1, 2012.

[9] M. Hoai and F. D. la Torre. Max-margin early event detec-

tors. In CVPR, 2012.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014.

[11] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.

Activity forecasting. In ECCV, 2012.

[12] Y. Kong, Y. Jia, and Y. Fu. Interactive phrases: Semantic

descriptions for human interaction recognition. In TPAMI,

volume 36, pages 1775–1788, 2014.

[13] Y. Kong, D. Kit, and Y. Fu. A discriminative model with mul-

tiple temporal scales for action prediction. In ECCV, 2014.

[14] T. Lan, T.-C. Chen, and S. Savarese. A hierarchical repre-

sentation for future action prediction. In ECCV, 2014.

[15] I. Laptev. On space-time interest points. IJCV, 64(2):107–

123, 2005.

[16] B. Letham, C. Rudin, and D. Madigan. Sequential event pre-

diction. Machine Learning, 93:357–380, 2013.

[17] K. Li and Y. Fu. Prediction of human activity by discover-

ing temporal sequence patterns. TPAMI, 36(8):1644 – 1657,

2014.

[18] S. Ma, L. Sigal, and S. Sclaroff. Space-time tree ensemble

for action recognition. In CVPR, June 2015.

[19] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progres-

sion in lstms for activity detection and early detection. In

CVPR, 2016.

[20] B. Ni, P. Moulin, X. Yang, and S. Yan. Motion part regu-

larization: Improving action recognition via trajectory selec-

tion. In CVPR, June 2015.

[21] M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with goal

inference and intent prediction. In ICCV, 2011.

[22] M. Raptis and L. Sigal. Poselet key-framing: A model for

human activity recognition. In CVPR, 2013.

[23] C. Rudin, B. Letham, A. Salleb-Aouissi, E. Kogan, and

D. Madigan. Sequential event prediction with association

rules. In COLT, pages 615–634, 2011.

[24] M. S. Ryoo. Human activity prediction: Early recognition of

ongoing activities from streaming videos. In ICCV, 2011.

[25] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset

of 101 Human Action Classes From Videos in The Wild.

Technical report, CRCV-TR-12-01, 2012.

[26] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal de-

formable part models for action detection. In CVPR, 2013.

[27] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In ICCV, 2015.

[28] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.

Manzagol. Stacked denoising autoencoders: Learning use-

ful representations in a deep network with a local denoising

criterion. JMLR, 11:3371–3408, 2010.

[29] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating

visual representations from unlabeled video. In CVPR, 2016.

[30] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In CVPR, pages 3169–3176,

2011.

[31] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-

jectories and motion boundary descriptors for action recog-

nition. IJCV, 103(1):60–79, 2013.

[32] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

pages 4305–4314, 2015.

[33] B. Wu, C. Yuan, and W. Hu. Human action recognition based

on context-dependent graph kernels. In CVPR, 2014.

[34] Y. Yang and M. Shah. Complex events detection using data-

driven concepts. In ECCV, 2012.

[35] Y. Zhou and T. L. Berg. Temporal perception and prediction

in ego-centric video. In ICCV, 2015.

[36] Y. Zhou, B. Ni, R. Hong, M. Wang, and Q. Tian. Interaction

part mining: A mid-level approach for fine-grained action

recognition. In CVPR, June 2015.

91481


