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Abstract

Binary code learning has recently been emerging topic in

large-scale cross-modality retrieval. It aims to map features

from multiple modalities into a common Hamming space,

where the cross-modality similarity can be approximated ef-

ficiently via Hamming distance. To this end, most existing

works learn binary codes directly from data instances in

multiple modalities, which preserve both intra- and inter-

modal similarities respectively. Few methods consider to

preserve the ”fusion similarity” among multi-modal in-

stances instead, which can explicitly capture their hetero-

geneous correlation in cross-modality retrieval. In this pa-

per, we propose a hashing scheme, termed Fusion Simi-

larity Hashing (FSH), which explicitly embeds the graph-

based fusion similarity across modalities into a common

Hamming space. Inspired by the ”fusion by diffusion”, our

core idea is to construct an undirected asymmetric graph

to model the fusion similarity among different modalities,

upon which a graph hashing scheme with alternating opti-

mization is introduced to learn binary codes that embeds

such fusion similarity. Quantitative evaluations on three

widely used benchmarks, i.e., UCI Handwritten Digit, MIR-

Flickr25K and NUS-WIDE, demonstrate that the proposed

FSH approach can achieve superior performance over the

state-of-the-art methods.

1. Introduction

Cross-modality visual search has been an emerging topic

in computer vision communities recently [2, 20, 4, 24]. In

a typical setting, instances in one modality, e.g., text doc-

uments, are retrieved given a query from another modality,

e.g., image, and vice versa [29]. Ideally, the most similar in-

stances to the query should occupy the top positions in the

ranking list. Due to its low storage cost and fast retrieval

speed, binary code learning, a.k.a., hashing, has attracted

much attention recently in cross-modality retrieval, which

∗Corresponding author.

targets to find a low-dimensional Hamming space to effi-

ciently preserve the cross-modality similarity.

Both unsupervised and supervised hashing schemes have

been recently studied in cross-modality retrieval. For un-

supervised hashing, both Cross-view hashing (CVH) [12]

and Inter-Media Hashing (IMH) [23] are extended from

Spectral Hashing [27] to fit the scenario of cross-modality

retrieval. In [21], Predictable Dual-View Hashing (PDH)

was proposed to learn two linear hash functions via a self-

taught learning algorithm. Collective Matrix Factorization

Hashing (CMFH) [5] aims to finding consistent hash codes

from different views by collective matrix factorization. In

[33], Latent Semantic Sparse Hashing (LSSH) was pro-

posed to learn latent features from images and texts jointly

with sparse coding, upon which hash codes are learned.

Differently, supervised hashing embeds the label super-

vision into the Hamming space to improve the retrieval

performance, for instance Co-Regularized Hashing (CRH)

[31], Heterogeneous Translated Hashing (HTH) [26], Su-

pervised Multi-Modal Hashing (SMH) [30], Quantized Cor-

relation Hashing (QCH) [28], Semantics-Preserving Hash-

ing (SePH)[14], and Supervised Matrix Factorization Hash-

ing (SMFH) [15]. Although supervised hashing typically

achieves superior performance, it is very labor intensive to

obtain large-scale labels in many real-world applications.

In this paper, we focus on unsupervised hashing for

cross-modality retrieval. To learn discriminative binary

codes, it is essential to preserve the intra- and inter-modal

similarities jointly in the common Hamming space pro-

duced. To this end, many existing cross-modality hashing,

i.e., Cross-view Hashing, Inter-Media Hashing, and Lin-

ear Cross-Modal Hashing [34] preserve both similarities in

a separated manner, typically under a co-training setting

that minimizes the intra- and inter- modal loss iteratively

and respectively. However, most of them handle the prob-

lem of such two similarities preserving separately to learn

the corresponding hash codes with a co-training algorithm.

More importantly, such methods neglect to preserve the fu-

sion similarity among multi-modalities data. We argue that

such fusion similarity are more important for measuring the
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Figure 1. The Framework of our proposed Fusion Similarity

Hashing (FSH).FSH explicitly embeds the graph based fusion sim-

ilarity across modalities into a common Hamming space.

cross-modality similarity, since different similarities may be

complementary to each other.

Recently, several works have been enhanced for multi-

ple similarity measures[25, 32, 1], but little attention has

been paid to preserve such similarity in a discrete Hamming

space. In particular, it is shown that binary code learning

by fusion similarity is more robust to noise compared with

that by indirectly preserving intra- and inter-modal similar-

ity respectively. However, it is not an easy task at all. The

biggest concern lies in the efficiency issue in building the

fusion model, i.e., the fusion graph, which typically needs

relaxation on the eigen decomposition of the graph Lapla-

cian, resulting in significant performance degeneration with

the growth of hash bits.

To address the above problems, we propose a novel

cross-modality hashing method, termed Fusion Similarity

Hashing (FSH), which makes the attempt towards directly

preserving the fusion similarity from the multiple modal-

ities to a common Hamming space. Such fusion similar-

ity is robust to noise in capturing multi-modal relationship

among instances. Different from the existing work of cross-

modality hashing [12, 23], we argue that it is the fusion sim-

ilarity, rather than the individual intra-modal similarity, that

should be preserved in the common Hamming space. To

that effect, an asymmetrical fusion graph is built, which si-

multaneously captures the intrinsic relations according to

heterogeneous and homogenous data with a low storage

cost afterwards.. After that, we design an efficient objec-

tive function to learn accurate binary codes and the corre-

sponding hash functions in an alternating optimizing way.

The whole framework of the proposed FSH approach is

shown in Fig.1. FSH first builds the similarity matrix in

each modality, and then combining them to construct a ma-

trix that reflect the fusion similarity. According to such

similarity, we use a asymmetric graph to learning the hash

function, but it is hard to train the objective model due to

discrete constraint. To handle such problem, we propose an

alternating optimization algorithm, which also updates the

fusion parameters, so as to find the optimal fusion graph to

generate more discriminated hash codes.

We compare the proposed FSH approach against various

state-of-the-art unsupervised cross-modality hashing meth-

ods [12, 21, 5, 10] on three large-scale benchmarks, i.e.,

UCI Handwritten Digit , MIR-Flickr25K and NUS-WIDE.

Our quantitative results demonstrate that FSH outperforms

the existing unsupervised methods on standard benchmarks

for four retrieval tasks.

2. Fusion Similarity Hashing

We first give notations used in the rest of this paper. As-

sume that � = {�1, �2, ..., ��} is the training set with �
instances, where �� = (�1

� , �
2
� , ..., �

�
� ) is the �-th instance

containing � feature vectors from � modalities respec-

tively. X� = {��
1 , ��

2 , ..., ��
� } ∈ ℝ

��×� is defined as

the feature matrix for the �-th modality, and ��
� ∈ ℝ

�� is

the �-th data of X� with �� dimension. We further denote

��(��, ��) = ∥��
� − ��

� ∥2 as the function to measure the

Euclidean distance of �� and �� in the �-th modality. As

mentioned, a graph matrix G is constructed to measure the

fusion similarity among training instances, where G(�, �)
indicates the affinity between instance �� and �� .

Given training data set �, the proposed FSH

aims to learn a set of hash functions ��(��) =
{ℎ�

1 (��), ..., ℎ�
� (��)} for the �-th modal data, and si-

multaneously learn the corresponding binary codes B� =
{��1 , ��2 , ..., ��� } ∈ {−1, 1}�×� for the training data, where

� is the code length. For the �-th modality data, its hash

function can be written as:

ℎ�
� (��) = ���

(

��
� (��)

)

,
(

� = 1, 2, ..., �
)

, (1)

where ���(⋅) is the sign function, which returns 1 if

��
� (⋅) > 0 and -1 otherwise. ��

� (⋅) is the linear or non-

linear transform function for data of the �-th modality. For

simplicity, we define our hash function at the �-th modality

as ��(��) = ���(W�
���).

Ideally, if the instances �� and �� are similar, the Ham-

ming distance between their binary codes should be mini-

mal, and vice versa. We do this by minimizing the quanti-

zation error between the fusion similarity matrix G and the

Hamming similarity matrix G� , which can be written as:

���∥G−G�∥2� , (2)

where ∥ ⋅ ∥� is the Frobenius norm of the matrix.

Therefore, the key issue falls in the construction qual-

ity of the fusion similarity matrix G ∈ ℝ
�×�. Inspired

by the Neighbor Set Similarity (NSS) [1], it is straight-

forward to define our fusion similarity in the following:

Given two instances with two modalities �� = {��
� , ��

�}
and �� = {��

� , ��
�}, the bi-modal NSS in the �-th modality
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can be defined as:

S�

(

��
� (��), �

�
�(��)

)

=
1

�2

∑

�∈��
�

(��)

∑

�∈��
�
(��)

��(��, ��),

(3)

where ��
� (⋅) returns the �-nearest neighbor index numbers

according to the �-th modal similarity measure. And the

fusion similarity G(�, �) across such two modalities can be

defined via:

G(�, �) (4)

= ����
{

S1

(

�1
� (��), �

2
� (��)

)

,S2

(

�2
� (��), �

1
� (��)

)}

,

It is quite intuitive to extend the above bi-modal fusion sim-

ilarity to multi-modal case, i.e.

G(�, �) =
1

�

�
∑

�=1

(

���
∑

� ∕=�

S�(��
� (��), �

�
�(��))

)

�.�.

�
∑

�=1

�� = 1, 0 ≤ �� ≤ 1,

(5)

where �� refers to weight of the �-th modality, and � con-

trols the weight distribution across multiple modalities.

2.1. Sample-Importance Anchor Graph

However, with the increasing amount of data, the iter-

ation of discovering the kNN set and computing NSS are

both computationally intensive. To address this issue, in-

spired by the anchor graph based acceleration [18], we

further propose an asymmetric similarity matrix, termed

Sample-Importance Anchor Graph (SIAG), which jointly

considers the diversity among the anchor points.

In particular, given an anchor set ℒ = {�1, �2, ..., ��},

where �� = {�1� , �
2
� , ..., �

�
� } is the �-th anchor across �

modalities, which are randomly sampled from the original

data set �. The key design here lies in the weighting of each

��� in the similarity matrix, for which the simplest way is

to assign an identical weight by following the uniform dis-

tribution. However, due to the limitation of sampling and

feature representation, anchor points are not uniform in the

feature space.

To handle this, we use both probabilistic graph model

and Markov Chain to predict the weight of each anchor

as below. Firstly, we construct an undirected weighted

graph Z� ∈ ℝ
�×� among anchors at the �-th modality,

where Z�
�,� = ��(��� , ��� ). This adjacency matrix Z�

can be interpreted in a probabilistic way [16]. Accord-

ing to the Markov networks, the statable transition network

Ẑ can be achieved by Markov random walks. Then, ac-

cording to the new graph matrix Ẑ�, the weighted vector

�� = {��
1 , ..., ��

� } is learned by using the Markov Chain

prediction, where ��
� is the weight parameter of the �-th

anchor in the �-th modality.

By far, the Sample-Importance Anchor Graph (SIAG) is

built. We then use the SIAG to rewrite the fusion similarity:

G(��, ��)=
1

�

�
∑

�=1

���L�(��, ��),

L�(��, ��) =
1

�2

∑

� ∕=�

Ŝ�

(

��
�,�(��), �

�
�,�(��)

)

, (6)

Ŝ�

(

��
�,�(��), �

�
�,�(��)

)

=
1

�2

∑

�

∑

�

��
� ��

� ��(��, ��),

where � ∈ ��
�,�(��), � ∈ � �

�,�(��), and ��
�,�(⋅) returns the

index numbers of �-nearest anchors in the �-th modality.

2.2. The Proposed FSH Scheme

In terms of solving the minimization in Eq.2, the main

objective is to learn a set of binary codes {B1,B2, ...,B�}
for the � modalities respectively, whose inner product is

expected to approximate the similarity matrix G. Inspired

by [17, 22], we formulate the following problem of cross-

modality similarity preserving with binary codes B� and

hybrid graph SF as,

min
B�

�
∑

�=1,� ∕=�

∥B��
B� −G∥2� + �∥B��

B� −G∥2� ,

(7)

where � is a balance parameter.

Intuitively, we learn the �-th modality hash function

��(X�) by minimizing the error term between the lin-

ear hash function in Eq.1, constrained by the corresponding

binary code B� by ∥B� −��(X�)∥2� . Such hash func-

tion learning can be easily integrated into the overall cross-

modality similarity persevering, which is rewritten as:

min
B�,W�

∑

� ∕=�∥B��B�−G∥2� +�∥B��B�−G∥2�

+�
∑�

�=1 ∥B
�−��(X�)∥2� (8)

�.�.B� ∈ {−1, 1}
�×�

,
∑�

�=1 �� = 1, 0 ≤ �� ≤ 1,

where � is a tradeoff parameter to control the weights be-

tween minimizing the binary quantization and preserving

the fusion similarity.

Ideally, binary codes from different modalities of the

same instance should be set as identical as possible, which

is similar to the previous Cross-Modality Hashing, i.e.,

CMFH [5] and SMFH [15]. We further set the constraints

B = B1 = B2 and BB� = I in Eq.8 with which the first

and second terms in Eq.8 can be integrated, and the balance

parameter � can be neglected. Correspondingly, we rewrite

the overall FSH as:

min
B,W�

∥B�B−G∥2� + �
∑�

�=1 ∥B−��(X�)∥2� (9)

�.�.B ∈ {−1, 1}
�×�

,
∑�

�=1 �� = 1, 0 ≤ �� ≤ 1,

7382



where ��(⋅) is the trace of the matrix.

However, the scale of the matrix G is extremely large,

which needs huge storage cost and makes Eq. 9 hard to op-

timize on a large training set. Therefore, to handle this prob-

lem, the symmetric fusion similarity matrix G can be ap-

proximated by Cholesky decomposition G = UU� , where

U ∈ R�×�, and U can be represented as the low-rank ap-

proximated to the high-dimensional matrix G. Although

such decomposition makes the storage efficiency, it is still

too complexity to calculate such decomposition. Similar to

anchor graph [18], we rewrite the proposed SIAG in Eq.6 to

approximate the matrix U,

U(�, �) = Ĝ(�, �) = G(��, ��) ∈ R�×�. (10)

According to Theorem 2 in [6], ��(G�G) ≤ ���(G),
when � ≥ Λ1, and Λ1 is the largest eigen-value of matrix

G. The first item in Eq.9 can be approximated rewritten as:

min
�

���(G)− 2��(BGB� ).

Then, we assume Bs = ���(BĜ) ∈ {1,−1}�×� to be the

binary anchors, and U to be the affinity matrix that mea-

sures the fusion similarity between data points and anchors’

binary codes Bs. To learn the binary codes, the overall ob-

jective function can be written as:

min
B,��

���(Ĝ� Ĝ)− 2��(BĜBs
� )

+ �
∑�

�=1 ∥B−��(X�)∥2� (11)

�.�.
∑�

�=1 �� = 1, 0 ≤ �� ≤ 1.

2.3. Optimization

Directly minimizing the objective function in Eq. 11 is

intractable due to the discrete constraint of hash functions.

The formulation is non-convex with respect to B, Bs, Wm,

Ĝ, and �� jointly. This is further handled by using an alter-

nating optimization, i.e., updating one variable with fixing

the rest three until convergence.

(1) Fix Bs, Wm, Ĝ and ��, then update B. The corre-

sponding sub-problem is:

min
B

−2��(BĜBs
� ) + �

∑�
�=1 ∥B−W�

�X�∥2�(12)

�.�.B ∈ {−1, 1}
�×�

,Bs ∈ {−1, 1}
�×�

, .

Solving Eq.12 is still not convenient. To this end, we fix

the �� and Ĝ at the same time, then it can be expended

into:

�1(B) =− 2��(BĜBs
� ) + ����(B�B)

− 2�

�
∑

�=1

��(BX��
W�),

(13)

In this way, the gradient of Eq.13 is given by:

∂�1

∂B
= −ĜBs

� + ��B� − �

�
∑

�=1

X��
W�. (14)

Let ∂�1

∂B
= 0, this sub-problem can be solved by the follow-

ing updating rule:

B� = ���
( 1

��
(ĜBs

� + �

�
∑

�=1

X��
W�)

)

. (15)

(2) Fix B, Wm, Ĝ, and ��, then update Bs. When

fixing B and Wm, the updating of Bs can be referred to:

max
B

��(BĜBs
� ). (16)

With the same scheme to handle sup-problem (1), this sub-

problem is solved as follow:

Bs = ���(BĜ), (17)

which is similar to the before assumption.

(3) Fix B, Bs, Ĝ, and ��, then update Wm. This sub-

problem finds the best projection coefficient Wm by mini-

mizing ∥B−W�
�X�∥2� with the traditional linear regres-

sion. Therefore, we update Wm with other variables fixed:

Wm = (X�X�� + �I)−1X�B, (18)

where � is the regularization parameter, and I is the identity

matrix.

(4) Fix B, Bs, Ĝ, and Wm, then update ��. The

last sub-problem is to minimize Eq.11 with respect to the

weight ��. We use the Lagrange Multiplier with constraint
∑�

�=1 �� = 1 as:

�2(��)=���(Ĝ� Ĝ)−2��(BĜBs
� )−�(

�
∑

�=1

��−1).

(19)

However, this problem is not a convex. We then omit the

first constant item and replace the third item with matrix

A∗ =
∑�

�=1 �
�
�Am, where Am(�, �) = ��(��� , ��� ) is

the fusion similarity at the �-th modality among anchor

points. It can be rewritten as follows:

�̂2(��)=
�
∑

�=1

�����−�(
�
∑

�=1

��−1), (20)

where �� = ��
(

�Am − 2Bs
�BLm(�,ℒ)

)

. Then this

sub-problem can be solved by the traditional weighted

learning scheme, which has been widely used in previous

works [3, 13, 19]. The updating rule of this sub-problem is:

�� = (���)
1

1−�

/

�
∑

�=1

(���)
1

1−� . (21)

7383



(4) Fix B, Bs, Wm and ��, then update Ĝ. The new

fusion similarity matrix Ĝ is updated upon the definition in

Eq.6, which combines each modal asymmetric similarity to

construct the matrix that reflect more accurate fusion simi-

larity. We summarize the overall procedure of the proposed

FSH scheme in Algorithm 1, which leverages bi-modal data

as an example.

2.4. Convergence Proof

We prove the convergence of Eq.20 with the alternative

method by the following lamma.

Lamma 1. For the asymmetric similarity matrix Ĝ ∈
ℝ

�×�, its multiplication Ĝ� Ĝ ∈ ℝ
�×� approximately es-

timates the fusion similarity of anchor points, which is de-

fined as A∗ =
∑�

�=1 Am.

Proof. The average similarity between two anchor points

�� and �� is denoted as A∗
�� = � (�� ∣��). Therefore the av-

erage similarity by multi-modality anchor points can be re-

garded as a two-step transition probability through data at

each modality ��
� :

A∗
�� = � (�� ∣��) =

�
∑

�=1

�
∑

�=1

�(��� ∣��
� )�(��

� ∣��� ), (22)

where �(��� ∣��
� ) = ��(��� , ��

� )/
∑

� ��(��� , ��
� ). Then

we define Q = Ĝ� Ĝ, and let ��� = ��, 0 ≤ �� ≤ 1,

leading to,

Q(�, �) =

�
∑

�=1

Ĝ(�, �)Ĝ(�, �)

=
∑

�

{

∑

�

���(��
� ∣��� )

∑

�

���(��
� ∣��� )

}

=
∑

�

{

∑

�

�2��(��
� ∣��� )�(��

� ∣��� )

+
∑

� ∕=�

�����(�
�
� ∣��� )�(��

�∣�
�
�)
}

.

(23)

Obviously, taking the condition �2� ≤ �� and 0 ≤ ���� ≤
1 into Eq.24, the following conclusion can be got,

∑

�

∑

�

���(��
� ∣��� )�(��

� ∣��� ) ≤ Q(��)

≤
∑

�

∑

�

���(��
� ∣��� )�(��

� ∣��� ) + �����.
(24)

Summing Eq.22 and Eq.24 in the two sides, we arrive at

A∗ ≤ Q ≤ A∗ + �����. Due to the normalization of

similarity graph, the ����� parameter is moderate, which

makes a small the estimation error. Thus the Eq.20 will be

converged with an alternative method. □

Algorithm 1 Fusion Similarity Hashing (FSH)

Input: Training data set � with two modalities X1 and X2,

the number of anchor points m, the number of hash bits

r, and the parameters � and �.

Output: The hash codes B for training instances � and the

projection coefficient matrix W�.

1: Initialize W1, W2 by CCA method [8] .

2: Uniformly and randomly select p sample pairs from

training instances as the anchors ℒ.

3: Initialize hash codes B and Bs by CVH [12].

4: Initialize �� = 1/� .

5: Construct graph Ĝ and Am for �-th modality.

6: repeat

7: Fix W�, Bs, Ĝ, and ��, update B by Eq. 15;

8: Fix B, W�, Ĝ, and ��, update Bs by Eq. 17;

9: Fix B, Bs, Ĝ, and ��, update W� by Eq. 18;

10: Fix B, Bs, Ĝ, and W�, update �� by Eq. 21;

11: Fix B, Bs, W�, and ��, update Ĝ by by Eq. 10;

12: until convergence or reaching the maximum iteration.

3. Experiments

In this section, we conduct a serial of quantitative ex-

periments to validate the proposed FSH algorithm on three

widely-used benchmarks, i.e., UCI Handwritten Digit1,

MIR-Flickr25K2, and NUS-WIDE3.

3.1. Competing Methods

We evaluate the cross-modality retrieval task via: (1) the

image-modality to tag-modality side, termed Task 1, (2) the

tag-modality to image-modality side, termed Task 2, (3)

the image-modality to image-modality side, termed Task

3, and (4) the tag-modality to tag-modality side, termed

Task 4. In the above tasks, the proposed FSH is com-

pared against four state-of-the-art unsupervised methods,

i.e., Cross-View Hashing (CVH) [12], Predictable Dual-

view Hashing (PDH) [21], Collective Matrix Factorization

Hashing (CMFH) [5], and Alternating Co-Quantization

(ACQ) [10]. Except these, we further compare the FSH

with a simple fusion graph construction, which just fuse the

anchor graph in each modality, and we refer this as FSH-S

which is commonly a strong baseline for both two cross-

modality retrieval tasks4. All the source codes of the rest

methods are available publicly, and we directly adopt the

original parameter settings described in their papers. All

our experiments were run on a workstation with a 3.6GHz

Intel Core I7− 4790 CPU and 16G RAM.

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://www.cs.toronto.edu/nitish/multimodal/
3http://lms.comp.nus.edu/research/NUSWIDE.htm
4It means that L�(�, �) = 1

2

∑
�

∑
� ��(��, ��).
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3.2. Datasets

The UCI Handwritten Digit dataset consists of multi-

modal features of handwritten numerals (0 − 9), which are

extracted from a collection of Dutch utility maps. It con-

tains 10 categories, each of which has 200 patterns. Fol-

lowing the setting of [9], select 76 Fourier coefficients of the

character shapes as one modal features, and 64 Karhunen-

Love coefficients as the other modal features, 1, 500 images

are randomly sampled as the training set, and the remaining

as query.

The MIR-Flickr25K dataset is collected from Flickr

website, which contains 25, 000 images together with 24
provided unique labels. The image for each instance is

described by the 150 dimension Edge histogram descrip-

tor which mainly encodes surface texture. And the 500-

dimensional feature vector, derived from PCA on its bi-

nary tagging vectors, is used for text representation. Follow

the setting of [5], the above descriptors are defined as two

modalities for our cross-modality retrieval task. We take out

5% of the dataset as the query set, and the remaining as the

training set.

The NUS-WIDE dataset is a real-world web image

dataset crawled from Flickr, which contains 296, 648 im-

ages with associated tags. Each image-tag pair is anno-

tated with one or more labels from 81 concepts. We se-

lect 186, 577 labeled image-tag pairs from the whole dataset

according to the top 10 largest concepts, as adopted in

[30, 33]. In this dataset, images are represented by a

500-dimensional bag-of-visual-words feature, and its corre-

sponding tags are represented by a 1, 000-dimensional bag-

of-words feature. We choose 2, 000 image-tag pair points

from this database as the query set, and the remaining as

the training data set. And we analyze the parameters of the

proposed FSH by fixing the code length to 64. The analysis

is done by varying one value while fixing the others.

3.3. Evaluation Protocols and Parameter Settings

The quantitative performance is evaluated by mean Av-

erage Precision (mAP). mAP is the mean of Average pre-

cision (AP) over all queries, which jointly considers search

accuracy and rankings. Given a query and a list of retrieval

results, AP is defined as
∑�

�=1 �(�)�(�), where �(�) denotes

the precision of the top � retrieved images, and �(�) = 1 iff

the �-th retrieved image is the true neighbor of the query,

otherwise �(�) = 0. We also consider other three evalua-

tion protocols, i.e., Precision at top-100 positions (termed

Pre@100), and Precision curves at top-K (termed Rec@�).

In our experiments, the parameter � is a trade-off param-

eter, which is set as 300 on three datasets. The regulariza-

tion parameter � in Eq.18 is set to be a small number 0.0001
in all experiments. The weight controller parameter � is set

with 5-fold cross validation using the training data. The pa-

rameter � controls the effectiveness of the hybrid similarity,
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Figure 2. The mAP curves and Precision@100 curves of all the

algorithms on UCI Handwritten Digit. The mAP evaluation is

shown in the first row, and Pre@100 are shown in the bottom.

Best view in color.

which is tuned in the next subsection, and set as 10 in all our

experiments. For training efficiency, the number of anchors

is set to 100 for all the datasets.

3.4. Quantitative Results

For the UCI Handwritten Digit dataset, our quantitative

results are shown in Fig.2, Tab.1 and Tab.2. It demonstrates

that our proposed FSH has achieved superior performance

on the UCI benchmark for all the four retrieval tasks. The

first two subfigures in Fig.2 show the remarkable mAP re-

sult in the cross-modality retrieval task. Comparing to the

second best scheme ACQ, the proposed FSH has achieved

about 3.4% improvement for the first task and about 8.1%
for the second.5 The Pre@100 for Task 1 and Task 2 is

shown in Fig.2 (c) and (d). It is worth noting that, for both

tasks, our FSH shows advantage on precision with all hash

bits, which is mainly due to the fact that more accurate sim-

ilarity got from fusion similarity with SIAG can find more

optimal binary codes from multi-modality. We further com-

pare the simple fusion way, named FSH-S, with the base-

lines [12, 21, 5, 10]. The results in Fig.2 and Tab.1 show

that the simple fusion model can also achieve second best

5The percentage of mAP growth is obtained by the means of improve-

ment on all hash bits.
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Table 1. The mAP and Precision Comparison Using Hamming Ranking on Two Benchmark with Different Hash Bits

Task Methods

MIR-Flickr25K NUS-WIDE

mAP Pre@100 mAP Pre@100

16 32 64 32 64 16 32 64 32 64

Task1

CVH 0.5819 0.5756 0.5710 0.6119 0.5972 0.3811 0.3685 0.3574 0.4749 0.4387

PDH 0.5981 0.6026 0.6043 0.6517 0.6598 0.4658 0.4747 0.4780 0.4989 0.5125

CMFH 0.5839 0.5854 0.5857 0.7019 0.7225 0.3723 0.3781 0.3799 0.5064 0.5309

ACQ 0.5871 0.5857 0.5823 0.6223 0.6231 0.4247 0.4435 0.4328 0.4442 0.4309

FSH-S 0.6090 0.5969 0.5930 0.6401 0.6429 0.4996 0.4610 0.4556 0.5698 0.5876

FSH 0.5968 0.6189 0.6195 0.6555 0.6629 0.5059 0.5063 0.5171 0.5297 0.5616

Task2

CVH 0.5803 0.5750 0.5708 0.6086 0.5923 0.3768 0.3652 0.3555 0.4690 0.4321

PDH 0.5941 0.5976 0.5997 0.6508 0.6548 0.4458 0.4519 0.4552 0.5133 0.5284

CMFH 0.5960 0.5942 0.5960 0.6230 0.6192 0.3957 0.4036 0.4105 0.4517 0.4595

ACQ 0.5857 0.5829 0.5815 0.6292 0.6258 0.4134 0.4273 0.4200 0.4573 0.4887

FSH-S 0.6036 0.5944 0.5923 0.6458 0.6356 0.4776 0.4460 0.4423 0.5521 0.5597

FSH 0.5924 0.6128 0.6091 0.6657 0.6689 0.4790 0.4810 0.4965 0.5388 0.5685
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Figure 3. The Precision curves and Recall curves of all the algo-

rithms on two benchmark when hash bit is 64.

performance, which demonstrate that simple or complexity

fusion similarity should be preserved in binary codes. How-

ever, FSH is overall better than FSH-S. As shown in [1],

NSS is robust to noise with different similarity measures,

and such similar scheme in fusion construction makes the

proposed FSH more robust for cross-modality retrieval task.

As shown in Tab.2, we conduct the experiments on Task

3 and Task 4, which are both single-modality retrieval tasks.

For both tasks, we replace CVH and CMFH with two clas-

sical single-modality hashing, i.e., Iterative Quantization

(ITQ) [7] and Scalable Graph Hashing (SGH) [11]. Intu-

itively, combing multiple features improves the search per-

formance. However, from Tab.2, the mAP scores of the

cross-modality hashing schemes, except FSH, are not lower

than ITQ in Task 4. To explain, traditional single-modality

ITQ and SGH have higher mAP scores in Task 4 than that in

Task 3, reflecting that the expression power of the 64-Dim

Karhunen-Love coefficients is much better than that of the

76-Dim Fourier coefficient features. Such diversity leads

to noise in similarity measurement when learning cross-

modality binary codes, which is ignored in the previous

works [12, 23] , the cross-modality hashing always finds a

common Hamming subspace or real-valued subspace to ap-

proximate the optimal solution. For the proposed FSH, the

performance is not only better in cross-modality retrieval,

but also very competitive in single-modality retrieval.

For the MIR-Flickr25K benchmark, as shown in Tab.1,

Tab.2 and the first row of Fig.3, FSH has achieved the over-

all best performance for all the four retrieval tasks. The

mAP and Pre@100 results on this benchmark are reported

in Tab.1 and Tab.2, under the settings of 16, 32, and 64 bits

respectively. FSH has achieved remarkable mAP and preci-

sion scores. The Precision and Recall curves are shown in

the first row of Fig.3. As the same result in Pre@100, FSH

has achieved comparable and state-of-the-art performance

comparing to all the baselines [12, 21, 5, 10]. Although

CMFH achieves better Pre@100 in the Task 1, FSH has

the better result in mAP with all the hash bits from Tab.1.

To explain these problems, the mAP is the global ranking

evaluation and the Pre@100 is the local ranking evaluation.

It shows that CMFH has better performance in terms of

searching truth neighbors quickly, but FSH achieves bet-

ter mAP in terms of finding more true candidates. For

Pre@100, FSH is still the second one on Task 1 and the

first on Task 2, which claims that the overall performance

of the FSH is better on the MIR-Flickr25K.
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Table 2. The mAP Results Using Hamming Ranking on Three Benchmark with Different Hash Bits on Task 3 and Task 4.

UCI Handwritten Digit MIR-Flickr25K NUS-WIDE

16 32 64 16 32 64 16 32 64

Task 3

ITQ 0.5325 0.5491 0.5475 0.5685 0.5695 0.5705 0.4692 0.4585 0.4401

SGH 0.4380 0.4249 0.4425 0.5661 0.5676 0.5692 0.4367 0.4127 0.4010

PDH 0.5007 0.4991 0.5133 0.6016 0.6073 0.6093 0.4671 0.4760 0.4782

ACQ 0.6100 0.6616 0.6637 0.5915 0.5895 0.5876 0.4191 0.4393 0.4289

FSH 0.6380 0.6626 0.6669 0.5998 0.6233 0.6282 0.5015 0.4965 0.5140

Task 4

ITQ 0.6322 0.6397 0.6554 0.5652 0.5665 0.5671 0.3774 0.3769 0.3740

SGH 0.5497 0.5972 0.6244 0.5602 0.5580 0.5562 0.3730 0.3686 0.3706

PDH 0.4841 0.5344 0.5429 0.6027 0.6073 0.6094 0.4431 0.4476 0.4497

ACQ 0.5892 0.6527 0.6498 0.5909 0.5881 0.5860 0.4075 0.4239 0.4155

FSH 0.6364 0.6607 0.6684 0.5991 0.6201 0.6152 0.4760 0.4754 0.4936

On the large-scale NUS-WIDE dataset, as shown in

Tab.1, Tab.2 and Fig.3, FSH still achieves the highest search

accuracy. It is noted that FSH has significant improvement

in all the four retrieval tasks. When comparing with the

second highest method, the improvement of mAP score is

8.2% in Task 1 with 64 hash bit, and 9.1% in Task 2 with 64

bits. This demonstrates that the fusion similarity has advan-

tageous to produce more distinguished binary code on the

modality with weak expression power, which subsequently

enhances the performance of single-modality retrieval.

3.5. Parameter Analysis

In this subsection, we analyze the parameters of the pro-

posed FSH by fixing the code length to 64. The analysis is

done by varying one value while fixing the others.

As shown in Fig.4 (a), the mAP of our methods does not

change significantly with more than 100 iterations, which

also holds for the other two datasets. Therefore in our ex-

periments, we fix the iteration number to 100 for quickly

alternating optimization.

We further plot the mAP score of Hamming ranking with

the increasing number of landmarks (20 ≤ � ≤ 1, 500) in

Fig.4 (b). We observe that mAP decreases with the grow-

ing number of landmarks. It is shown that a large size of

anchors with small parameter � will bring more noise to

the fusion graph, which decreases the performance of the

proposed FSH. As a result, the relation between the size

of anchors and parameter � is empirically calculated by

#���ℎ�� = 10 × �, which can achieve satisfactory re-

sults in both datasets. As a conclusion, for the proposed

FSH, asymmetric fusion graph with little anchor points can

enhance the performance of cross-modality retrieval, which

solves the large-scale problem of binary code learning effi-

ciently.

4. Conclusion

In this paper, we propose a novel hashing method termed

Fusion Similarity Hashing (FSH) for cross-modality re-

trieval. The core idea is to directly preserve the fusion sim-
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Figure 4. The parameter analysis. (The two are conducted on MIR-

Flickr25K dataset.)

ilarity into the Hamming space to explicitly capture their

heterogeneous correlation in retrieval. To this end, a fusion

graph is constructed to define the similarity among multi-

modality instances. Then a graph hashing framework is pro-

posed with alternating optimization, which learns consis-

tent binary codes and the hash functions for each modality.

Asymmetric discrete optimization is further used to train

the model on large-scale data set. In this framework, com-

bining neighbor set similarity with sample important anchor

graph can be embedded to the fusion graph matrix, leading

to the learning of more discriminative binary codes. Ex-

tensive experiments conducted on UCI Handwritten Digit,

MIR-Flickr25K and NUS-WIDE benchmarks demonstrated

the superior performance of FSH over several representa-

tive and state-of-the-art unsupervised cross-modality hash-

ing methods.
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