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Abstract

Learning to hash has been recognized to accomplish

highly efficient storage and retrieval for large-scale visual

data. Particularly, ranking-based hashing techniques have

recently attracted broad research attention because rank-

ing accuracy among the retrieved data is well explored and

their objective is more applicable to realistic search tasks.

However, directly optimizing discrete hash codes without

continuous-relaxations on a nonlinear ranking objective

is infeasible by either traditional optimization methods or

even recent discrete hashing algorithms. To address this

challenging issue, in this paper, we introduce a novel super-

vised hashing method, dubbed Discrete Semantic Ranking

Hashing (DSeRH), which aims to directly embed semantic

rank orders into binary codes. In DSeRH, a generalized

Adaptive Discrete Minimization (ADM) approach is pro-

posed to discretely optimize binary codes with the quadratic

nonlinear ranking objective in an iterative manner and is

guaranteed to converge quickly. Additionally, instead of us-

ing 0/1 independent labels to form rank orders as in pre-

vious works, we generate the listwise rank orders from the

high-level semantic word embeddings which can quantita-

tively capture the intrinsic correlation between different cat-

egories. We evaluate our DSeRH, coupled with both linear

and deep convolutional neural network (CNN) hash func-

tions, on three image datasets, i.e., CIFAR-10, SUN397 and

ImageNet100, and the results manifest that DSeRH can out-

perform the state-of-the-art ranking-based hashing meth-

ods.

1. Introduction

Hashing or binary coding is becoming increasingly pop-

ular due to its ability to help manipulate large-scale data

with significant reduction on both memory and computation

complexities, and is demonstrably powerful in many visual

information retrieval applications. The core idea of hashing

is encoding the high-dimensional feature vectors, e.g., of

images, documents or videos, into a set of low-dimensional

binary strings in a Hamming space, which effectively pre-

serves the original data similarities of interest.

Existing hashing methods can be roughly divided into

two groups: unsupervised [2, 16, 44, 24, 23, 35, 15, 18,

19, 4, 3, 30, 9] and supervised (including semi-supervised)

[39, 8, 28, 22, 33, 12, 40]. Among unsupervised hashing,

the most well-known method is Locality-Sensitive Hash-

ing (LSH) [2], which randomly projects nearby data points

from the Euclidean space to a Hamming space with simi-

lar binary codes. Unlike LSH, Spectral Hashing (SpH) [44]

is a data-dependent method, which aims to learn compact

binary codes preserving the data similarity in the original

space. Many other unsupervised hashing methods have also

been proposed [23, 3, 14, 19, 4, 34, 25, 21, 20, 1, 32] and

effectively applied to large-scale data retrieval tasks.

Alternatively, (semi-)supervised hashing methods opti-

mize hash codes by involving the semantic label informa-

tion in the learning phase, which usually yields a signif-

icant performance improvement. Representative methods

in this group include the Semi-Supervised Hashing (SSH)

[40], Linear Discriminant Analysis Hashing (LDAH) [39],

Kernel-Based Supervised Hashing (KSH) [22], Binary Re-

constructive Embeddings (BRE) [8], Minimal Loss Hashing

(MLH) [28], Supervised Discrete Hashing (SDH) [33] and

Evolutionary Compact Embedding (ECE) [17].

Most of the above supervised hashing methods generate

binary codes by respecting the piecewise label [33] or pair-

wise similarity of data points [28, 22]. However, their ob-

jectives would be suboptimal for realistic search tasks since

the ranking information, which quantitatively indicates se-

mantic nearest neighbors of a specific query, is not fully

exploited. Inspired by this, many ranking-based hashing ap-

proaches [11, 29, 5, 13, 42, 37, 43, 38, 41, 47, 46, 27, 48]
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have been developed. Generally, these ranking-based hash-

ing methods try to preserve either the triplets supervision

(e.g., Column Generation Hashing (CGH) [11] and Ham-

ming Distance Metric Learning (HDML) [29]) or listwise

supervision (e.g., Deep Semantic Ranking Hashing (DSRH)

[47] and Ranking Preserving Hashing (RPH) [43]). Regard-

less of their difference, the core idea of these hashing meth-

ods is to minimize the empirical loss over the ranking vio-

lation according to the ground-truth rank order supervision.

However, the optimization for current ranking-based

hashing methods is particularly challenging as minimizing

a highly nonconvex ranking loss with binary constraints is

generally NP-hard. To make the optimization tractable, pre-

vious methods (e.g., [43, 37]) first solve a relaxed problem

by discarding the discrete constraints, then threshold (quan-

tize) the optimized continuous embedding to form an ap-

proximate binary solution. However, this relaxation may

produce less effective hash functions and thus low-quality

binary codes due to accumulated quantization errors during

optimization, especially on long binary codes. Recently, a

few methods realize the importance of discrete optimization

for hashing [21, 33], however, these methods still cannot

handle the ranking loss very well. For example, the discrete

cyclic coordinate descent (DCC) [33] method is designed

for a particular binary quadratic program (BQP), but is un-

suitable for the problem with highly nonlinear ranking loss

as in this work.

To address this challenging issue, in this paper, we intro-

duce a novel Discrete Semantic Ranking Hashing (DSeRH)

method, which can be jointly optimized in an alternating

manner with two associated sub-problems: discretely opti-

mizing binary codes for encoding semantic rank orders and

hash function learning. To generate high-quality hash codes

in the first sub-problem, we develop a novel binary op-

timization approach, termed Adaptive Discrete Minimiza-

tion (ADM), which can effectively optimize discrete bi-

nary codes toward the quadratic nonlinear ranking objective

without any relaxation. In fact, ADM can be regarded as a

generic tool to effectively and efficiently handle the discrete

(thus nonsmooth and nonconvex) hashing problems with a

minimization formulation of objective functions. In addi-

tion, instead of generating ranking supervision by using tra-

ditional 0/1 independent labels as in previous ranking-based

methods, we adopt the high-level semantic word embedding

learned via an NLP word-vector transformation to form the

ground-truth rank order list. As such, the reasonable seman-

tic correlation among different categories will be quantita-

tively measured and captured (see details in Section 2.2).

The main contributions of this paper include:

• We propose a novel ranking-based hashing algorithm

DSeRH, which can generate high-quality binary codes

by well preserving the listwise ranking information

computed from high-level semantic word embeddings.

• Different from other ranking-based hashing methods

using continuous-relaxation or sign function approxi-

mation, we propose the Adaptive Discrete Minimiza-

tion (ADM) algorithm to directly optimize the discrete

hash codes in DSeRH with the highly nonconvex rank-

ing loss. Moreover, ADM is not restricted to the loss

in DSeRH, but can also be applied more generally to

solve other binary minimization problems.

• In DSeRH, both linear and deep CNN-based hash

functions are jointly learned with the binary code opti-

mization. Extensive experiments on three benchmark

datasets clearly demonstrate the superiority of the

two DSeRH variants over the state-of-the-art ranking-

based hashing methods.

2. Discrete Semantic Ranking Hashing

In this section, we will elaborate on our semantic

ranking-based supervised hashing method DSeRH by in-

troducing objective function formulation and then defining

how to compute semantic rank orders.

First let us define some notation. Suppose that the data

matrix is X = {xi} ∈ R
d×n, where d is the dimension of

the features and n is the size of the training data. Due to

our supervised framework, we also introduce the ground-

truth matrix Y = {yi} ∈ {0, 1}C×n, where yi is the la-

bel vector, i = 1, . . . , n. We set yci = 1 if xi belongs to

class c and 0 otherwise. Additionally, for large-scale image

hashing, previous works [43, 41] with listwise supervision

are always computationally very complex and cause heavy

memory loads during the code learning, as the length of

the preserved rank orders is the size of the full training set,

n. To effectively reduce the costs, in this paper, we ran-

domly select k anchor points from X as �X = {�xj} ∈ R
d×k

to form the ranking lists, where �X ⊆ X and also denote
�Y = {�yj} ∈ {0, 1}C×k. Lind ∈ {0, 1}n×k is the indicator

matrix which indexes the location of selected anchor points

in X, where each column has only one 1 corresponding to

the location of �xj , otherwise 0. For each training data xi in

X, we can form a ranking list vector over k selected anchor

points from �X written as:

{rji}
k
j=1 = [r1i , . . . , r

k
i ] ∈ {1, . . . , k}1×k, (1)

where r
j
i denotes the rank order of the j-th anchor point in

terms of the i-th training data.

2.1. Formulation of DSeRH

Our goal is to learn a set of binary codes B = {bi} ∈
{−1,+1}m×n for X, where m is the length of the binary

codes. Similarly, denote by �B = {�bj} ∈ {−1,+1}m×k the

binary codes for the anchor set �X and we have �B = BLind.
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Figure 1. (a) Sigmoid approximation for decision function I(·); (b)

Comparison of our controlled weight penalty with previous fast-

decay penalty design.

Note that, for m-bit binary vectors a,b, the Hamming dis-

tance ||a− b||H = 1
4 ||a− b||2 = 1

4 (2m− 2a�b). To pre-

serve the ranking information in codes, we define the rank

position of anchor point �xj for the training data xi as

Λ(xi, �xj) =

k�

l=1

I(||bi − �bj ||H ≥ ||bi − �bl||H)

=
k�

l=1

I(b�

i (
�bl − �bj) ≥ 0) (2)

≈
k�

l=1

g(b�

i (
�bl − �bj)),

where I(·) is the decision function that outputs 1 if the in-

side statement is true and 0 otherwise. Similar to previous

work [37, 43, 38], we use the sigmoid function g(x) =
1

1+exp(−x) to well simulate I(·) (as shown in Fig. 1(a)),

where exp(·) is the element-wise exponential operation.

Since the returned samples with high ranks should be

more relevant/important to the query/user in retrieval tasks,

we introduce a weight to penalize the incorrectly ranked

samples at the top of the ranking list more than those with

low ranking orders in the Hamming space. Thus, the se-

mantic rank loss for anchor point �xj with the training data

xi can be defined as

L(xi, �xj) = w
j
i

�
k�

l=1

g(b�

i (
�bl − �bj))− r

j
i

�2

,

s.t. bi ∈ {−1,+1}m×1, (3)

where w
j
i = (1/rji )

τ is the weight penalty. The parame-

ter τ ∈ (0, 1) effectively suppresses the fast weight decay

and takes a reasonable adjustment for both top-ranked and

low-ranked data (depicted in Fig. 1(b)). It is noted that a

previous work [27] adopts w
j
i = 1/rji as the weight. How-

ever this will produce high weights for top-ranked data and

near-zero weights for low-ranked data as shown in Fig. 1(b).

Different from most previous ranking-based hashing

methods [37, 43, 38, 41, 27] which simplify the NP-hard

Cat 

dolphin 

cheetah �1 (1,0,0)

�2  (0,1,0)�3 (0,0,1)

   word-vector 

transformation 

�(∙) 

Identical semantic relevance Reasonable semantic relevance 

�(�1) 

�(�2) 

�(�3) 

Figure 2. Independent 0/1 label vector v.s. word embedding.

binary code learning to a relaxed continuous-value embed-

ding problem, we keep the binary constraints during the op-

timization of DSeRH. In this paper, we propose to jointly

optimize the binary codes and hash functions with the fol-

lowing objective:

min
B,h(·)

k�

j=1

n�

i=1

w
j
i

�
k�

l=1

g(b�

i (
�bl − �bj))− r

j
i

�2

+ λ||h(xi)− bi||
2
2, s.t. bi ∈ {−1,+1}m×1, (4)

where h(·) is the hash coding function and λ is the balance

parameter. The regularization term can well fit the quantiza-

tion error between the binary codes bi and continuous hash

functions h(xi). With a sufficiently large λ, it will obtain

the resulting hash functions h(xi) ≈ bi. In practice, we

can tolerate small differences between bi and h(xi). Thus,

h(xi) can be regarded as a surrogate of bi and achieve out-

of-sample coding with b = sign(h(x)). We then rewrite

(4) into the following more compact matrix form

min
B,h(·)

k�

j=1

���
���Wj �

�
g(B�(�B− �Bzj1

�))1−Rj
����
���
2

2

+ λ||h(X)−B||2F, s.t. B ∈ {−1,+1}m×n,

(5)

where || · ||F denotes the Frobenius norm, Wj =

[
�

w
j
1, . . . ,

�
w

j
n]� ∈ R

n×1 is the weight penalty vector

for �xj , Rj = [rj1, . . . , r
j
n]

� ∈ R
n×1 are ground-truth rank

orders for �xj , j = 1, . . . , k, 1 = [1, . . . , 1]� ∈ R
k×1, and

zj ∈ {0, 1}k×1 has only one 1 at the j-th entry and 0 oth-

erwise and “�” indicates the element-wise multiplication.

Before going to the optimization of problem (5), we de-

scribe how to compute semantic rank order r.

2.2. Semantic Rank Order

Most of the previous work defines ground-truth rank or-

ders in either an unsupervised manner (i.e., measuring the

�2 Euclidean distance) or a supervised one (i.e., counting

the number of the shared semantic tags) [41, 43, 47]. How-

ever, for both of above schemes, it is very difficult to capture

the meaningful correlations between categories. Particu-

larly, for supervised ranking-based hashing methods, using
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0/1 label vectors (e.g., yi) may implicitly make the labels

independent to each other and cause unreasonably identi-

cal high-level semantic relevance (i.e., cat and dolphin will

have the same relevance strength to cheetah as shown in

Fig. 2 left). Such rank orders cannot truly reflect the intrin-

sic similarities/dissimilarities between different categories.

In order to cope with this problem, in this paper, the

ground-truth rank orders are obtained by first embedding

the independent labels into latent semantic representations.

Specifically, we transfer the semantics of each category into

a word embedding space [26] via the NLP word-vector tool-

box1. Therefore, the semantic correlation among different

categories can be quantitatively measured and captured. For

instance, in the word embedding space, the cat and cheetah

will be close to each other but far away from dolphin as in

Fig. 2 right. Thus, the rank order can be obtained as:





rui < rvi , if �yu = �yv & ||xi − �xu||
2
2 < ||xi − �xv||

2
2,

rui > rvi , if �yu = �yv & ||xi − �xu||
2
2 > ||xi − �xv||

2
2,

rui < rvi , if �yu �= �yv & sim(φ(yi),φ(�yu)) > sim(φ(yi),φ(�yv)),
rui > rvi , if �yu �= �yv & sim(φ(yi),φ(�yu)) < sim(φ(yi),φ(�yv)),

(6)

where φ(·) is the word-vector transformation and

sim(a,b) = a
�
b

||a||||b|| is the cosine similarity, i = 1, . . . , n

and u, v = 1, . . . , k. Besides, another advantage of our

ranking scheme is that Eq. (6) can handle the ranking of

single-labeled data which is basically intractable for previ-

ous supervised ranking hashing techniques [43, 47, 41]. In

the next section, we will elaborate on the optimization of

our DSeRH method.

3. Alternating Optimization with ADM

The joint problem of learning both hash codes B and

hash function h(·) in (5) with the discrete constraint is

highly non-convex and non-smooth. To effectively solve

this problem, we alternatingly optimize (5) with each of its

two associated sub-problems: binary code optimization and

hash function learning.

3.1. Binary Code Optimization

By fixing h(X), problem (5) w.r.t. B is rewritten as

min
B

f(B) :=
k�

j=1

||Wj �
�
g(B�BDj)1)−Rj

�
||22 (7)

+ λ||h(X)−B||2F s.t. B ∈ {−1,+1}m×n,

where Dj = Lind(I − zj1
�) and I is the identity matrix.

Considering the discrete constraints, the above problem is

NP-hard. To solve this problem, in this paper, we introduce

1https://code.google.com/archive/p/word2vec/. The model is trained

from the first billion characters from Wikipedia and each word can be in-

terpreted into a 1000-d semantic word-vector.

Algorithm 1 Adaptive Discrete Minimization (ADM)

Input: Ranking list {Rj}kj=1; initial hash function h(·), B ∈

{−1,+1}m×n and selection ratio ϕ(1); maximum iteration

number T ; parameter λ.

Output: Optimized binary codes B.

for t = 1, . . . , T do

Generate S(t) with selection ratio ϕ(t);

B(t+1) = F(sign(−∇f(B(t))),B(t), S(t));
if f(B(t+1)) > f(B(t)) then

repeat

ϕ(t)
← 0.5 ϕ(t) and generate S(t) with ϕ(t);

B(t+1) = F(sign(−∇f(B(t))),B(t), S(t));
until f(B(t+1)) ≤ f(B(t))

end if

if ϕ(t) < 1
mn

then

Exit and Return the optimized B = B(t+1);

end if

Update ϕ(t+1)
← min(1.2 ϕ(t), 1);

end for

a novel iterative optimization algorithm, termed Adaptive

Discrete Minimization (ADM), which can be regarded as

a generalized solution to effectively solve binary discrete

optimization of the hashing problem.

Given B(t) in the t-th iteration, B(t+1) is calculated as

follows. Define the tangent hyperplane on B(t): f̂t(B) =

f(B(t)) + �∇f(B(t)),B − B(t)�. Then f̂t(B) is the lin-

earization of f(B) on B(t) and the gradient −∇f(B(t)) is

the descending direction of f . Then we use the following

update rule:

B(t+1) = F(sign(−∇f(B(t))),B(t), S(t)). (8)

Here F is an element-wise function:

�
F(M,N, S(t))

�
p,q

=

�
Mp,q if (p, q) ∈ S(t),

Np,q otherwise,
(9)

where (p, q) is the matrix coordinate. The set S(t)

is generated by randomly selecting items from the set

{(p, q)|Mp,q �= Np,q,Mp,q �= 0}, where M =
sign(−∇f(B(t))) and N = B(t) for our problem. Denot-

ing |S| as the cardinal number of S, we set a selection ratio

ϕ(t) = |S(t)|
mn

∈ (0, 1), which can be adaptively adjusted as

discussed later.

We straightforwardly summarize our ADM as: in the

(t + 1)-th iteration, the bits of B(t) at positions {(p, q)} ∈
S(t) are replaced with −(∇f(B(t)))p,q . Based on the def-

inition of S, any selected (p, q) ∈ S(t) must guarantee

sign(−∇f(B(t)))p,q �= B(t) and ∇f(B(t))p,q �= 0 to en-

sure effective updating.

To achieve above ADM, we need to compute the gradient
of f w.r.t. B. Let us denote by f(B) the objective of (7) and
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Figure 3. An illustration of convergence of ADM (left) and the

adaptively updated selection ratio ϕ during iterations (right).

note that ∇g(x) = g(x)(1− g(x)), we then obtain

∇f(B) = −2B

�
∂f

∂(−B�B)

�
+ 2λ(B− h(X)) (10)

= 4

k�

j=1

B

���
�Wj

�

�
g(BT

BDj)1 −R
j
��

1
�

�

� g(B�
BDj)� (1̃− g(BT

BDj))
�
D

�

j + 2λ(B− h(X)),

where �Wj = [wj
1, . . . ,w

j
n]

� and 1̃ = {1}n×k. The algo-

rithm of ADM is illustrated in Algorithm 1 with the updat-

ing selection ratio ϕ(t) during each iteration:

ϕ(t+1) ←

�
0.5 ϕ(t) if f(B(t+1)) > f(B(t)),

min(1.2 ϕ(t), 1) otherwise.

(11)

If ϕ(t) < 1
mn

(i.e, S(t) = ∅), B(t+1) =

F(sign(−∇f(B(t))),B(t), ∅) = B(t) which indicates the

convergence criterion of Algorithm 1 and B(t+1) is a local

optimum of DSeRH. Fig. 3 illustrates the convergence of

ADM with the adaptively updated ϕ during iterations.

Theorem 1. Let {B(t)} be generated by the updating

rule of Algorithm 1, then {f(B(t))} is monotonically non-

increasing, i.e., f(B(t+1)) ≤ f(B(t)), and {B(t)} con-

verges.

Please refer to our supplementary document for the proof

of Theorem 1. The main computational complexity of

ADM comes from calculating ∇f(B) of each iteration in

O((nmk)2). In practice, our algorithm usually converges

in T = 5 ∼ 10 iterations. It is noted that although n is a rel-

atively large value in our task, the most expensive operation

in Eq. (10) is the matrix product, ensuring the complexity

of ADM is still acceptable. Additionally, during ADM op-

timization, the maximum storage complexity is O(nm) due

to the property of matrix product, which leads to the light

and efficient computation in practice.

Remark. Although the fundamental idea of ADM has

small similarities to the one in DGH [21], the majorization-

minimization scheme used in [21] formulates a surrogate

of the loss function with its linearization at each itera-

tion. The surrogate is guaranteed to be an upper bound

Algorithm 2 Discrete Semantic Ranking Hashing (DSeRH)

Input: Training image data {xi,yi}
n
i=1; code length m; number

of anchor points k; parameter τ .

Output: Binary codes B and hash function h(·).
1: Randomly select k samples {�xj , �yj}

k
j=1 from the training

data and get indicator matrix Lind ∈ {0, 1}n×k.

2: Compute the ranking list {Rj}kj=1 ∈ {1, . . . , k}n×1 and

penalty weights {Wj}kj=1 ∈ R
n×1.

3: Randomly initialize B with a {−1,+1}m×n matrix.

4: repeat

5: B-step: Update B with ADM in Algorithm 1.

6: h(·)-step: Update h(·) with a linear hash function as

Eq. (13) or a deep hash function via VGG-19 CNN.

7: until convergence

8: return b = sign(h(x)), ∀x

of the minimizing loss due to its concavity. However, this

optimization scheme is not applied to our problem, since

the objective in Eq. (7) is highly non-concave and non-

convex. Consequently, the condition f̂t(B) > f(B) used

in [21] does not always hold for our objective. Besides,

directly using the algorithm in [21] is also ineffective for

our minimization problem since f(B) = f(−B) if f(B)
is an even-order function on B. That is, updating with

B(t+1) = −∇f(B(t)) in each step may conversely increase

the loss. To remedy this problem, we design our ADM up-

dating rules by setting a selection ratio to determine which

subset of bits in B will be updated. The recently proposed

DCC algorithm [33] is also inapplicable for (7), since DCC-

optimization is only designed for a special binary quadratic

program (BQP) and cannot handle the quadratically nonlin-

ear ranking loss like ours.

3.2. Hash Function Learning

To compute the hash function h(·), we fix B and the

problem (5) shrinks to

min
h(·)

||h(X)−B||2F. (12)

Learning the linear hash function: We denote h(X) =
PX, where P ∈ R

m×d is the linear projection. Thus we

can easily obtain the optimal P via linear regression as

P = BX�(XX�). (13)

Learning the deep hash function: Inspired by recent suc-

cess on deep hashing (e.g., [47, 46, 10]), in this paper, we

also learn a deep hash function for directly mapping the raw

input images into high-quality hash codes. Specifically, the

pre-trained VGG-19 CNN model [36] on ImageNet [31] is

fine-tuned with a Euclidean loss layer with the supervision

from B obtained by Algorithm 1.

DSeRH is optimized by alternately updating B and h(·)
until convergence. The overall algorithm of DSeRH is sum-
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Table 1. Retrieval result comparison (MAP, precision of top 100 samples, NDCG of top rank 50 with Hamming distance ranking and

training/test time cost) on CIFAR-10 dataset using 512-d GIST features. The best performances are displayed in bold with blue color.

Methods
CIFAR-10

MAP Precision@top100 NDCG@rank50

# Bits m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128
LSH [2] 0.1199 0.1382 0.1447 0.1496 0.1401 0.1637 0.1954 0.2166 0.1021 0.1063 0.1080 0.1114

ITQ [3] 0.1610 0.1724 0.1793 0.1902 0.2011 0.2648 0.3053 0.3216 0.2050 0.2223 0.2374 0.2395

SpH [44] 0.1488 0.1462 0.1450 0.1413 0.1787 0.2011 0.2389 0.2527 0.1411 0.1546 0.1570 0.1603

HDML [29] 0.2840 0.3313 0.3550 0.3671 0.3420 0.3932 0.4114 0.4210 0.2313 0.2504 0.2631 0.2700

RSH† [41] 0.2154 0.2854 0.3112 0.3216 0.2420 0.3153 0.3464 0.3630 0.1919 0.2270 0.2325 0.2381

CGH [11] 0.3336 0.3696 0.4034 0.4201 0.3770 0.4315 0.4441 0.4570 0.2512 0.2644 0.2698 0.2685

RPH† [43] 0.3296 0.3512 0.3877 0.4004 0.3510 0.4017 0.4255 0.4341 0.2564 0.2611 0.2706 0.2813

Top-RSBC [37] 0.3651 0.4081 0.4195 0.4441 0.3920 0.4496 0.4568 0.4773 0.2688 0.2745 0.2801 0.2793

DSeRH-L† 0.4014 0.4373 0.4508 0.4819 0.4554 0.4732 0.5011 0.5353 0.2612 0.2902 0.3088 0.3175

The “†” indicates the ground-truth ranking list computed via Eq. (6) for this method.
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Figure 4. Comparison of precision-recall curves on three datasets with 32 bits and 128 bits codes, respectively.

marized in Algorithm 2. In fact, either a local or global min-

imum is achieved in each sub-problem, ensuring the overall

objective in Eq. (5) is lower-bounded. Thus, the conver-

gence of the alternating optimization in Algorithm 2 is guar-

anteed. Such a alternating scheme is also widely adopted by

recent hashing methods, e.g., [33, 21, 3].

To avoid confusion in later experiments, we further de-

note by DSeRH-L and DSeRH-D the linear model and deep

CNN used as the hash function, respectively. In the next

section, we will extensively evaluate DSeRH and compare

it with the state-of-the-art ranking-based methods.

4. Experiments

In this section, we evaluate our methods on three realistic

large-scale datasets: CIFAR-10 [7], SUN397 [45] and Ima-

geNet100 [31], for image similarity retrieval tasks. CIFAR-

10 consists of 60,000 tiny images with 32 × 32 resolution

distributed evenly over 10 classes. The dataset is split into

a query set of 1000 samples and the remaining samples are

used as the training set as well as the retrieval gallery set.

The SUN397 dataset has 108,754 images from 397 well-

sampled categories. In this experiment, we only select 100

images from each of 34 largest categories (at least 550 im-

ages per category) to construct our query set. The remaining

images from these 34 categories are the training set. Ima-

geNet100 is a subset of [31] containing the most frequent

100 object categories and each category has no less than

1,600 images. We further choose 100 and 500 images from

each category, respectively, to form the query set and the

training set. All of the images excluding query sets for both

SUN397 and ImageNet100 datasets are also treated as the

retrieval gallery. We further extract a 512-d GIST feature

vector from the images in the CIFAR-10 dataset. For both

SUN397 and Imagenet100, each image in them is repre-

sented by a 4096-d deep feature computed from the same

pre-trained VGG-19 network as used in ours.

4.1. Compared Methods and Evaluation Settings

In our experiments, we compare the proposed DSeRH-L

and DSeRH-D with 11 hashing methods including 3 con-
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Table 2. Retrieval result comparison (MAP, precision of top 100 samples, NDCG of top rank 50 with Hamming distance ranking and train-

ing/test time cost) on SUN397 dataset using 4096-d CNN features from VGG19 fc7. The best performances among non-deep techniques

and deep techniques are displayed in bold with blue and black colors, respectively. (Better to view in color)

Methods
SUN397

MAP Precision@top100 NDCG@rank50

# Bits m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128
LSH [2] 0.0151 0.0184 0.0203 0.0254 0.0198 0.0254 0.0328 0.0701 0.1510 0.1633 0.1704 0.1778

ITQ [3] 0.1297 0.1630 0.1792 0.1830 0.2244 0.2617 0.3288 0.3346 0.2323 0.2454 0.2496 0.2504

SpH [44] 0.0701 0.0832 0.1014 0.1139 0.1697 0.2014 0.2390 0.2762 0.2114 0.2196 0.2263 0.2312

HDML [29] 0.2217 0.2534 0.2790 0.2901 0.3955 0.4267 0.4514 0.4736 0.2440 0.2713 0.2887 0.2865

RSH† [41] 0.1691 0.2052 0.2202 0.2211 0.3186 0.3552 0.3817 0.3926 0.2325 0.2456 0.2517 0.2600

CGH [11] 0.2527 0.2878 0.3106 0.3311 0.4011 0.4302 0.4417 0.4823 0.2714 0.2919 0.3052 0.3173

RPH† [43] 0.2749 0.3100 0.3392 0.3428 0.4171 0.4330 0.4619 0.4880 0.2904 0.3217 0.3304 0.3350

Top-RSBC [37] 0.3226 0.3404 0.3628 0.3710 0.4330 0.4516 0.4882 0.5074 0.3006 0.3123 0.3294 0.3361

DSeRH-L† 0.3407 0.3806 0.3913 0.4028 0.4302 0.4843 0.5124 0.5281 0.3101 0.3308 0.3512 0.3600

NINH [10] 0.3105 0.3259 0.3431 0.3567 0.4264 0.4408 0.4740 0.4885 0.2866 0.3060 0.3211 0.3306

DSRH† [47] 0.3501 0.3918 0.4052 0.4107 0.4412 0.4928 0.5230 0.5311 0.3108 0.3343 0.3565 0.3644

DRH [46] 0.3480 0.3825 0.3955 0.4008 0.4381 0.4900 0.5145 0.5230 0.3002 0.3225 0.3523 0.3610

DSeRH-D† 0.3883 0.4337 0.4450 0.4511 0.4726 0.5373 0.5547 0.5600 0.3401 0.3622 0.3720 0.3814

The “†” indicates the ground-truth ranking list computed via Eq. (6) for this method. The “∗” indicates the time cost computed via GPU, otherwise denotes the CPU time.
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Figure 5. Number of anchor points k on both CIFAR-10 and

SUN397 using DSeRH-L.

ventional non-ranking driven methods: LSH, ITQ and SpH;

5 ranking-based hashing methods: CGH, HDML, Top-

RSBC with SGD, RPH and Ranking Supervised Hashing

(RSH); 2 deep hashing methods with ranking loss: Deep Se-

mantic Ranking Hashing (DSRH) and Deep Ranking Hash-

ing (DRH); and a general deep hashing method Network

in Network Hashing (NINH). Besides LSH, SpH and ITQ,

other compared methods are all supervised. We imple-

ment RPH, Top-RSBC and DRH ourselves due to unavail-

able codes, and use the publicly provided codes for other

compared methods. It is noteworthy that RPH, RSH and

DSRH are originally designed to generate the ranking lists

by counting the number of commonly shared semantic tags

for multi-label data. However, the single-label datasets

(i.e., CIFAR-10, SUN397 and ImageNet100) used here make

these three methods inapplicable. Thus, in our experiments,

we use the same rules as our Eq. (6) to generate ranking

information for RPH, RSH and DSRH. Following the same

experimental setting, all parameters used in the above meth-

ods are well tuned by cross-validation on the training set to

guarantee a fair comparison with our proposed methods.

For our DSeRH-L/DSeRH-D, the number of the anchor

points k is set as 200, the maximum iteration T of ADM is

fixed at 10 and the initial ratio ϕ in ADM is 0.5. The bal-

ance parameter λ for each dataset is selected as the value

of the range [10−5, 102] which yields the best performance

by cross-validation. The same procedure is also applied to

select τ from (0, 1). For DSeRH-D, the raw images are

used as the input instead of the extracted features X. Par-

ticularly, we apply the Caffe [6] deep framework on a pre-

trained VGG-19 net with the initial fine-tune learning rate

α = 0.001 (0.3α → α with the step size of 3K iterations)

and the mini-batch size being 64 images. DSeRH-D is well

trained on a workstation configured with two K80 GPUs.

Note that we only evaluate DSeRH-L on the CIFAR-10

dataset with GIST features since tiny images are not suit-

able for the CNN feature learning used in DSeRH-D.

All methods are evaluated with different code lengths

(i.e., 16, 32, 64 and 128) under four possible evalu-

ation metrics: Mean Average Precision (MAP), preci-

sion@top100, Normalized Discounted Cumulative Gain

(NDCG@rank50), and precision-recall curve. Considering

the uncertainty of anchor selection, all provided results us-

ing our methods are the average of 5 runs.

4.2. Experimental Results

Result comparison: In Tables 1, 2 and 3, we first il-

lustrate the retrieval results of different methods with MAP,

Precision@top100 and NDGC@rank50 on the CIFAR-10,

SUN397 and ImageNet100 datasets, respectively. Gen-

erally, results on the CIFAR-10 dataset are better than

those on the other two datasets since fewer categories and

small intra-class variation make the data more discrimina-

tive for large-scale searching. Furthermore, the tendencies

of MAP and Precision@top100 are always consistent when

varying the code length. However, the NDCG@rank50

presents a different inclination. In terms of MAP and Pre-

cision@top100 on all three datasets, unsupervised methods

LSH and SpH achieve lower accuracies than other ranking-

supervised methods, while ITQ can lead to competitive per-

formance with RSH. Top-RSBC always produces superior
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Table 3. Retrieval result comparison (MAP, precision of top 100 samples, NDCG of top rank 50 with Hamming distance ranking and

training/test time cost) on ImageNet100 dataset using 4096-d CNN features from VGG19 fc7. The best performances among non-deep

techniques and deep techniques are displayed in bold with blue and black colors, respectively. (Better to view in color)

Methods
ImageNet100

MAP Precision@top100 NDCG@rank50

# Bits m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128 m = 16 m = 32 m = 64 m = 128
LSH [2] 0.0072 0.0153 0.0198 0.0249 0.0101 0.0234 0.0308 0.0901 0.0891 0.1030 0.1154 0.1220

ITQ [3] 0.0612 0.0762 0.1051 0.1184 0.1473 0.2264 0.3083 0.3577 0.1653 0.1826 0.1920 0.2031

SpH [44] 0.0215 0.0383 0.0601 0.0803 0.0975 0.1246 0.2233 0.3203 0.1443 0.1736 0.1892 0.1873

HDML [29] 0.0533 0.0821 0.0991 0.1114 0.1362 0.2357 0.2952 0.3339 0.1716 0.2150 0.2243 0.2279

RSH† [41] 0.0473 0.0682 0.0765 0.0898 0.1344 0.2024 0.2471 0.3041 0.1882 0.1994 0.2193 0.2210

CGH [11] 0.0836 0.0911 0.1103 0.1198 0.1528 0.2241 0.3100 0.3458 0.2124 0.2217 0.2403 0.2508

RPH† [43] 0.0603 0.0855 0.1009 0.1096 0.1388 0.2484 0.3047 0.3415 0.2025 0.2234 0.2355 0.2487

Top-RSBC [37] 0.1019 0.1153 0.1248 0.1270 0.1819 0.2538 0.3339 0.3678 0.1914 0.2252 0.2379 0.2512

DSeRH-L† 0.1115 0.1298 0.1403 0.1485 0.2073 0.2788 0.3530 0.3892 0.2023 0.2359 0.2552 0.2708

NINH [10] 0.1034 0.1112 0.1232 0.1287 0.1754 0.2561 0.3209 0.3588 0.1901 0.2145 0.2306 0.2427

DSRH† [47] 0.1179 0.1315 0.1387 0.1497 0.2115 0.2779 0.3451 0.3901 0.2210 0.2421 0.2504 0.2751

DRH [46] 0.0914 0.1201 0.1343 0.1432 0.1801 0.2655 0.3350 0.3731 0.2031 0.2217 0.2452 0.2660

DSeRH-D† 0.1146 0.1453 0.1612 0.1700 0.2312 0.2904 0.3734 0.4145 0.2347 0.2689 0.2805 0.2911

The “†” indicates the ground-truth ranking list computed via Eq. (6) for this method. The “∗” indicates the time cost computed via GPU, otherwise denotes the CPU time.

performance to HDML, RPH and CGH since Top-RSBC

penalizes the mistakes at the top of the ranking list, how-

ever, other mentioned methods treat the mistakes equally.

Our DSeRH-L can essentially outperform all compared

methods along different code lengths on all datasets. In

terms of NDCG@rank50, our proposed methods achieve

competitive results with RPH and Top-RSBC but have sig-

nificantly better performance than other compared methods,

since the DSeRH-L objective is designed with a more rea-

sonable weighted penalty for rank preserving in our formu-

lation (see in Fig. 1(b)).

We also compare our DSeRH-D with three other deep

hashing techniques (i.e., NINH, DSRH and DRH) on

SUN397 and ImageNet100 datasets and the deep model-

based methods can only achieve slightly (less than 5%) bet-

ter performance than non-deep ones with regard to all three

evaluation metrics. The possible reason is that, for non-

deep methods, the traditional single-layer linear hash func-

tion combined with pre-trained VGG-19 fc7 features can

produce similar results as directly learning hash codes via

deep nets. This is because during fine-tuning of deep meth-

ods with hashing objectives, a limited number of parameters

are updated in early convolutional layers, while most pa-

rameters are learned between the last fully connected layer

and the supervision layer, similar to the single-layer linear

hash function in isolation. Detailed results can be seen in

tables. Fig. 4 also presents the precision-recall curves of

all ranking-based methods on three datasets, respectively.

From all these figures, we can discover that, DSeRH-D out-

performs other ranking-based hashing methods by compar-

ing the retrieval precision and the Area Under the Curve

(AUC).

Parameter sensitivity analysis: We illustrate the analy-

sis of the anchor number k for our method in Fig. 5. We

can observe that the MAP and Precision@top100 curves

become approximately stable when k increases on both
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Figure 6. Comparison of discrete optimization and relaxation.

CIFAR-10 and SUN397 datasets, which indicates that

DSeRH-L can lead to relatively robust performance with

k ≥ 200. In Fig. 6, we also compare the results on CIFAR-

10 between: 1) using discrete optimization ADM (i.e., pro-

posed DSeRH-L) and 2) the relaxed one by replacing B in

Eq. (5) with PX and then optimizing over P via SGD like

Top-RSBC [37] and RPH [43]. The performance gaps show

the effectiveness of the proposed discrete ranking preserv-

ing framework with its solution ADM.

5. Conclusion

This paper proposed a novel Discrete Semantic Ranking

Hashing (DSeRH) method to effectively encode the seman-

tic rank order into binary codes. For the key binary code

optimization sub-problem, we developed a novel Adaptive

Discrete Minimization (ADM) approach, which was able

to directly optimize the hashing problem with binary con-

straints. DSeRH supported hash functions of both linear

and deep CNN models. Extensive comparisons with several

state-of-the-art ranking-based hashing algorithms validated

the efficacy of the proposed DSeRH on large-scale visual

retrieval.
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