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Abstract

Robust object recognition systems usually rely on pow-

erful feature extraction mechanisms from a large number

of real images. However, in many realistic applications,

collecting sufficient images for ever-growing new classes is

unattainable. In this paper, we propose a new Zero-shot

learning (ZSL) framework that can synthesise visual fea-

tures for unseen classes without acquiring real images. Us-

ing the proposed Unseen Visual Data Synthesis (UVDS) al-

gorithm, semantic attributes are effectively utilised as an

intermediate clue to synthesise unseen visual features at

the training stage. Hereafter, ZSL recognition is converted

into the conventional supervised problem, i.e. the synthe-

sised visual features can be straightforwardly fed to typical

classifiers such as SVM. On four benchmark datasets, we

demonstrate the benefit of using synthesised unseen data.

Extensive experimental results suggest that our proposed

approach significantly improve the state-of-the-art results.

1. Introduction

Object Recognition is arguably one of the most funda-

mental tasks in computer vision field. Most of the conven-

tional frameworks, e.g. Deep Neural Networks (DNN) [22],

rely on a large number of training samples to build statistical

models. However, such a premise is unattainable in many

real-world situations. The main reasons can be summarised

as follows: 1) Obtaining well-annotated training samples is

expensive. Although abundant digital images and videos

Figure 1. Given a conceptual description, human can imagine the

outline of the scene by combining previous seen visual elements.

can be retrieved from the Internet, existing search engines

crucially depend on user-defined keywords that are often

vague and not suitable for learning tasks. 2) The num-

ber of newly defined classes is ever-growing. Meanwhile,

fine-grained tasks make existing categories go deeper, e.g.

to recognise a newly released handbag in a novel pattern.

Training a particular model for each of them is infeasible.

3) Collecting instances for rare classes is difficult. For ex-

ample, one might wish to detect an ancient or rare species

automatically. It could be difficult to provide even a single

example for them since available knowledge could be only

textual descriptions or some distinctive attributes.

As a feasible solution, Zero-shot Learning (ZSL) aims to

leverage a closed-set of semantic models that can generalise

to unseen classes [25, 23]. The common paradigm of ZSL

methods first train a prediction model that can map visual

data to a semantic representation. Hereafter, new objects
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Figure 2. Comparison of supervised and zero-shot classifications and existing ZSL frameworks. (A) a typical supervised classification:

the training samples and labels are in pairs; (B) a zero-shot learning problem: without training samples, the classes C and D cannot be

predicted; (C) Direct-Attribute Prediction model uses attributes as intermediate clues to associate visual features to class labels; (D) label-

embedding: the attributes are concatenated as a semantic embedding; (E) we inversely learn an embedding from the semantic space to

visual space and convert the ZSL problem into conventional supervised classification.

can be recognised by only knowing their semantic descrip-

tions. However, existing methods cannot expand the train-

ing data for new unseen classes. As illustrated in Fig. 2,

such frameworks impede existing methods from scaling up

since the fixed seen data is eventually limited to represent

the ever-growing semantic concepts.

In this paper, we investigate to synthesise high-quality

visual features from semantic attributes so that the ZSL

problem can be converted into conventional supervised

classification. Our idea is inspired by the ability of human

imagination, as shown in Fig. 1. Given a semantic de-

scription, we human can associate familiar visual elements

and then imagine an approximate scene. Accordingly, we

synthesise discriminative low-level features from semantic

attributes to substitute feature extraction from real images.

Our contributions can be summarised as follows:

1) We provide a feasible framework to synthesise un-

seen visual features from given semantic attributes with-

out acquiring real images. The synthesised data obtained

at the training stage can be straightforwardly fed to conven-

tional classifiers so that ZSL recognition is skilfully con-

verted into the conventional supervised problem and leads

to state-of-the-art recognition performance on four bench-

mark datasets.

2) We introduce the variance decay problem during

semantic-visual embedding and propose a novel Diffusion

Regularisation that can explicitly make information diffuse

to each dimension of the synthesised data. We achieve in-

formation diffusion by optimising an orthogonal rotation

problem. We provide an efficient optimisation strategy to

solve this problem together with the structural difference

and training bias problem.

2. Related Work

Zero-shot Recognition Schemes: We summarise previous

ZSL schemes in Fig. 2, in contrast to conventional su-

pervised classification (Fig. 2(A)). Since collecting well-

labelled visual data for novel classes is expensive, as shown

in Fig. 2(B), zero-shot learning techniques [25, 23, 39, 35,

38, 32] are proposed to recognise novel classes without ac-

quiring the visual data. Most of the early works are based

on the Direct-Attribute Prediction (DAP) model [23]. Such

a model utilises semantic attributes as intermediate clues.

A test sample is classified by each attribute classifier al-

ternately, and the class label is predicted by probabilistic

estimation. Admitting the merit of DAP, there are some

concerns about its deficiencies. [19] points out that the at-

tributes may correlate to each other resulting in significant

information redundancy and poor performance. The human

labelling involved in attribute annotation may also be unre-

liable [18, 50].

To circumvent learning independent attributes,

embedding-based ZSL frameworks (Fig.2(C)) are pro-

posed to learn a projection that can map the visual features

to all of the attributes at once. The class label is then

inferred in the semantic space using various measurements

[2, 34, 27, 4, 14, 45]. Since the attribute annotations are

expansive to acquire, attributes are substituted by the visual

similarity and data distribution information in transductive

ZSL settings [40, 51, 13, 12, 28, 21, 54, 55, 56]. How-

ever, these methods involve the data of unseen classes to

learn the model, which to some extent breaches the strict

ZSL settings. Recent work [43, 49, 30] combines the

embedding-inferring procedure into a unified framework

and empirically demonstrates better performance. The

closest related work is [7, 8, 31], which takes one-step

further to synthesise classifiers or prototypes for unseen

classes.

Our method takes the advantages of semantic embed-

ding. However, the inference direction is different from

existing work. Our method aims to inversely synthesise vi-

sual feature vectors to as many as the available semantic
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instances rather than mapping visual data to the label space.

Semantic Side Information: ZSL tasks require to lever-

age side information as intermediate clues. Such frame-

works not only broaden the classification settings but also

enable various information to aid visual systems. Since

textual sources are relatively easy to obtain from the In-

ternet, [42, 33] propose to estimate the semantic related-

ness of the novel classes from the text. [26, 10, 26] learn

pseudo-concepts to associate novel classes using Wikipedia

articles. Recently, lexical hierarchies in the ontology engi-

neering are also exploited to find the relationships between

classes [41, 5, 3].

Although various side information is studied, attribute-

based ZSL methods still gain the most popularity. One rea-

son is ZSL by learning attributes often gives prominent clas-

sification performance [53, 52, 17, 55, 54]. For another rea-

son, attribute representation is a compact way that can fur-

ther describe an image by concrete words that are human-

understandable [11, 29, 15, 1]. Various types of attributes

are proposed to enrich applicable tasks and improve the per-

formance, such as relative attributes [36], class-similarity

attributes [52], and augmented attributes [44]. Our main

motivation of this paper not only aims to improve the ZSL

performance, but also seeks for a reliable solution for syn-

thesising high-quality visual features.

3. Approach

Preliminaries The training set contains centralised visual

features, attributes, and seen class labels that are in 3-tuples:

(x1, a1, y1), ..., (xN , aN , yN ) ⊆ Xs × As × Ys, where N
is the number of training samples; Xs = [xnd] ∈ R

N×D

is a D-dimensional feature space; As = [anm] ∈ R
N×M

is an M -dimensional attribute space; and yn ∈ {1, ..., C}
consists of C discrete class labels. Our framework can cope

with either class-level or image-level attributes. For class-

level, the instances in the same class share the attributes.

Given N̂ pairs of instances with semantic attributes from Ĉ
unseen classes: (â1, ŷ1), ..., (âN̂ , ŷ

N̂
) ⊆ Au × Yu, where

Yu ∩ Ys = ∅, Au = [an̂m] ∈ R
N̂×M , the goal of zero-

shot learning is to learn a classifier, f : Xu → Yu, where

the samples in Xu are completely unavailable during train-

ing. We use Calligraphic typeface to indicate a space. Sub-

scripts s and u refer to ‘seen’ and ‘unseen’. hat denotes the

variables that are related to ‘unseen’ samples.

Unseen Visual Data Synthesis: We aim to synthesise the

visual features of unseen classes by the given semantic at-

tributes. Specifically, we learn an embedding function on

the training set f ′ : As → Xs. After that, we are able to

infer Xu through: Xu = f ′(Au).

Zero-shot Recognition: Using the synthesised visual fea-

tures, the ZSL recognition is converted to a typical classi-

fication problem. It is straightforward to employ conven-

tional supervised classifiers, e.g. SVM, to predict the labels

of unseen classes fSVM : Xu → Yu.

3.1. Unseen Visual Data Synthesis

To synthesise visual features, the most intuitive frame-

work is to learn a mapping function from the semantic space

to the visual feature space:

min
P
L(AsP,Xs) + λΩ(P ), (1)

where P is the projection matrix, L is a loss function, and

Ω is a regularisation term with its hyper-parameter λ. It

is common to choose Ω(P ) = ‖P‖2F , where ‖.‖F is the

Frobenius norm of a matrix that estimates the Euclidean dis-

tance between two matrices. Before the test, we can synthe-

sise unseen visual features from the attribute space by given

attributes of the unseen instances:

Xu = AuP. (2)

Visual-Semantic Structure Preservation In spite of the

simplicity of the above framework, we confront two main

problems as follows. 1) Structural difference: in prac-

tice, there is often a huge gap between visual and semantic

spaces. In pursuance of minimum reconstruction error, the

model tends to learn principal components between the two

spaces. Consequently, the synthesised data would be not

discriminant enough for ZSL purposes. 2) Training bias:

the synthesised unseen data can be biased towards the ‘seen’

data and gains a different data distribution to the real unseen

data. This problem is due to the regression-based frame-

work does not discover the intrinsic geometric structure of

the semantic space and cannot capture the unseen-to-seen

relationships. Thus, directly mapping from semantic to vi-

sual space can lead to inferior performance. We propose to

introduce an auxiliary latent-embedding space V to recon-

cile the semantic space with the visual feature space, where

V = [vnd] ∈ R
N×D. In this way, instead of Ω(P ), we

can let V preserve the intrinsic data structural information

of both visual and semantic spaces:

J = ‖Xs − VQ‖2F + ‖V − AsP‖2F + λΩ1(V), (3)

where the latent-embedding space V is decomposed fromX
and A is then decomposed from V . Q = [qd′d] ∈ R

D×D

and P = [pmd] ∈ R
M×D are two projection matrices. Ω1

is a dual-graph that is introduced next.

We take the Local Invariance [6] assumption and solve

the problem through a spectral Dual-Graph approach. This

is a combination of two supervised graphs that aim to si-

multaneously estimate the data structures of both X and A.

The graph of visual space WX ∈ R
N×N has N vertices

{g1, ..., gN} that correspond to N data points {x1, ..., xN}
in the training set. The semantic graph WA ∈ R

N×N has
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the same number of vertices as N instances of attributes

{a1, ..., aN}. For image-level attributes, we construct k-nn

graphs for both visual and semantic spaces, i.e. put an edge

between each data point xn (or an) and each of its k nearest

neighbours. For each pair of the vertices gi and gj in the

weight matrix (not differ in WX and WA), the weight can

be defined as

wij =

{

1, if gi and gj are connected by an edge

0, otherwise.

(4)

As a result, we can separately compute the two weight ma-

trices WX and WA. It is noteworthy that, for class-level

attributes, WA is computed in a slightly different way. Ev-

ery vertex in the same class is connected by a normalised

edge, i.e. wij = k/nc, if and only if ai and aj are from the

same class c, where nc is the size of class c.
In the embedding space V , we expect that, if gi and gj in

both graphs are connected, each pair of embedded points

vi and vj are also close to each other. However, some-

times WX and WA are not always consistent due to the

visual-semantic gap. To compromise such conflicts, we

compute the mean of the visual and attribute graphs, i.e.

W = 1

2
(WX +WA). The resulted regularisation is:

Ω1(V) =
1

2

N
∑

i,j=1

‖vi − vj‖2wij

= Tr(V⊤DV)− Tr(V⊤WV) = Tr(V⊤LV),
(5)

where D is the degree matrix of W , Dii =
∑

i wij . L is

known as graph Laplacian matrix L = D −W and Tr(.)
computes the trace of a matrix.

Diffusion Regularisation In this paper, we identify another

fundamental problem: variance decay. When we learn vi-

sual features from the attributes, in particular when project-

ing A to V using P , the dimension difference D ≫ M
will lead the learning algorithm to pick the directions with

low variances progressively. As shown in Fig. 3, most of

the information (variance) is contained in a few projections.

As a result, the remaining dimensions of the synthesised

data suffers a dramatic variance decay, which indicates the

learnt representation is severely redundant. To address the

problem, we may expect the concentrated information can

effectively diffuse to all of the learnt dimensions through an

adjustment rotation [20]. Therefore, we modify the rotating

matrix Q in Eq. (3). In this paper, we consider an orthog-

onal rotation, i.e. QQ⊤ = I , since it is easy to show that

Tr(Q⊤P⊤A⊤APQ) = Tr(P⊤A⊤AP ) (I is an identity

matrix). Such a property is reported in [16] that the orthog-

onal rotation can protect the properties captured in the se-

mantic space. Next, we show how the rotation can control

variance diffusion.

From Eq. (3), the optimal synthesised data is X = VQ,

where V = AP . We first prove that the overall variance

does not change after rotation. Before rotation, V is cen-

tralised, i.e.
∑N

n=1
vn = 0. The original overall variance

Γ of V is Γ = N
∑D

d=1
σd, where σd = (

∑N

n=1
v2nd)/N

denotes the variance of the d-th dimension. After rotation

Q, we have the new variance of each dimension σ′
d and the

sum of variance of each dimension is Γ′. We show Γ = Γ′

in the following:

Γ =
D
∑

d=1

N
∑

n=1

v2nd = ‖V‖2F = Tr(VV⊤)

= Tr(VQQ⊤V⊤) = ‖VQ‖2F

=

D
∑

d=1

N
∑

n=1

x2
nd = N

D
∑

d=1

σ′
d = Γ′. (6)

We hope the overall variance Γ tends to equally diffuse to

all of the learnt dimensions in order to recover the real data

distribution of X . In other words, the variance of diffused

standard deviations Π in the synthesised data should be

small (Π = 1

D

∑D

d=1
(πd − π̄)2, where πd =

√

σ′
d and π̄ is

the mean of all standard deviations). According to the above

Eq. (6), we have
∑D

d=1
π2
d =

∑D

d=1
σ′
d =

∑D

d=1
σd = ǫ.

Next, we show how to minimise Π in our learning frame-

work to find the orthogonal rotation:

Π =
1

D

D
∑

d=1

(πd − π̄)2

=
1

D

D
∑

d=1

π2
d + π̄2 − 2

D

D
∑

d=1

πdπ̄

=
ǫ

D
− 1

D2
(

D
∑

d=1

πd)
2. (7)

The above equation shows that to minimise Π is equiv-

alent to maximise the sum of diffused standard deviations.

Such a deduction is intuitive because our goal is a higher

overall sum of standard deviation so that the synthesised

data can gain more information. Moreover, we discover a

novel relationship between the sum of diffused standard de-

viations and the orthogonal rotation:

D
∑

d=1

πd =

D
∑

d=1

√

σ′
d =

D
∑

d=1

√

√

√

√

N
∑

n=1

x2
nd/N

=
1√
N
‖X⊤‖2,1 =

1√
N
‖Q⊤V⊤‖2,1, (8)

where ‖.‖2,1 is the ℓ2,1 norm of a matrix. According to Eq.

(7) and Eq. (8), we can simply maximise ‖Q⊤V⊤‖2,1 to

maximise Π for the purpose of information diffusion. Fi-

nally, we can combine the diffusion regularisation with Eq.
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(3) and Eq. (5) to form the overall loss function. Such

a function aims to minimise the reconstruction error from

attributes to visual features, meanwhile preserve the data

structure and enable the information to diffuse to all dimen-

sions:

min
P,Q,V

J = ‖Xs − VQ‖2F + ‖V − AsP‖2F + λTr(V⊤LV)

−β‖Q⊤V⊤‖2,1, s.t. QQ⊤ = I. (9)

3.2. Optimisation Strategy

The problem raised in Eq. (9) is a non-convex optimi-

sation problem. To the best of our knowledge, there is no

direct way to find its optimal solution. Similar to [?], in

this paper, we propose an iterative scheme by using the al-

ternating optimisation to obtain the local optimal solution.

Specifically, we initialise Q = I and V = Xs.The initiali-

sation of P can be obtained via P = (A⊤
s As)

−1A⊤
s V . The

whole alternate procedure of the proposed UVDS is listed

as follows.

1. V-step: By fixing P and Q, we can reduce Eq. (9) to the

following sub-problem:

min
V
‖Xs − VQ‖2F + ‖V − AsP‖2F + λTr(V⊤LV)

− β‖Q⊤V⊤‖2,1 + γ‖1V‖22, (10)

where the extra term γ‖1V‖22 constrains the learnt V to be

centralised according to Eq. 6. The minimal V can be ob-

tained by setting the partial derivative of Eq. (10) to zero

and we have

∂J

∂V = 2(VQ−X )Q⊤ + 2(V −AP )

+ 2λLV − βVQEQ⊤ + γ1⊤1V = 0, (11)

where E = diag(e1, . . . , ed, . . . , eD) ∈ R
D×D and the d-

th element of E is ed = 1/(
√
Nπd). By merging the like

terms, Eq. (11) can be rewritten as

V(2QQ⊤ + 2αI + βQEQ⊤) + (2λL+ γ1⊤1)V
−(XQ⊤ + 2AP ) = 0, (12)

which is a typical Sylvester equation so that V can be

efficiently solved by the lyap() function in the MATLAB.

Afterwards, the leant V needs to be further centralised:

vn ← vn − (
∑N

n=1
vn)/N to satisfy Eq. 6.

2. Q-step: By fixing P and V , we can reduce Eq. (9) to the

following sub-problem:

min
Q
‖Xs − VQ‖2F − β‖Q⊤V⊤‖2,1, s.t. QQ⊤ = I (13)

Since we need to solve Q with the orthogonality con-

straint in Eq. (13), in this paper, we adopt the gradient flow

in [47] which is an iterative scheme for optimising generic

orthogonal problems with a feasible solution. Specifically,

given the orthogonal rotation Qt during the t-th iterative op-

timisation, a better solution of Qt+1 is updated via Cayley

transformation:

Qt+1 = HtQt, (14)

where Ht is the Cayley transformation matrix and defined

as

Ht = (I +
τ

2
Φt)

−1(I− τ

2
Φt), (15)

where I is the identity matrix, Φt = ∆tQ
⊤
t − Qt∆

⊤
t is

the skew-symmetric matrix, τ is an approximate minimiser

satisfying Armijo-Wolfe conditions [48] and ∆ is the partial

derivative of Eq. (13) with respect to Q as

∆t = V⊤(VQt −Xs)− βV⊤VQtE., (16)

where the diagonal matrix E is defined the same as that in

Eq. (11). In this way, for the Q-step, we repeat the above

formulation to update Q until achieving convergence.

3. P-step: By fixing Q and V , we can reduce Eq. (9) to the

following sub-problem:

min
P

α‖V − AsP‖2F . (17)

The resulted equation is derived by a standard least squares

problem with the following analytical solution:

P = (A⊤
s As)

−1A⊤
s V. (18)

In this way, we sequentially update V , Q and P to opti-

mise UVDS with T times based on coordinate descent. For

each variable, either global or local optimum is achieved

and thus the overall objective is lower bounded, which guar-

antees the convergence of our method. In practice, UVDS

can well converge with T = 5 ∼ 10.

3.3. Zeroshot Recognition

Once we obtain the embedding matrices P and Q, the

visual features of unseen classes can be easily synthesised

from their semantic attributes:

Xu = AuPQ. (19)

It is noticeable that for image-level attributes, Xu con-

tains as many instances as the test set. The zero-shot recog-

nition task now becomes a typical classification problem.

Thus, any existing supervised classifier, e.g. SVM, can be

applied. For class-level, only a prototype feature of each

class is synthesised. Either few-shot learning techniques

or the simplest Nearest Neighbour (NN) algorithm can be

adopted. Since we focus on the quality of the synthesised

features, we simply use NN and SVM for image-level tasks

and NN for class-level tasks.
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Table 1. Comparison with State-of-the-art methods.

Methods Feature Animals with Attributes Caltech-UCSD Birds aPascal&aYahoo SUN Attribute

DAP [24] L 40.50 - 18.12 52.50

ALE [2] L 43.50 18.00 - -

Jayaraman and Grauman [18] L 43.01± 0.07 - 26.02± 0.05 56.18± 0.27

Romera-Paredes and Torr [43] L 49.30± 0.21 - 27.27± 1.62 -

Ours+CA L 53.45± 0.30 43.52± 0.69 36.98± 0.62 53.46± 1.32

Ours+SVM L - 40.88± 1.34 44.21± 0.28 66.03± 0.74

DAP [24] V 57.23 - 38.16 72.00

Akata [3] A 61.9 40.3 - -

Romera-Paredes and Torr [43] V 75.32± 2.28 - 24.22± 2.89 82.10± 0.32

Zhang and Saligrama [54] V + T 76.33± 0.83 30.41± 0.20 46.23± 0.53 82.50± 1.32

Zhang and Saligrama [55] V + T 80.46± 0.53 42.11± 0.55 50.35± 2.97 83.83± 0.29

Zhang and Saligrama [56] V + T 90.25 ± 8.08 53.30± 33.39 65.36± 37.29 86.00± 14.97

Ours+CA V 82.12± 0.12 44.90± 0.88 42.25± 0.54 80.50± 0.75

Ours+SVM V - 45.72± 1.23 53.21± 0.62 86.50± 1.75

L: Low-level feature, A: Deep feature using AlexNet, and V: VGG-19, CA: class-level attributes. T: transductive.

Algorithm 1: Unseen Visual Data Synthesis (UVDS)

Input: Training set {Xs, As, Ys}, k for k-nn graph

Output: P, Q and V
1 Initialise Q = I, V = Xs and P = (A⊤

s As)
−1A⊤

s V ,

where I ∈ R
D×D is the identity matrix.

2 Repeat

3 V-Step: Fix P , Q and update V using Eq. (12).

4 Q-Step: Fix P , V and update Q by following steps:

5 for t = 1 : max iterations do

6 Compute the gradient ∆t using Eq. (16);

7 Compute the the skew-symmetric matrix Φt;

8 Compute the Cayley matrix Ht using Eq. (15);

9 Compute the Qt+1 using Eq. (14);

10 if convergence, break;

11 end

12 P -Step: Fix V , Q and update P using Eq. (18).

13 Until convergence

14 Return fUVDS(x) = xPQ

4. Experiments

Settings We evaluate our method on four benchmark

datasets and strictly follow the published seen/unseen splits.

For AwA [23] and aPY [11], we follow the standard 40/10

and 20/12 splits like most of existing methods. For CUB,

we follow [2] to use the 150/50 setting. For SUN, we use

the simple 707/10 setting as reported in [18, 43, 54]. Meth-

ods under different settings [40, 13, 7, 9], or using other var-

ious semantic information [36, 52, 1, 3] are not compared

with.

Semantic Attributes Existing attributes are divided into

image-level and class-level. On CUB, aPY, and SUN

datasets, image-level attributes are provided. Our approach

can synthesise the visual features for all unseen instances.

We compute class-level attributes by averaging the image-

level attributes for each class. For the AwA dataset, only

class-level attributes are provided.

Visual Features For low-level visual features, we use those

provided by the four datasets [23, 11, 37, 46]. For deep

learning features, we adopt CNN features released by[54]

for the four datasets using the VGG-19 model.

Implementation Parameters Half of the data in each class

in the training sets are used as the validation set. We use 10-

fold cross-validation to obtain the optimal hyper-parameters

λ and β. k is fixed to 10 for the k-nn graph.

4.1. Comparison with the Stateoftheart methods

Table 1 summarises our comparison to the published re-

sults of state-of-the-art methods. The hyphens indicate that

the compared methods were not tested on the correspond-

ing datasets in the original papers. In the first section, all of

the compared methods were tested using conventional low-

level features. In the second section, deep learning features

are employed. For all of the four datasets, we first eval-

uate our method using class-level attributes (CA). In this

scenario, each unseen class gains a synthesised visual fea-

ture prototype from the class attribute signature. The un-

seen test images are predicted by the NN classification us-

ing these prototypes. When image-level attributes are avail-

able in CUB, aPY, and SUN, we further conduct experi-

ments using SVM classifiers. The visual feature vector of

each unseen image is synthesised by the proposed UVDS

and then fed to train SVM models. During the test, visual

features that are extracted from the unseen images are fed

to the trained SVM to get the prediction. Our method can

steadily outperform the state-of-the-art methods on conven-

tional ZSL scenarios. Our results also exceed two of the

results base on transductive settings [56, 54], which suffi-

ciently support our synthesised visual features are highly

discriminative. While deep learning features can boost the
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Table 2. Comparison with baseline methods.

Scenario
Dataset CUB SUN aPY

Test Domain Seen Unseen Seen Unseen Seen Unseen

Prototype-based

Baseline CA MF CA MF CA MF CA MF CA MF CA MF

Linear Regression 66.82 64.34 27.28 30.31 88.85 89.12 63.00 64.50 52.42 55.35 17.96 21.63

GR-only (β = 0) 65.79 65.53 38.82 40.42 89.67 88.41 75.50 76.00 59.38 57.75 25.75 28.86

DR-only (λ = 0) 66.32 67.98 37.75 40.64 90.31 89.85 74.00 77.50 57.96 58.32 30.28 32.46

Ours 67.47 68.43 44.90 44.90 92.32 89.88 80.50 78.50 62.75 64.88 42.25 41.97

Sample-based

Baseline NN SVM NN SVM NN SVM NN SVM NN SVM NN SVM

Linear Regression 64.57 67.44 22.36 26.57 90.79 92.27 72.50 77.00 43.75 44.42 13.48 15.96

GR-only (β = 0) 61.38 66.88 32.65 38.58 88.42 91.91 74.50 80.00 53.34 57.08 22.74 25.59

DR-only (λ = 0) 62.44 68.94 36.93 42.24 88.34 90.47 78.00 84.00 55.05 53.41 23.68 24.22

Ours 63.78 70.32 39.82 45.72 89.85 93.23 78.50 86.50 54.35 69.75 38.49 53.21
CA: Class-level attributes, MF: Mean of synthesised features, GR: Graph regularisation, and DR: Diffusion regularisation. Best results are in bold.

Figure 3. Normalised variances of the synthesised data w.r.t. dimensions. Variance of each dimension is sorted in descending order. We

make a comparison between the synthesised data variances ‘with’ (green) and ‘without’ (red) diffusion regularisation. The variances of

real data (blue) are computed from real unseen data as references.

performance, our method can also achieve acceptable re-

sults with low-level features. In most cases, using SVM can

further improve the recognition rates, especially when the

class-level attributes are noisy, e.g. on aPY and SUN. How-

ever, if the class-level attributes are more precise, e.g. CUB,

the class-level NN classifier can be better than SVM.

4.2. Detailed Evaluations

Baseline methods To understand the effect of each term in

Eq. (9), we compare our method to several baseline meth-

ods in Table 2. Since AwA only provides class-level at-

tributes, the following experiments are conducted on CUB,

SUN, and aPY only. The first method is simply Linear Re-

gression that we solve Eq. (1) and synthesise prototypes of

unseen classes using Eq. (2). The second and third meth-

ods are denoted as Graph-Regularisation (GR) only (β = 0)

and Diffusion-Regularisation (DR) only (λ = 0). For the

training bias problem, we use the validation set to test the

methods on seen classes. We also investigate ZSL under

both class-level and image-level attributes scenarios. The

first scenario is prototype-based, i.e. each unseen class gains

only one visual prototype. We compare two possible ways

to obtain the class-level visual prototype: 1) we compute

the mean of image-level attributes in each class and use

the averaged class-level attributes (CA) to synthesise one

visual prototype for each class; 2) we first synthesise the

visual features from the image-level attributes and use the

mean of the features (MF) as the class prototype. During

the test, we use NN classification to predict the label for the

test image. The second scenario is sample-based, i.e. each

unseen image has one unique attribute description. In this

scenario, we fully synthesise all of the visual features of un-

seen classes and use them as training examples. We show

how an advanced classifier, e.g. SVM, can further boost the

performance.

In summary, our method can effectively prevent the

training bias whereas the linear regression without regular-

isation suffers from 30% performance degradation in aver-

age from seen to unseen. DR is complementary to GR and

can further boost the performance. There is no significant

difference between the CA and MF scenarios. Therefore,

our proposed method can be reliably applied to both image-

level and class-level attributes. Another advantage is that

the synthesised visual data can be fed to typical supervised

classifiers to achieve better performance, which can be sup-

ported by the results using SVM.

Further Discussion There are two more questions: (1)

what are the outcomes of the diffusion regularisation? (2)

What kind of visual features are synthesised? In Fig. 3,

we show the variance of each dimension of the synthesised

data. The variances are sorted in descending order. We

compare with the real unseen data and the synthesised data

without diffusion regularisation (β = 0). Note that, in the

synthesised data without DR (red), most variances are con-
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Figure 4. Success and Failure cases of nearest neighbour matching. The query visual feature is synthesised from its attribute description.

We find top-5 nearest neighbours of the query feature from the real instances. It is a match if the nearest instance and the test image have

the same label.

centrated in a few dimensions (roughly 1000, 1500, and 500

on SUN, aPY, and CUB) while most of the remaining di-

mensions gain very low variances. In comparison, the vari-

ances of our proposed synthesised data (green) and real data

are more informative. Furthermore, thanks to the DR, the

variances in our proposed data are more balanced than real

data, i.e. each of the dimension gains the equal amount of

information. Such quantitative evidence explains the suc-

cess of our proposed method in ZSL recognition.

Finally, we provide some qualitative results of our

method. We use the synthesised features as queries and

retrieve real images from the unseen datasets. In Fig. 4,

we show some success cases that most of the top-5 results

are with the same class labels. Particularly, the third result

of Bag is the same paired image of the attributes that are

used to synthesise the data. Such results demonstrate that

the synthesised data is close to the samples from the same

class in the feature space. On the contrary, we also provide

some failure cases that the top-1 retrieval result is not with

the same class label. Some of them are due to the ambiguity

of the semantic meaning, e.g. the flea market has many sim-

ilar attributes to the shoe shop. Some other cases, e.g. the

CUB dataset, the real data of the birds are not distinctive to

the other classes. Therefore, the NN-based retrieval gives a

mixture of true-positives and false-positives. Such failures

due to the ambiguity of the visual feature are not common

cases. We can still achieve 45.72% overall recognition rate

on the CUB dataset.

5. Conclusion

In this paper, we proposed a novel algorithm that syn-

thesises visual data for unseen classes using semantic at-

tributes. From the experiments, we can see that directly

embedding using regression-based models can lead to low

recognition rates owing to three main problems, in terms of

structural difference, training bias, and variance decay. In

correspondence, we introduced a latent structure-preserving

space with the diffusion regularisation. Our approach out-

performed the state-of-the-art methods on all of the four

benchmark datasets. For future work, a worthy attempt is

to substitute the semantic attributes by automatic word vec-

tors that are driven from the text. In this way, the cost of

synthesising data can be further reduced.
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