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Abstract

Multi-task learning aims to improve generalization per-

formance of multiple prediction tasks by appropriately

sharing relevant information across them. In the context

of deep neural networks, this idea is often realized by hand-

designed network architectures with layers that are shared

across tasks and branches that encode task-specific fea-

tures. However, the space of possible multi-task deep ar-

chitectures is combinatorially large and often the final ar-

chitecture is arrived at by manual exploration of this space,

which can be both error-prone and tedious. We propose an

automatic approach for designing compact multi-task deep

learning architectures. Our approach starts with a thin

multi-layer network and dynamically widens it in a greedy

manner during training. By doing so iteratively, it creates a

tree-like deep architecture, on which similar tasks reside in

the same branch until at the top layers. Evaluation on per-

son attributes classification tasks involving facial and cloth-

ing attributes suggests that the models produced by the pro-

posed method are fast, compact and can closely match or

exceed the state-of-the-art accuracy from strong baselines

by much more expensive models.

1. Introduction

Humans possess a natural yet remarkable ability of

seamlessly transferring and sharing knowledge across mul-

tiple related domains while doing inference for a given

task. Effective mechanisms for sharing relevant informa-

tion across multiple prediction tasks (referred as multi-task

learning) are also arguably crucial for making significant

advances towards machine intelligence. In this paper, we

propose a novel approach for multi-task learning in the con-

text of deep neural networks for computer vision tasks. We

particularly aim for two desirable characteristics in the pro-

posed approach: (i) automatic learning of multi-task archi-

tectures based on branching, (ii) selective sharing among

tasks with automated learning of whom to share with. In ad-

dition, we want our multi-task models to have low memory

footprint and low latency during prediction (forward pass

through the network).

A natural approach for enabling sharing across multiple

tasks is to share model parameters (partially or fully) across

the corresponding layers of the task-specific deep neural

networks. Most of the multi-task deep architectures share

the bottom layers till some layer l after which the shar-

ing is blocked, resulting in task-specific sub-networks or

branches beyond it [28, 17, 13]. This is motivated by the

observation made by several earlier works that bottom lay-

ers capture low level detailed features, which can be shared

across multiple tasks, whereas top layers capture features at

a higher level of abstraction that are more task specific. It

can be further extended to a more general tree-like archi-

tecture, e.g., a smaller group of tasks can share parameters

even after the first break-point at layer l and breakup at a

later layer. However, the space of such possible branch-

ing architectures is combinatorially large and current ap-

proaches largely make a decision based on limited manual

exploration of this space, often biased by designer’s percep-

tion of the relationship among different tasks [25]. Finding

a data-driven approach to replace the manual exploration

is an important and interesting academic question that has

only been sparsely explored.

The proposed approach operates in a greedy top-down

manner, making branching and task-grouping decisions at

each layer of the network using a novel criterion that pro-

motes the creation of separate branches for unrelated tasks

(or groups of tasks) while penalizing for the model com-

plexity. To address the issue of scalability to multiple tasks,

the proposed approach starts with a thin network and dy-

namically grows it during the training phase by creating

new branches based on the aforementioned criterion. We
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also propose a method based on simultaneous orthogonal

matching pursuit (SOMP) [41] for initializing a thin net-

work from a pretrained wider network (e.g., VGG-16) as a

side contribution in this work.

We test this idea on facial (CelebA [24]), clothing (Deep-

Fashion [23]) and person (facial combined with clothing) at-

tribute classification, in all cases treating each attribute as a

separate task. In these experiments, the models designed by

our approach closely match state-of-the-art accuracy while

being up to 90x more compact and 3x faster than the widely

adopted VGG-16 architecture.

In summary, our main contributions are listed below:

◦ We propose to automate learning of multi-task deep net-

work architectures through a novel dynamic branching

procedure, which makes task grouping decisions at each

layer of the network (deciding with whom each task

should share features) by taking into account both task

relatedness and complexity of the model.

◦ A novel method based on Simultaneous Orthogonal

Matching Pursuit is proposed for initializing a thin net-

work from a wider pre-trained network model, leading to

faster convergence and higher accuracy.

◦ We demonstrate effectiveness of the proposed method

on facial, clothing and joint person (facial+clothing) at-

tribute classification, and investigate the behavior of the

method through ablation studies.

2. Related Work

Multi-Task Learning. There is a long history of re-

search in multi-task learning [4, 39, 16, 21, 25]. Most pro-

posed techniques assume that all tasks are related and ap-

propriate for joint training. A few methods have addressed

the problem of “with whom” each task should share fea-

tures [44, 16, 50, 18, 21, 26]. These methods are gener-

ally designed for shallow classification models, while our

work investigates feature sharing among tasks in hierarchi-

cal models such as deep neural networks.

Recently, several methods have been proposed for multi-

task learning using deep neural networks. HyperFace [28]

simultaneously learns to perform face detection, landmarks

localization, pose estimation and gender recognition. Uber-

Net [19] jointly learns low-, mid-, and high-level computer

vision tasks using a compact network model. MultiNet

[3] exploits recurrent networks for transferring information

across tasks. Cross-ResNet [17] connects tasks through

residual learning for knowledge transfer. However, all these

methods rely on hand-designed network architectures com-

posed of base layers that are shared across tasks and spe-

cialized branches that learn task-specific features.

As network architectures become deeper, defining the

right level of feature sharing across tasks through hand-

crafted network branches is impractical. Cross-stitching

networks [25] have been recently proposed to learn an

optimal combination of shared and task-specific represen-

tations. Although cross-stitching units connecting task-

specific sub-networks are designed to learn the feature shar-

ing among tasks, the size of the network grows linearly

with the number of tasks, causing scalability issues. We in-

stead propose a novel algorithm that makes decisions about

branching based on task relatedness, while optimizing for

the efficiency of the model. We note that other techniques

such as HD-CNN [45] and Network of Experts [1] also

group related classes to perform hierarchical classification,

but these methods are not applicable for the multi-label set-

ting (where labels are not mutually exclusive).

Model Compression and Acceleration. Our method

achieves model compression and acceleration by consid-

ering task relatedness. It is complementary to existing

task-agnostic approaches, such as knowledge distillation

[12, 29], low-rank-factorization [14, 38, 32], pruning and

quantization [10, 27], structured matrices [6, 34, 9], and dy-

namic capacity networks [2]. Many of these state-of-the-art

compression techniques can be used to further reduce the

size of our learned multi-task architectures.

Person Attribute Classification. Methods for recog-

nizing attributes of people, such as facial and clothing at-

tributes, have received increased attention in the past few

years. In the visual surveillance domain, person attributes

serve as features for improving person re-identification [35]

and enable search of suspects based on their description

[42, 8]. In e-commerce applications, these attributes have

proven effective in improving clothing retrieval [13], and

fashion recommendation [22]. It has also been shown that

facial attribute prediction is helpful as an auxiliary task for

improving face detection [46] and face alignment [49].

State-of-the-art methods for person attribute prediction

are based on deep convolutional neural networks [43, 24, 5,

48]. Most methods either train separate classifiers per at-

tribute [48] or perform joint learning with a fully shared

network [31]. Multi-task networks have been used with

base layers that are shared across all attributes, and branches

to encode task-specific features for each attribute category

[13, 36]. However, in contrast to our work, the network

branches are hand-designed and do not exploit the fact that

some attributes are more related than others in order to de-

termine the level of sharing among tasks in the network.

Moreover, we show that our approach produces a single

compact network that can predict both facial and clothing

attributes simultaneously.

3. Methodology

Let the linear operation in a layer l of the network be

paramterized by W l. Let xl ∈ R
cl be the input vector of

layer l, and yl ∈ R
cl+1 be the output vector. In feedforward

networks that are of interest to this work, it is always the

case that xl = yl−1. In other words, the output of a layer
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is the input to the layer above. In vision applications, the

feature maps are often considered as three-way tensors and

one should think of xl and yl as appropriately vectorized

versions of the input and output feature tensors. The func-

tional form of the network is a series of within-layer com-

putations chained in a sequence linking the lowest to the

highest (output) layer. The within-layer computation (for

both convolutional and fully-connected layers) can be con-

cisely represented by a simple linear operation parametrized

by W l, followed by a non-linearity σl(·) as

yl = σl(Pl(W
l)xl), (1)

where Pl is an operator that maps the parameters W l to the

appropriate matrix Pl(W
l) ∈ R

cl+1×cl . For a fully con-

nected layer Pl reduces to the identity operator, whereas for

a convolutional layer with fl filters, W l ∈ R
fl×dl contains

the vectorized filter coefficients in each row and the operator

Pl maps it to an appropriate matrix that represents convo-

lution as matrix multiplication. We define the width of the

network at layer l as cl for the fully connected layers, and

as fl for the convolutional layers.

The widths at different layers are critical hyper-

parameters for a network design. Successful deep convo-

lutional network architectures, such as AlexNet [20], VGG

[33], Inception [37] and ResNet [11] all use wider layers at

the top of the network in what can be called an “inverted

pyramid” pattern. From visualization of filters at different

layers [47] it is observed that top level features tend to be

task-dependent. More recently, researchers have noted that

the width schedule (especially at the top layers) need to be

tuned for the underlying set of tasks the network has to per-

form in order to achieve best accuracy [25]. Motivated by

these findings, our approach starts with a “flat” architecture

that has a similar width at all layers, then expands it to create

explicit task-specific branches. The procedure is as follows:

Thin Model Initialization. Start with a thin neural net-

work model, use random initialization or optionally initial-

ize it from a pre-trained wider VGG-16 model by selecting

a subset of filters using simultaneous orthogonal matching

pursuit (ref. Section 3.1).

Adaptive Model Widening. The thin initialized model

goes through a multi-round widening and training proce-

dure. The widening is done in a greedy top-down layer-

wise manner starting from the top layer. For the current

layer to be widened, our algorithm makes a decision on the

number of branches to be created at this layer along with

task assignments for each branch. The network architecture

is frozen when the algorithm decides to create no further

branches (ref. Section 3.2).

Training with the Final Model. In this last phase, the

fixed final network is trained until convergence.

More technical details are discussed in the next few sec-

tions. Algorithm 1 provides a summary of the procedure.

Algorithm 1: Training with Adaptive Widening

Data: Input data D = (xi, yi)
N
i=1. The labels y are for a set

of T tasks.

Input: Branch factor α, and thinness factor ω. Optionally, a

pre-trained network Mp with parameters Θp.

Result: A trained network Mf with parameters Θf .

Initialization: M0 is a thin-ω model with L layers.

if exist Mp,Θp then
Θ0 ← SompInit(M0,Mp,Θp). t← 1, d← T . (Sec. 3.1)

else
Θ0 ← Random initialization

while (t ≤ L) and (d > 1) do
Θt, At ← TrainAndGetAffinity(D,Mt,Θt) (Sec. 3.3)

d← FindNumberBranches(Mt, At, α) (Sec. 3.4)

Mt+1,Θt+1 ← WidenModel(Mt,Θt, At, d) (Sec. 3.2)

t← t+ 1
Train model Mt with sufficient iterations, update Θt.

Mf ←Mt, Θf ← Θt.

conv1 conv2 conv3 conv4 conv5 fc6 fc7 output

Figure 1. Comparing the thin model with VGG-16. As shown, the

light color blobs shows the layers in the VGG-16 architecture. It

has an inverted pyramid structure with a width plan of 64-128-256-

512-512-4096-4096. The dark color blobs shows a thin network

with ω = 32. The convolutional layers all have widths of 32, and

the fully connected layers have widths of 64.

3.1. Thin Networks and Filter Selection using Si
multaneous Orthogonal Matching Pursuit

The initial model we use is a thin version of the VGG-16

network. It has the same structure as VGG-16 except for

the widths at each layer. We experiment with a range of

thin models that are denoted as thin-ω models. The width

of a convolutional layer of the thin-ω model is the minimum

between ω and the width of the corresponding layer of the

VGG-16 network. The width of the fully connected layers

are set to 2ω. We shall call ω the “thinness factor”. Figure

1 illustrates a thin model side by side with VGG-16.

Using weights from pre-trained models is known to

speed up training and improve model generalization. How-

ever, the standard direct copy method is only suitable when

the source and the target networks have the same architec-

ture (at least for most of the layers). Our adoption of a thin

initial model forbids the use of direct copy, as there is a mis-

match in the dimension of the weight matrix (for both the

input and output dimensions, see Equation 1 and discus-
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Algorithm 2: SompInit(M0, Mp, Θp)

Input: The architecture of the thin network M0 with L

layers. The pretrained network and its parameters

Mp, Θp. Denote the weight matrix at layer l as

W p,l ∈ Θp.

Result: The initial parmaeters of the thin network Θ0.

foreach l ∈ 1, 2, · · · , L do

Find ω⋆(l) in Equation 2 by SOMP, using W p,l as

weight matrix.

W 0,l ←W
p,l

ω⋆(l):

W p,l+1 ←
(

(W p,l+1)Tω⋆(l):

)T

Aggregate W 0,l for l ∈ {1, 2, · · · , L} to form Θ0.

sions). In the literature a set of general methods for training

arbitrarily small networks using an existing larger network

and the training data are known as “knowledge distillation’

[12, 29]. However, for the limited use case of this work we

propose a faster, data-free, and simple yet reasonably effec-

tive method. Let W p,l be the parameters of the pre-trained

model at layer l with d rows. For convolutional layers, each

row of W p,l represents a vectorized filter kernel. The ini-

tialization procedure aims to identify a subset of d′(< d)
rows of W p,l to form W 0,l (the superscript 0 denotes ini-

tialized parameters for the thin model). We would like the

selected rows that minimize the following objective:

A⋆, ω⋆(l) = argmin
A∈Rd×d′ ,|ω|=d′

||W p,l −AW p,l
ω: ||F , (2)

where W p,l
ω: is a truncated weight matrix that only keeps

the rows indexed by the set ω. This problem is NP-hard,

however, there exist approaches based on convex relaxation

[40] and greedy simultaneous orthogonal matching pursuit

(SOMP) [41] which can produce approximate solutions. We

use the greedy SOMP to find the approximate solution ω⋆(l)
which is then used to initialize the parameter matrix of the

thin model as W 0,l ← W p,l

ω⋆(l):. We run this procedure

layer by layer, starting from the input layer. At layer l,
after initializing W 0,l, we replace W p,l+1 with a column-

truncated version that only keeps the columns indexed by

ω⋆(l) to keep the input dimensions consistent. This initial-

ization procedure is applicable for both convolutional and

fully connected layers. See Algorithm 2.

3.2. TopDown Layerwise Model Widening

At the core of our training algorithm is a procedure that

incrementally widens the current design in a layer-wise

fashion. Let us introduce the concept of a “junction”. A

junction is a point at which the network splits into two or

more independent sub-networks. We shall call such a sub-

network a “branch”. The leaves of each branch are outputs

of a subset of tasks performed by this network. In person

attribute classification each task is a sigmoid unit that pro-

duces a normalized confidence score on the existence of an

attribute. We propose to widen the network only at these

junctions. More formally, consider a junction at layer l with

input xl and d outputs {yli}
d
i=1. Note that each output is the

input to one of the d top sub-networks. Similar to Equation

1 the within-layer computation is given as

yli = σl(Pl(W
l
i )x

l) for i ∈ [d], (3)

where W l
i parameterizes the connection from input xl to

the i’th output yli at layer l. The set [d] is the indexing set

{1, 2, · · · , d}. A junction is widened by creating new out-

puts at the layer below. To widen layer l by a factor of c, we

make layer l− 1 a junction with 2 ≤ c ≤ d outputs. We use

yl−1
j to denote an output in layer l − 1 (each is an input for

layer l) and W l−1
j to denote its parameter matrix. All of the

newly-created parameter matrices have the same shape as

W l−1 (the parameter matrix before widening). The single

output yl−1 = xl is replaced by a set of outputs {yl−1
j }cj=1

where

yl−1
j = σl−1(Pl−1(W

l−1
j )xl−1) for j ∈ [c]. (4)

Let gl : [d] → [c] be a given grouping function at layer l.
After widening, the within-layer computation at layer l is

given as (cf. Equation 3)

yli = σl(Pl(W
l
i )x

l
gl(i)

= σl

(

Pl(W
l
i )σl−1(Pl−1(W

l−1
gl(i)

)xl−1)
) (5)

where the latter equality is a consequence of Equation 3.

The widening operation sets the initial weight for W l−1
j

to be equal to the original weight of W l−1. It allows the

widened network to preserve the functional form of the

smaller network, enabling faster training.

To put the widening of one junction into the context

of the multi-round progressive model widening procedure,

consider a situation where there are T tasks. Before any

widening, the output layer of the initial thin multi-task net-

work has a junction with T outputs, each is the output of a

sub-network (branch). It is also the only junction at ini-

tialization. The widening operation naturally starts from

the output layer (denoted as layer l). It will cluster the T
branches into t groups where t ≤ T . In this manner the

widening operation creates t branches at layer l − 1. The

operation is performed recursively in a top-down manner

towards the lower layers. Note that each branch will be as-

sociated with a sub-set of tasks. There is a 1-1 correspon-

dence between tasks and branches at the output layer, but

the granularity goes coarser at lower layers. An illustration

of this procedure can be found in Figure 2.
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Figure 2. Illustration of the widening procedure. Left: the active layer is at layer L, there is one junction with 7 branches at the top. Middle:

The seven branches are clustered into three groups. Three branches are created at layer L, resulting in a junction at layer L − 1. Layer

L − 1 is now the active layer. Right: Two branches are created at layer L − 1, making layer L − 2 now the active layer. At each branch

creation, the filters at the newly created junction are initialized by direct copy from the old filter.

3.3. Task Grouping based on the Probability of Con
currently Simple or Difficult Examples

Ideally, dissimilar tasks are separated starting from a low

layer, resulting in less sharing of features. For similar tasks

the situation is the opposite. We observe that if an easy

example for one task is typically a difficult example for

another, intuitively a distinctive set of filters are required

for each task to accurately model both in a single network.

Thus we define the affinity between a pair of tasks as the

probability of observing concurrently simple or difficult ex-

amples for the underlying pair of tasks from a random sam-

ple of the training data.

To make it mathematically concrete, we need to prop-

erly define the notion of a “difficult” and a “simple” ex-

ample. Consider an arbitrary attribute classification task i.
Denote the prediction of the task for example n as sni , and

the error margin as mn
i = |tni − sni |, where tni is the bi-

nary label for task i at sample n. Following the previous

discussion, it seems natural to set a fixed threshold on mn
i

to decide whether example n is simple or difficult. How-

ever, we observe that this is problematic since as the training

progresses most of the examples will become simple as the

error rate decreases, rendering this measure of affinity use-

less. An adaptive but universal (across all tasks) threshold is

also problematic as it creates a bias that makes intrinsically

easier tasks less related to all the other tasks.

These observations lead us to the following approach.

Instead of setting a fixed threshold, we estimate the average

margin for each task, E{mi}. We define the indicator vari-

able for a difficult example for task i as eni = 1mn

i
≥E{mi}.

For a pair of tasks i, j, we define their affinity as

A(i, j) = P(eni = 1, enj = 1) + P(eni = 0, enj = 0)

= E{eni e
n
j + (1− eni )(1− enj )}. (6)

Both E{mi} and the expectation on Equation 6 can be es-

timated by their sample averages. Since these expectations

are functions of the current neural network model, a naive

implementation would require a large number of time con-

suming forward passes after every training iterations. As a

much more efficient implementation, we alternatively col-

lect the sample averages from each training mini-batches.

The expectations are estimated by computing a weighted

average of the within-batch sample averages. To make the

estimation closer to the true expectations from the current

model, an exponentially decaying weight is used.

The estimated task affinity is used directly for the clus-

tering at the output layer. It is natural as branches at the

output layer has a 1-1 map to the tasks. But at lower layers

the mapping is one to many, as a branch can be associated

with more than one tasks. In this case, affinity is computed

to reflect groups of tasks. In particular, let k, l denote two

branches at the current layer, where ik and jl denotes the

i-th and j-th task associated with each branch respectively.

The affinity of the two branches are defined by

Ãb(k, l) = mean
ik

(

min
jl

A(ik, jl)

)

(7)

Ãb(l, k) = mean
jl

(

min
ik

A(ik, jl)

)

(8)

The final affinity score is computed as Ab(k, l) =
(Ãb(k, l) + Ãb(l, k))/2. Note that if branches and tasks

form a 1-1 map (the situation at the output layer), this

reduces to the definition in Equation 6. For branches

with coarser task granularity, Ab(k, l) measures the affin-

ity between two branches by looking at the largest distance

(smallest affinity) between their associated tasks.

3.4. Complexityaware Width Selection

The number of branches to be created determines how

much wider the network becomes after a widening opera-

tion. This number is determined by a loss function that bal-

ances complexity and the separation of dissimilar tasks to

different branches. For each number of clusters 1 ≤ d ≤ c,
we perform spectral clustering to get a grouping function

gd : [d] → [c] that associates the newly created branches

with the c old branches at one layer above. At layer l the
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loss function is given by

Ll(gd) = (d− 1)L02
pl + αLs(gd) (9)

where (d− 1)L02
pl is a penalty term for creating branches

at layer l, Ls(gd) is a penalty for separation. pl is defined as

the number of pooling layers above the layer l and L0 is the

unit cost for branch creation. The first term grows linearly

with the number of branches, with a scalar that defines how

expensive it is to create a branch at the current layer (which

is heuristically set to double after every pooling layers).

Note that in this formulation a larger α encourages the cre-

ation of more branches. We call α the branching factor. The

network is widened by creating the number of branches that

minimizes the loss function, or gld
⋆
= argmin

gd

Ll(gd).

The separation term is a function of the branch affinity

matrix Ab. For each i ∈ [d], we have

Li
s(gd) = 1− mean

k∈g−1(i)

(

min
l∈g−1(i)

Ab(k, l)

)

, (10)

and the separation cost is the average across each newly cre-

ated branches

Ls(gd) =
1

d

∑

i∈[d]

Li
s(gd). (11)

Note Equation 10 measures the maximum distances

(minimum affinity) between the tasks within the same

group. It penalizes cases where very dissimilar tasks are

included in the same branch.

4. Experiments

We test our approach on person attribute classification

tasks. We use CelebA [24] dataset for facial attribute clas-

sification tasks and Deepfashion [23] for clothing category

classification tasks. CelebA consists of images of celebri-

ties labeled with 40 attribute classes. Most images also in-

clude the torso region in addition to the face. DeepFash-

ion is richly labeled with 50 categories of clothes, such as

“shorts”, “jeans”, “coats”, etc. (the labels are mutually ex-

clusive). Faces are often visible on these images.

4.1. Comparison with the State of the art

A successful multi-task architecture should reach a good

balance of speed, model complexity and accuracy. In this

section we discuss how well the proposed approach work in

these aspects compared to recent state-of-the-art methods in

person attribute classifications. To facilitate fair comparison

in a controlled setting, we also list baselines trained in com-

parable conditions with the proposed branching method.

For baselines we prepare vanilla VGG-16 models, low-rank

models that factorizes all layers and thins models. We sum-

marize our results on Table 1 and 2. See training and model

details in Section 4.5.

Accuracy Following established protocols, we report

attribute classification accuracy and top-10 recall rate on

CelebA dataset, and top-3 and top-5 classification accuracy

on DeepFashion dataset. The evaluations are performed

on respective test partitions. We conclude that while be-

ing more compact/faster, models generated by the proposed

branching method can closely match the state-of-the-art re-

sults, including the strong vanilla VGG-16 baselines pre-

pared for this work.

Model Complexity/Speed At a comparable accuracy

level, our models are significantly faster and more compact

than the vanilla baseline (and closest competitors in the lit-

erature, MOON and FashionNet, both based on VGG-16).

Compared to the thin baseline, a steady improvement of ac-

curacy as model complexity increases is observed. This im-

provement starts to saturate as we make the thinness fac-

tor larger (creating more branches). On the other hand,

making the initial network wider becomes more effective

when at higher accuracy levels. On the facial attribute

tasks on CelebA, the Branch-64-1.0 model is more accurate

than the baseline from low-rank factorization while being

slightly faster and slightly less compact. While we only ex-

plore small initial width to demonstrate the speed-up/model

compression effects of the proposed method, future work

should more thoroughly investigate different thinness set-

ting and/or widening individual branches.

4.2. Understanding the Task Grouping

It is interesting to see if the automated procedure is learn-

ing an intuitive grouping of tasks, or rather a surprising

grouping that contradicts our own intuition. To this end

we visualize task groupings in the top layer of the Branch-

32-2.0 model (for CelebA facial attribute tasks). Figure

4 shows the visualization. We observe an intuitive set of

groupings. For instance, “5-o-clock Shadow”, “Bushy Eye-

brows” and “No Beard”, which all describe some forms

of facial hairs, are grouped. The cluster with “Heavy

Makeup”, “Pale Skin” and “Wearing Lipstick” is clearly

related. Groupings at lower layers are also sensible. For

instance, the group “Bags Under Eyes”, “Big Nose” and

“Young” are joined by “Attractive” and “Receding Hairline”

at fc6, probably because they all describe age cues.

4.3. Crossdomain Training

We examine the method’s ability to handle cross-domain

tasks by training a network that jointly predict facial and

clothing attributes. The model is trained on the union of the

two training sets. Note that the CelebA dataset is not an-

notated with clothing labels, and the Deepfashion dataset is

not annotated with facial attribute labels. To augment the

annotations for both datasets, we use the predictions pro-

vided by the baseline VGG-16 models as soft training tar-

gets. We demonstrate that the joint model is comparable to
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Method Accuracy (%) Top-10 Recall (%) Test Speed (ms) Parameters (millions) Jointly?

LNet+ANet 87 N/A + + No

Walk and Learn 88 N/A + + No

MOON 90.94 N/A ≈ 33∗ 119.73 No

Our VGG-16 Baseline 91.44 73.55 33.2 134.41 No

Our Low-rank Baseline 90.88 69.82 16.0 4.52 No

Our Baseline-thin-32 89.96 65.95 5.1 0.22 No

Our Branch-32-1.0 90.74 69.95 9.6 1.49 No

Our Branch-32-2.0 90.90 71.08 15.7 2.09 No

Our Branch-64-1.0 91.26 72.03 15.2 4.99 No

Our Joint Branch-32-2.0 90.4 68.72 10.01 3.25 Yes

Our Joint Branch-64-2.0 91.02 71.38 16.28 10.53 Yes

Table 1. Comparison of accuracy, speed and compactness on CelebA test set. LNet+ANet and Walk and Learn results are cited from

[43]. MOON results are cited from [31]. +: There is no reported number to cite. ∗: MOON uses the VGG16 architecture, thus its test

time should be similar to our VGG-16 baseline. We use the convention Branch-x-c to represent a model from the proposed branching

method, with initial width of x and branching factor of c. Similar, Baseline-thin-x can be seen as Branch-x-0 (no branching). The details

of architectural changes on low-rank and thin models are shown in Section 3.1.

Method Top-3 Accuracy (%) Top-5 Accuracy (%) Test Speed (ms) Parameters (millions) Jointly?

WTBI 43.73 66.26 + + No

DARN 59.48 79.58 + + No

FashionNet 82.58# 90.17# ≈ 34∗ ≈ 134∗ No

Our VGG-16 Baseline 86.72 92.51 34.0 134.45 No

Our Low-rank Baseline 84.14 90.96 16.34 4.52 No

Our Joint Branch-32-2.0 79.91 88.09 10.01 3.25 Yes

Our Joint Branch-64-2.0 83.24 90.39 16.28 10.53 Yes

Table 2. Comparison of accuracy, speed and compactness on Deepfashion test set. WTBI and DARN results are cited from [23]. The

experiments are reportedly performed in the same condition on the FashionNet method and tested on the DeepFashion test set. +: There is

no reported number to cite. ∗: There is no reported number, but based on the adoption of VGG-16 network as base architecture they should

be similar to those of our VGG-16 baseline. #: The results are from a network jointly trained for clothing landmark, clothing attribute and

clothing categories predictions. We cite the reported results for clothing category [23]. See captions of Table 1 for naming conventions.
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Figure 3. The reduction in accuracy when changing the task group-

ing to favor grouping of dissimilar tasks. A positive number sug-

gests a reduction in accuracy when changing from original to the

new grouping. This figure shows our automatic grouping strategy

improves accuracy for most tasks.

the state-of-the-art on both facial and clothing tasks, while

being a much more efficient combined model rather than

two separate models. The comparison between the joint

Method Accuracy (%) Top-10 Recall (%)

w/ pre-trained -0.54 -2.47

w/o pre-trained -0.65 -3.77

Table 3. Accuracy drop of Branch-32.2.0 compared to VGG-16

baseline, with and without initialization from pre-trained model.

models with the baselines is shown in Table 1 and 2.

4.4. Ablation Studies

Significance of grouping. We swaps the 20 tasks shown

at the left side of Figure 4 with the 20 tasks at the right and

retrain the model (using the “Branch-32-2.0” model illus-

trated in the figure). In this particular case this shuffling sep-

arates a large number of tasks originally in the same branch,

creating a helpful scenario to diagnose our approach. Fig-

ure 3 summarizes the reduction in accuracy due to reshuf-

fling. In this case, grouping tasks according to similarity

improves accuracy for most tasks. We observe similar be-

haviors from multiple random reshuffling, however due to

the randomness the overall gain are less clear cut at times.

Cause of accuracy drop. The drop in accuracy of the

proposed method compared to VGG-16 baseline could to
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Figure 4. The actual task grouping in the Branch-32-2.0 model on CelebA. Upper: fc7 layer. Lower: fc6 layer. Other layers are omitted.
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Figure 5. Comparison of training progress with and without SOMP

initialization. The model using SOMP initialization clearly con-

verges faster and better.

caused by sub-optimal use of the pretrained model (as the

initial model is thinner), or the smaller capacity. We diag-

nose the issue by comparing the accuracy of Branch-32-2.0

and VGG-16 baseline with and without the initialization. If

poor initialization is the main cause, removing the initializa-

tion should narrow the gap between the two models. This is

not the case, as shown in Table 3. In this light, future work

should probably prioritize better automated model design

over more effective initialization.

Effects of SOMP initialization. We compare train-

ing with and without this initialization using the Baseline-

thin-32 model on CelebA, under identical training condi-

tions. The evolution of training and validation accuracies

are shown in Figure 5. Clearly, the network initialized with

SOMP initialization converges faster and better than the one

without SOMP initialization.

4.5. Training Details

For all experiments, the attribute outputs are sigmoid

units. Loss function is sigmoid cross-entropy loss weight-

ing attributes uniformly. Each attribute is treated as a

task. We use the original partitions in the two datasets.

For CelebA images without face alignment (unlike reported

MOON results) are used as their contents provide contexts

useful for clothing. Mini-batch size is 32. The training iter-

ations is 60000, the learning rate is initialized to 0.001 and

decayed by a factor of 10 every 20000 iterations. The initial

model branching phase updates the model after every 1000

iterations. These are changed to 100000, 40000 and 2000

respectively for joint models. The branching factor and the

initial width of thin models used to train various models are

summarized in Table 1 and Table 2. The error decay fac-

tor is set to 0.99. Experiments are performed on a single

K40 GPU. With branching (factor=1.0) the training time on

CelebA is reduced to 17 from 40 hours (VGG16 baseline).

All training uses Batch Normalization (BN) [15]. BN lay-

ers are removed and the corresponding convolution layers

are scaled and shifted accordingly for faster inference.

Baselines The vanilla VGG-16 model is initialized from

imdb-wiki gender VGG-16 models by replacing the output

layers [30]. The low-rank model factorizes all layers. It

is initialized using truncated SVD [7] from the imdb-wiki

model (the number of basis filters is 8-16-32-64-64-64-64-

16). The thin models are initialized with SOMP (See Sec-

tion 3.1 for more details).

5. Conclusion and Future Works

We have proposed a novel method for learning the struc-

ture of compact multi-task deep neural networks. Our

method starts with a thin network model and expands it

during training by means of a novel multi-round branching

mechanism, which determines with whom each task shares

features in each layer of the network, while penalizing for

the complexity of the model. We demonstrated promising

results of the proposed approach on the problem of person

attribute classification.

The method itself is independent of the underlying tasks

since it only require a notion of correlation between them. It

thus can be applied to multi-task problem beyond person at-

tribute classifications in future works. We also plan to adapt

this method to other related problems, such as incremental

learning and domain adaptation.
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